BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR. DISTRIBUSI 20/0,4 kv, 315 kva. (Aplikasi Di PT Trafoindo Prima Perkasa)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR. DISTRIBUSI 20/0,4 kv, 315 kva. (Aplikasi Di PT Trafoindo Prima Perkasa)"

Transkripsi

1 BAB IV PEMBAHASAN KONSTRUKSI CORE PADA TRANSFORMATOR DISTRIBUSI 20/0,4 kv, 315 kva (Aplikasi Di PT Trafoindo Prima Perkasa) 4.1. Penentuan dimensi core Transformator Distribusi 20 / 0,4 kv dengan Konstruksi Core Tipe Wound. Transformator Distribusi 20 / 0,4 kv yang menjadi contoh penentuan core adalah Transformator Distribusi dengan kapasitas 315 kva dan transformator yang digunakan oleh custemer PT PLN (PERSERO). Spesifikasi Transformator Distribusi : Kapasitas Tegangan HV Tegangan LV Vector Group Rugi WFe Rugi WCu Tipe Core : 315 kva : 20 kv : 400 V : Dyn5 : 500 W (SPLN D3;2007) : 3250 W (SPLN D3;2007) : 3 fasa 5 kaki Bahan Material Silicon Steel tipe M mm (JFE G-Core) 56

2 4.1.1 Gambar Desain Konstruksi Core Tipe Wound Gambar 4.1. Gambar Desain Konstruksi Core Tipe Wound Bentuk core tipe Wound dimana memiliki 4 buah Core (inti besi), keterangan angka 1 menunjukan core yang memiliki luas core yang besar dan angka 2 menunjukan core yang memiliki luas core yang kecil. H merupakan tinggi dari core (inti besi). Core pada tipe wound memiliki nilai radius bagian dalam sebesar 5 dan untuk yang luar radiusnya 80, L merupakan lebar core bagian luar dari core (inti besi) baik yang ukuran besar atau kecil. a merupakan lebar jendela core (inti besi) baik yang ukuran besar atau kecil dan b merupakan panjang jendela core (inti besi). Y W1 W2 Gambar 4.2. core tipe wound tampak atas 57

3 Keterangan untuk W1 merupakan panjang core yang ukuran kecil sedangkan W2 merupakan panjang core yang ukuran besar dan untuk Y merupakan lebar core. Ukuran core tergantung dari besar luas coil yang telah di design yang sesuai dengan kapasitasnya. Wcoil Hcoil Ycoil a).tampak atas b). Tampak Samping Gambar 4.3. Bentuk Coil Bentuk coil yang dibentuk dengan luas bidangnya berbentuk persegi panjang. Nilai perhitungan design didapat panjang W coil = 188 mm dan Y coil = 158 mm. dengan tinggi Hcoil = 480 mm Sehingga didapat nilai design core seperti tabel 4.1 sebagai berikut : 58

4 Tabel 4.1 design Core transformator distribusi 20/0,4 kv. 315 kva ITEM W (mm) a (mm) B (mm) L (mm) H (mm) Y (mm) Inner QTY Core Core Perhitungan Berat Core tipe Wound Berat core merupakan salah satu pengaruh akibanya timbul rugi inti besi yang dihasilkan. Berat jenis pada material core diketahui sebesar 7,56x10-6 kg/mm 3. Berat core dapat dihitung dengan menggunakan persamaan (3.6) dengan acuan standar SPLN D3;2007 : Berat jenis material = 7,65x10-6 kg/mm 3 Berat Core 1 Berat (kg) = (433,5 + 75) π 75 (7, ) 180 = 164, kg Jumlah Core 1 terdapat 2 buah core sehingga, Berat (kg) = 2 x 164, = 329, kg Berat Core 2 Berat (kg) = (376, ) π 75 (7, ) 180 = 295, kg Jumlah core 2 terdapat 2 buah core sehingga, Berat (kg) = 2 x 295, = kg 59

5 Jadi total berat core secara keseluruhan adalah Berat total (kg) = Berat Core 1 + Berat Core 2 = 329, , = kg Menentukan besar nilai ET dan N2 : Volt per Turn (ET) merupakan besaran perhitungan pabrikan yang ditetapkan. Sehingga didapat nilai perkiraaan perhitungan ET (Volt per Turn) = volt turn (perkiraan perhitungan) Setelah nilai ET (Volt per Turn) didapat dari perkiraan perhitungan Sisi sekunder ( ) N2 menggunakan persamaan dari (3.1) Jika diketahui besar nilai VL = 400 V, maka : N 2 = = = Turn 30 Turn Maka dilakukan perhitungan ET kembali dengan nilai N2 = 30 Turn. ET = = volt turn (design) Untuk mendapatkan nilai ET sesuai dengan permintaan spesifikasi, maka jumlah belitan N2 dikurangi menjadi 28 turn dan nilai ET menjadi : E T = = volt turn (Perhitungan ulang) 60

6 Dan nilai N1 diambil dari perhitungan Tap 3 didapat nilai N R = 2546 Turn, V R = V Menghitung Bm (Flux Density) Menggunakan wound core 5 legs dengan dimensi sebagai berikut : Tabel 4.2 Data design tipe Wound core Data Design tipe Wound Core W Y a1 a2 b 180 mm 75 mm 185 mm 96 mm 500 mm Ganjal 2 L H 1168 mm 650 mm Dalam menganalisa Bm (Flux Density) awal perhitungan yang harus di hitung adalah Luas area (A) core dengan menggunakan persamaan dari (3.7). Dengan nilai yang terdapat pada tabel 4.2 maka dapat dihitung : Acore = = mm 2 61

7 Untuk luas penampang inti core dengan menggunakan persamaan dari (3.8) dan mengacu kepada tabel 4.2 maka dapat dihitung : Ai core = = mm 2 Dari nilai Ai core yang telah didapat dari hasil perhitungan sehingga, nilai Bm dengan menggunakan persamaan (3.9) akan didapat : B m = = Tesla Setelah nilai Bm didapat dari hasil perhitungan maka nilai Bm akan menentukan besar nilai core loss Watt kg dan Exciting Power VA kg yang akan disesuaikan dengan hasil karakteristik dari bahan material yang digunakan. Karakteristik material bahan core didapat dari pabrikan produk bahan material silicon steel yaitu JFE G-Core. 62

8 4.1.5 Menentukan Parameter Core Transformator Distribusi Menentukan nilai core loss transformator distribusi Gambar 4.4. Kurva Core Loss dari bahan material Nilai Bm didapat dari hasil perhitungan adalah 1,45 Tesla, maka angka 1,45 Tesla pada kurva core loss ditarik ke kurva core loss dengan frekuensi 50 Hz sehingga akan mendapatkan nilai core loss sebesar 0,76 Watt kg 63

9 Menentukan nilai exciting power transformator distribusi Gambar 4.5. Kurva Exciting Power Dari Bahan Material Dan untuk nilai Exciting Power, dengan nilai Bm yang didapat dari hasil perhitungan sebesar 1,45 Tesla. Maka angka pada magnetic Flux Density sebesar 1,45 Tesla pada kurva Exciting Power ditarik ke kurva exciting power dengan frekuensi 50 Hz sehingga akan mendapatkan nilai exciting power sebesar 0,98 VA kg 64

10 4.1.6 Perhitungan No Load Losses Gap A Gap B Core Coil H coil Fixing part Gambar 4.6 Design Core Dan Coil Keterangan : Gap A = jarak antara coil satu dengan coil lainnya (mm) Gap B = jarak antara coil dengan inti besi yoke (mm) H coil = tinggi Coil (mm) Dari hasil analisa yang telah dilakukan maka selanjutnya akan ditentukan berapa besar nilai rugi inti besi yang akan dihasilkan dari hasil design yang dibuat. 65

11 Diketahui : Core Loss Watt Kg = 0.76 (didapat dari kurva core loss) Exciting Power VA Kg = 0.98 (didapat dari kurva exciting power) Berat total Core = 623, Kg K Core = 1.1 (didapat dari ketentuan design) K Io = 2 (didapat dari ketentuan design) Gap A = 9 mm Gap B = 20 mm L Coil (W) = 323,5 mm (didapat dari hasil perhitungan coil) H Coil = 480 mm Dilakukan perhitungan sebagai berikut : W Fe = Berat Total Core Watt Kg K Core = 623, = 520, , 88 Watt Dilakukan juga perhitungan untuk mencari nilai arus excitasi adalah sebagai berikut : 66

12 I 0 = VA Kg Berat Total Core kva 10 K I 0 = , = % 0,39 % Setelah didapat rugi inti besi dari hasil perhitungan design maka dilakukan perhitungan KR(Kesalahan Relatif) menggunakan persamaan (3.10) di dapatkan hasil perhitungan sebagai berikut : KR (Kesalahan Relatif) = W festandar xw fe perhit W fe standar x 100% 500 x 520,88 = x 100% 500 = 0,04176 x 100% = 4,176 % 4,18 % Nilai rugi inti besi yang dihasilkan dari perhitungan pada Transformator Distribusi 315 kva adalah W Fe = 520,88 Watt dan I 0 = 0.39 % sedangkan standar yang menjadi acuan yaitu SPLN D3: 2007 untuk Transformator Distribusi 315 kva sebesar W Fe = 500 Watt dengan Toleransi ± 10 %. Jadi nilai rugi inti besi yang dihasilkan dari hasil perhitungan design sesuai dengan standar. 67

13 4.2. Test kondisi No Load Transformator Distribusi 3 Fasa 20/0,4 kv, 315 kva Tipe Wound Core. Hasil test uji didapat dari hasil Quality Control(QC), proses yang dilakukan dalam uji rugi inti besi didapat dari hasil pengukuran atau hasil uji QC pada Pengujian Rugi Tanpa Beban (NO LOAD TEST) dan Arus Beban Nol. Tujuan dari Rugi Tanpa Beban (NO LOAD TEST) dan Arus Beban Nol adalah untuk mengetahui parasit/rugi inti besi dari beban nol Transformator terhadap kapasitas dan berkenaan dengan efisiensi suatu Transformator. Alat yang digunakan untuk pengujian ini yaitu : Panel test karakteristik lengkap dengan factor tegangan (PT) dan factor meter arus (CT). Power meter digital 3, 3 wirw 1000 VAC/20 A. IVR ( Inductioan Voltage Regulation ) dengan spesifikasi : 3 Fasa 50 HZ 400 V/ V,YNA0.MERK : shanghai voltage regulation MFG co.ltd. Transformator pembantu (auxalary transformator), dengan spesifikasi : 500 A, 50 HZ, 1750/600 V Dd-0 (untuk primer memakai tap changer). Kontaktor 3 Fasa 150 A, 100 A. MCCB (Moulded Case Circuit Breaker) 3 Fasa 225 A. Kabel sesuai ampere 2500 kva. 68

14 4.2.1 Proses Pengujian No Load Loss Test pada Transformator Distribusi 20/0,4 kv, 315 kva. No load loss test (pengujian rugi besi ) dilakukan pada tegangan eksitasi dan frekuensi tertentu sesuai dengan name plate dari transformator tiga phasa yang dijadikan objek uji. Tujuan dari Pengujian rugi tanpa beban adalah untuk mengetahui parasit/rugi besi dari beban nol transformator terhadap kapasitas dan berkenaan dengan efisiensi suatu transformator. No load losses (rugi-rugi tanpa beban) merupakan rugi-rugi yang terkait dengan eksitasi transformator. No load losses yang diukur meliputi rugi-rugi, yaitu: Rugi inti. Dielektrik. Konduktor pada lilitan yang terkait dengan arus bocor. Semua rugi-rugi yang di sebutkan diatas mempunyai nilai yang berubah terhadap tegangan eksitasi (asutan) yang diberikan ketika pengujian. 69

15 R CT 2N 2U 1U A W V V S 1V A X2 2V T A W V V 2 w 1W CT X3 LV Gambar 4.1 diagram No load current and no load loss test (pengujian arus beban nol dan rugi besi) 70

16 4.2.2 Perhitungan Rugi Inti Besi (Wfe) dan % I Parameter Transformator Distribusi Tiga Phasa Yang di Uji Pada No load loss test (Pengujian rugi tanpa beban) Transformator yang dijadikan objek uji merupakan Transformator tiga phasa 315 kva yang mempunyai spesifikasi/parameter sebagai berikut : Frekuensi = 50 Hz Daya = 315 KVA Vektor grup = Dyn 5 High Voltage = V Low Voltage = 400 V Pelaksanaan Pengujian Seperti yang sudah dijelaskan sebelumnya pengujian dilakukan dengan tujuan untuk mengetahui parasit/rugi besi dari beban nol Transformator terhadap kapasitas dan berkenaan dengan efisiensi suatu Transformator. Pengujian dilakukan dengan memberikan supply tegangan eksitasi sesuai dengan nilai tegangan pada sisi yang di inject. Pada pengujian sisi yang di inject adalah sisi Low Voltage (LV) dimana besarnya tegangan adalah 400 V. 71

17 Tegangan disuplai oleh generator supply yang kemudian dilakukan pengaturan tegangan yang diinject menggunakan regulator yang terpasang pada panel test karakteristik. Dengan memberikan tegangan eksitasi pada Transformator yang diuji akan menghasilkan arus beban nol yang mengalir pada kumparan Transformator. Arus beban nol ini kemudian dikecilkan terlebih dahulu dengan CT (Current Transformator) yang dihubungkan dengan panel tes karakteristik agar dapat terbaca pada ampere meter yang terpasang pada panel karakteristik. Dari pengukuran didapat nilai : Tegangan suplai = 400 V rasio CT = 10 5 = 2x rasio VT = = 5x Setelah didapat nilai pengukuran maka dicari berapa besar rugi besi yang dihasilkan dari pengujian tanpa beban dan berapa besar nilai percentace arus beban nol. Dapat dihitung sebagai berikut : Nilai rugi besi (Wfe) Rugi besi yang tertera pada alat ukur = 54,48 W Rugi besi (Wfe) yang sebenarnya : W fe = P fe terukur (PT CT) = P fe terukur FM = 54,48 (2x5) 72

18 = 54,48 10 = 540,8 Watt Nilai percentace arus beban nol (I0) : I0 yang terukur ( ) = 0,44 A (pada alat ukur) Nilai I0 yang sebenarnya : I 0 = rasioct = 0,44 2 = 0,88 A Pesentase nilai arus beban nol %I0 : %Io = I sebenarnya x 100% I nominal %Io = I sebenarnya P 3 V x 100% = 0,88 454,663 x 100% = 0,193 % 0,19 % Setelah didapat rugi inti besi dari hasil test pengujian No Load Loss Test KR (Kesalahan Relatif) dengan menggunakan persamaan (3.10) didapatkan hasil sebagai berikut : 73

19 500 x 544,8 = x 100% 500 = 0,0896 x 100% = 8,96 % Nilai rugi inti besi yang dihasilkan dari test pengujian No Load Loss pada Transformator Distribusi 315 kva adalah W Fe = 544,8 Watt dan I 0 = 0.19 % sedangkan standar yang menjadi acuan yaitu SPLN D3: 2007 untuk Transformator Distribusi 315 kva sebesar W Fe = 500 Watt dengan Toleransi ± 10 %. Jadi nilai rugi inti besi yang dihasilkan dari pengujian no load loss test sesuai dengan standar. Tabel 4.3. Hasil perhitungan dan test uji Rugi Inti Besi pada Transformator Distribusi 20/0,4 kv, 315 kva. Perhitungan design core Test uji no load loss Standar PLN D3: 2007 keterangan Rugi Inti Besi (Wfe) 520,88 Watt 544,8 Watt 500 Watt Masih dibatas Standar % I0 0,39 % 0,19 %

BAB I PENDAHULUAN. energy listrik terutama bagi kalangan industri, bisnis, pemerintah dan masyarakat umum.

BAB I PENDAHULUAN. energy listrik terutama bagi kalangan industri, bisnis, pemerintah dan masyarakat umum. BAB I PENDAHULUAN 1.1 Latar Belakang Di setiap Negara, energy listrik sudah menjadi salah satu kebutuhan pokok bagi kehidupan umat manusia, termasuk di Indonesia. Banyak manfaat yang di dapat dari energy

Lebih terperinci

BAB III METODE PENENTUAN VECTOR GROUP

BAB III METODE PENENTUAN VECTOR GROUP BAB III METODE PENENTUAN VECTOR GROUP 3.1 Pengujian Vector Group Transformator Salah satu pengujian yang dilakukan pada transformator adalah pengujian vector group transformator. Pengujian vector group

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Flow Chart Pengujian Deskripsi sistem rancang rangkaian untuk pengujian transformator ini digambarkan dalam flowchart sebagai berikut : Mulai Peralatan Uji Merakit Peralatan

Lebih terperinci

Pengujian Transformator

Pengujian Transformator Pengujian Transformator Pengujian transformator dilaksanakan menurut SPLN 50-1982 dengan melalui tiga macam pengujian, sebagaimana diuraikan juga dalam IEC 76 (1976), yaitu : - Pengujian Rutin Pengujian

Lebih terperinci

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Laporan Penelitian PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Oleh : Ir. Leonardus Siregar, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKABP NOMMENSEN MEDAN 2013 Kata Pengantar Puji

Lebih terperinci

PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO

PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO PROSEDUR PENGUJIAN TAHANAN ISOLASI TRAFO 1. Tujuan Percobaan : Untuk mengetahui kondisi isolasi trafo 3 fasa Untuk mengetahui apakah ada bagian yang hubung singkat atau tidak 2. Alat dan Bahan : Trafo

Lebih terperinci

Teknik Tenaga Listrik (FTG2J2)

Teknik Tenaga Listrik (FTG2J2) Teknik Tenaga Listrik (FTG2J2) Kuliah 4: Transformator Ahmad Qurthobi, MT. Engineering Physics - Telkom University Daftar Isi Transformator Ideal Induksi Tegangan pada Sebuah Coil Tegangan Terapan dan

Lebih terperinci

Badaruddin, Ahmad Charis. Program Studi Teknik Elektro Fakultas Teknik Universitas Mercu Buana Jakarta Abstrak

Badaruddin, Ahmad Charis. Program Studi Teknik Elektro Fakultas Teknik Universitas Mercu Buana Jakarta Abstrak ANALISA PERBANDINGAN TIPE WINDING CU-CU DENGAN TIPE AI-AI PADA TRANFORMATOR DISTRIBUSI 3 FASA KAPASITAS 630 kva TEGANNGAN 20 kv-400 V VECTOR GROUP DYN-5 Badaruddin, Ahmad Charis Program Studi Teknik Elektro

Lebih terperinci

BAB IV ANALISA HASIL PENYETINGAN RELAI DIFFERENSIAL

BAB IV ANALISA HASIL PENYETINGAN RELAI DIFFERENSIAL 60 BAB IV ANALISA HASIL PENYETINGAN RELAI DIFFERENSIAL 4.1 Data sistem di PLTGU Muara Karang Tabel 4.1 Data Transformator Step Up 11,5/150 kv PLTGU Muara Karang Pabrikan Daya Transformator Tegangan Primer

Lebih terperinci

BAB III. Transformator

BAB III. Transformator BAB III Transformator Transformator merupakan suatu alat listrik yang mengubah tegangan arus bolak-balik dari satu tingkat ke tingkat yang lain melalui suatu gandengan magnet dan berdasarkan prinsipprinsip

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Pada dasarnya, definisi dari sebuah sistem tenaga listrik mencakup tiga bagian penting, yaitu pembangkitan, transmisi, dan distribusi, seperti dapat terlihat

Lebih terperinci

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB

ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB ANALISIS PENYEBAB KEGAGALAN KERJA SISTEM PROTEKSI PADA GARDU AB 252 Oleh Vigor Zius Muarayadi (41413110039) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana Sistem proteksi jaringan tenaga

Lebih terperinci

III PENGUMPULAN DAN PENGOLAHAN DATA

III PENGUMPULAN DAN PENGOLAHAN DATA III PENGUMPULAN DAN PENGOLAHAN DATA 3.1. Umum Berdasarkan standard operasi PT. PLN (Persero), setiap pelanggan energi listrik dengan daya kontrak di atas 197 kva dilayani melalui jaringan tegangan menengah

Lebih terperinci

BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) Sistem Kelistrikan di PT. Krakatau Steel Cilegon

BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) Sistem Kelistrikan di PT. Krakatau Steel Cilegon BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) 3 4.1 Sistem Kelistrikan di PT. Krakatau Steel Cilegon Untuk menjalankan operasi produksi pada PT. Krakatau Steel

Lebih terperinci

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH

STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH STUDI PENGGUNAAN SISTEM PENDINGIN UDARA TEKAN UNTUK MENINGKATKAN EFISIENSI TRANSFORMATOR PADA BEBAN LEBIH (Aplikasi pada PLTU Labuhan Angin, Sibolga) Yohannes Anugrah, Eddy Warman Konsentrasi Teknik Energi

Lebih terperinci

ABSTRAK. Kata kunci : Arus Transien, Ketahanan Transformator, Jenis Beban. ABSTRACT. Keywords : Transient Current, Transformer withstand, load type.

ABSTRAK. Kata kunci : Arus Transien, Ketahanan Transformator, Jenis Beban. ABSTRACT. Keywords : Transient Current, Transformer withstand, load type. Jurnal Reka Elkomika 2337-439X Januari 2013 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.1 No.1 Analisis Arus Transien Transformator Setelah Penyambungan Beban Gedung Serbaguna PT

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

TRANSFORMATOR DAYA & PENGUJIANNYA

TRANSFORMATOR DAYA & PENGUJIANNYA TRANSFORMATOR DAYA & PENGUJIANNYA Transformator tenaga adalah suatu peralatan tenaga listrik yang berfungsi untuk menyalurkan tenaga/daya listrik dari tegangan tinggi ke tegangan rendah atau sebaliknya

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

47 JURNAL MATRIX, VOL. 7, NO. 2, JULI 1971

47 JURNAL MATRIX, VOL. 7, NO. 2, JULI 1971 47 JURNAL MATRIX, VOL. 7, NO. 2, JULI 1971 ANALISIS PENGARUH REKONFIGURASI GROUNDING KABEL POWER 20 kv TERHADAP ERROR RATIO CURRENT TRANSFORMERS PELANGGAN TEGANGAN MENENGAH DI HOTEL GOLDEN TULIP SEMINYAK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Transformator Transformator adalah suatu alat listrik yang dapat memindahkan atau mentransfer power listrik dari satu sirkuit ke sirkuit-irkuit lainnya, secara induksi electromagnet

Lebih terperinci

Starter Dua Speed Untuk Motor dengan Lilitan Terpisah. (Separate Winding)

Starter Dua Speed Untuk Motor dengan Lilitan Terpisah. (Separate Winding) Starter Dua Speed Untuk Motor dengan Lilitan Terpisah (Separate Winding) 1. Tujuan 1.1 Mengidentifikasi terminal motor dua kecepatan dua lilitan terpisah (separate winding) 1.2 Menjelaskan tujuan dan fungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Transformator Transformator atau transformer atau trafo adalah suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindah dan mengubah energi listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1.Transformator distribusi Transformator distribusi yang sering digunakan adalah jenis transformator step up down 20/0,4 kv dengan tegangan fasa sistem JTR adalah 380 Volt karena

Lebih terperinci

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI

BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI BAB IV OPTIMALISASI BEBAN PADA GARDU TRAFO DISTRIBUSI 4.1 UMUM Proses distribusi adalah kegiatan penyaluran dan membagi energi listrik dari pembangkit ke tingkat konsumen. Jika proses distribusi buruk

Lebih terperinci

BAB I PENDAHULUAN. yang dipakai adalah tegangan dan arus bolak-balik ( AC). Sedangkan tegangan dan arus

BAB I PENDAHULUAN. yang dipakai adalah tegangan dan arus bolak-balik ( AC). Sedangkan tegangan dan arus BAB I PENDAHULUAN I.1. LATAR BELAKANG MASALAH Dalam istilah elektro, transformator adalah suatu alat yang dapat mengubah energi listrik menjadi energi listrik dengan frekuensi yang sama. Perubahan energi

Lebih terperinci

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive)

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive) 15 BAB III CAPACITOR BANK 3.1 Panel Capacitor Bank Dalam sistem listrik arus AC/Arus Bolak Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu: Daya Semu (S,

Lebih terperinci

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan BAB II LANDASAN TEORI 2.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan kerja atau

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN. fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung

BAB IV ANALISA DAN PERHITUNGAN. fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung BAB IV ANALISA DAN PERHITUNGAN 4.1 Umum Untuk menganalisa kegagalan pengasutan pada motor induksi 3 fasa dari segi sistim kelistrikannya maka dilakukan pengamatan langsung ( visual ) terhadap motor induksi

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 UMUM Transformator merupakan suatu peralatan listrik elektromagnetik statis yang berfungsi untuk memindahkan dan mengubah daya listrik dari suatu rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT)

BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT) BAB III DEFINISI DAN PRINSIP KERJA TRAFO ARUS (CT) 3.1 Definisi Trafo Arus 3.1.1 Definisi dan Fungsi Trafo Arus (Current Transformator) yaitu peralatan yang digunakan untuk melakukan pengukuran besaran

Lebih terperinci

BAB III ALAT PENGUKUR DAN PEMBATAS (APP)

BAB III ALAT PENGUKUR DAN PEMBATAS (APP) BAB III ALAT PENGUKUR DAN PEMBATAS (APP) 3.1 Alat Ukur Listrik Besaran listrik seperti arus, tegangan, daya dan lain sebagainya tidak dapat secara langsung kita tanggapi dengan panca indra kita. Untuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 31 BAB III METODOLOGI PENELITIAN 3.1. Flowchart Pengambilan Data Winding Cu-Cu Winding Cu-Cu Bagian Elektrik Bagian Elektrik Kumparan Kumparan Inti Besi Inti Besi Bagian Mekanik Bagian Mekanik Selesai

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV Oleh Endi Sopyandi Dasar Teori Dalam penyaluran daya listrik banyak digunakan transformator berkapasitas besar dan juga bertegangantinggi. Dengan transformator tegangan

Lebih terperinci

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT BUILD DESIGN MODUL POWER FACTOR CONTROL UNIT Tri Agus Budiyanto (091321063) Jurusan Teknik Elektro Program Studi Teknik Listrik Politeknik Negeri Bandung

Lebih terperinci

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR M. Hariansyah 1, Joni Setiawan 2 1 Dosen Tetap Program Studi Teknik Elektro

Lebih terperinci

BAB IV HASIL DAN ANALISIS. 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR

BAB IV HASIL DAN ANALISIS. 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR BAB IV HASIL DAN ANALISIS 4.1 Analisa Pengujian Rasio Kumparan / Belitan Trafo Dengan TTR Rasio perbandingan belitan trafo distribusi yang masih baik ditunjukkan dengan hasil pengukuran yang masih berada

Lebih terperinci

STUDI PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

STUDI PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA STUDI PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA Titiek Suheta,Abdullah Farid Jurusan Teknik Elektro,Fakultas Teknologi Industri Institut Teknologi Adhi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian Alat dan bahan yang digunakan dalam penelitian ini adalah sebagai berikut : a. Generator Sinkron Satu Fasa Pabrik Pembuat : General Negara Pembuat

Lebih terperinci

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP 12.6.0 Fani Istiana Handayani * ), Yuningtyastuti, and Agung Nugroho Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

PENGARUH BEBAN TIDAK SEIMBANG TERHADAP EFISIENSI TRANSFORMATOR TIGA FASA PADA HUBUNGAN OPEN-DELTA

PENGARUH BEBAN TIDAK SEIMBANG TERHADAP EFISIENSI TRANSFORMATOR TIGA FASA PADA HUBUNGAN OPEN-DELTA PENGARUH BEBAN TIDAK SEIMBANG TERHADAP EFISIENSI TRANSFORMATOR TIGA FASA PADA HUBUNGAN OPEN-DELTA Sumantri, Titiek Suheta 1, dan Joao Filomeno Dos Santos Teknik-Elektro ITATS 1, Jl. Arief Rahman Hakim

Lebih terperinci

BAB III TAPPING DAN TAP CHANGER 3.1 Penentuan Jumlah Tap Pusat-pusat pembangkit tenaga listrik berada jauh dari pusat beban, hal ini mengakibatkan kerugian yang cukup besar dalam penyaluran daya listrik.

Lebih terperinci

Mesin Arus Bolak Balik

Mesin Arus Bolak Balik Teknik Elektro-ITS Surabaya share.its.ac.id 1 Mesin Arus Bolak balik TE091403 Institut Teknologi Sepuluh Nopember August, 2012 Teknik Elektro-ITS Surabaya share.its.ac.id ACARA PERKULIAHAN DAN KOMPETENSI

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

Jurnal Teknologi Elektro, Universitas Mercu Buana ISSN: ANALISIS VECTOR GROUP PADA HUBUNGAN PARALEL TRANSFORMATOR UNIT GARDU BERGERAK

Jurnal Teknologi Elektro, Universitas Mercu Buana ISSN: ANALISIS VECTOR GROUP PADA HUBUNGAN PARALEL TRANSFORMATOR UNIT GARDU BERGERAK ANALISIS VECTOR GROUP PADA HUBUNGAN PARALEL TRANSFORMATOR UNIT GARDU BERGERAK Budi Yanto Husodo ¹, Firmansyah² Program Studi Teknik Elektro, Fakultas Teknik Universitas Mercu Buana, Jakarta, Indonesia

Lebih terperinci

BAB 3 PENGOLAHAN DATA

BAB 3 PENGOLAHAN DATA BAB 3 PENGOLAHAN DATA 3.1 Kerja Paralel Transformator Tiga Fasa Untuk memperoleh sistem tenaga listrik yang stabil, beberapa transformator dioperasikan kerja paralel, tujuannya untuk menghasilkan tenaga

Lebih terperinci

Gambar 2.1 Skema Sistem Tenaga Listrik

Gambar 2.1 Skema Sistem Tenaga Listrik Generator Transformator Pemutus Tenaga Distribusi sekunder Distribusi Primer 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Secara garis besar, suatu sistem tenaga listrik yang lengkap

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Umum Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Suatu sistem tenaga listrik pada dasarnya dapat dikelompokan atas tiga bagian utama, yaitu: sistem pembangkitan, sistem transmisi dan sistem distribusi

Lebih terperinci

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP 12.6.0 Fani Istiana Handayani * ), Yuningtyastuti, Agung Nugroho Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Sistem Distribusi Tenaga Listrik Sistem tenaga listrik adalah kumpulan atau gabungan dari komponenkomponen atau alat-alat listrik seperti generator, transformator, saluran transmisi,

Lebih terperinci

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT)

PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) PEMAKAIAN DAN PEMELIHARAAN TRANSFORMATOR ARUS (CURRENT TRANSFORMER / CT) Oleh : Agus Sugiharto Abstrak Seiring dengan berkembangnya dunia industri di Indonesia serta bertambah padatnya aktivitas masyarakat,

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB III PERALATAN LISTRIK PADA MOTOR CONTROL CENTER (MCC) WATER TREATMENT PLANT (WTP) 3

BAB III PERALATAN LISTRIK PADA MOTOR CONTROL CENTER (MCC) WATER TREATMENT PLANT (WTP) 3 BAB III PERALATAN LISTRIK PADA MOTOR CONTROL CENTER (MCC) WATER TREATMENT PLANT (WTP) 3 3.1 Sistem Proteksi Kelistrikan pada Motor Control Center (MCC) Sistem proteksi kelistrikan pada motor control center

Lebih terperinci

AKIBAT KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRANSFORMATOR DISTRIBUSI

AKIBAT KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRANSFORMATOR DISTRIBUSI AKIBAT KETIDAKEIMBANGAN BEBAN TERHADAP ARU NETRAL DAN LOE PADA TRANFORMATOR DITRIBUI Moh. Dahlan 1 email : dahlan_kds@yahoo.com surat_dahlan@yahoo.com IN : 1979-6870 ABTRAK Ketidakseimbangan beban pada

Lebih terperinci

BAB IV JATUH TEGANGAN PADA PANEL DISTRIBUSI TENAGA LISTRIK

BAB IV JATUH TEGANGAN PADA PANEL DISTRIBUSI TENAGA LISTRIK BAB IV JATUH TEGANGAN PADA PANEL DISTRIBUSI TENAGA LISTRIK 4.1. Sistem Distribusi Listrik Dalam sistem distribusi listrik gedung Emporium Pluit Mall bersumber dari PT.PLN (Persero) distribusi DKI Jakarta

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT Bab ini membahas mengenai perancangan alat yang meliputi, blok diagram, diagram pembuatan alat, Wiring rangkaian alat, dan juga tahapan pembatan alat. 3.1 Perancangan

Lebih terperinci

RANCANGBANGUN TRANSFORMATOR STEP UP

RANCANGBANGUN TRANSFORMATOR STEP UP DAFTAR ISI RANCANGBANGUN TRANSFORMATOR STEP UP 220 V / 5 KV, 0,5 A, 50 Hz... i HALAMAN PENGESAHAN PEMBIMBING.. Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... Error! Bookmark not defined. LEMBAR

Lebih terperinci

BAB III PENGAMANAN TRANSFORMATOR TENAGA

BAB III PENGAMANAN TRANSFORMATOR TENAGA 41 BAB III PENGAMANAN TRANSFORMATOR TENAGA 3.1 Pengamanan Terhadap Transformator Tenaga Sistem pengaman tenaga listrik merupakan sistem pengaman pada peralatan - peralatan yang terpasang pada sistem tenaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Komponen Pengukuran Tidak Langsung pada Tegangan Rendah 2.1.1 kwh Meter kwh meter merupakan alat pengukur energi listrik yang mengukur secara langsung hasil kali tegangan, arus

Lebih terperinci

DAFTAR ISI. BAB II LANDASAN TEORI A. Dasar Teori... 7 B. Uraian Sistem Power Window C. Cara Kerja Sistem Power Window... 22

DAFTAR ISI. BAB II LANDASAN TEORI A. Dasar Teori... 7 B. Uraian Sistem Power Window C. Cara Kerja Sistem Power Window... 22 DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii DAFTAR GAMBAR... v DAFTAR TABEL... viii DAFTAR NOTASI... ix BAB I PENDAHULUAN A. Latar Belakang Masalah... 1 B. Rumusan Masalah... 3 C. Batasan Masalah...

Lebih terperinci

JOB SHEET MESIN LISTRIK 2. Percobaan Paralel Trafo

JOB SHEET MESIN LISTRIK 2. Percobaan Paralel Trafo JOB SHEET MESIN LISTRIK 2 Percobaan Paralel Trafo UNIVERSITAS NEGERI MALANG FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO JOB SHEET PRAKTIKUM MESIN LISTRIK 2 Materi Judul Percobaan Waktu : Transformator : Percobaan

Lebih terperinci

Genset Diesel kva. Sub Distribution Panel = Panel utama distribusi listrik suatu zona tertentu, kapasitasdalam ampere.

Genset Diesel kva. Sub Distribution Panel = Panel utama distribusi listrik suatu zona tertentu, kapasitasdalam ampere. LVMDP / PUTR Low Voltage Main Distribution Panel / Panel Utama Tegangan Rendah = Pemutus sirkit utama tegangan rendah, kapasitas dalam ampere. Trafo Transformator step down dari tegangan menengah ke tegangan

Lebih terperinci

PENGARUH KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR KERING BHT02 RSG GA SIWABESSY TERHADAP ARUS NETRAL DAN RUGI-RUGI

PENGARUH KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR KERING BHT02 RSG GA SIWABESSY TERHADAP ARUS NETRAL DAN RUGI-RUGI PENGARUH KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR KERING BHT02 RSG GA SIWABESSY TERHADAP ARUS NETRAL DAN RUGI-RUGI Koes Indrakoesoema, Yayan Andryanto, M Taufiq Pusat Reaktor Serba Guna GA Siwabessy, Puspiptek,

Lebih terperinci

BAB IV DATA DAN PEMBAHASAN. Dalam penelitian ini menggunakan data plant 8 PT Indocement Tunggal

BAB IV DATA DAN PEMBAHASAN. Dalam penelitian ini menggunakan data plant 8 PT Indocement Tunggal 4.1. Data yang Diperoleh BAB IV DATA DAN PEMBAHASAN Dalam penelitian ini menggunakan data plant 8 PT Indocement Tunggal Prakarsa Tbk yang telah dikumpulkan untuk menunjang dilakukannya perbaikan koordinasi

Lebih terperinci

BAB III KEBUTUHAN GENSET

BAB III KEBUTUHAN GENSET BAB III KEBUTUHAN GENSET 3.1 SUMBER DAYA LISTRIK Untuk mensuplai seluruh kebutuhan daya listrik pada bangunan ini maka direncanakan sumber daya listrik dari : A. Perusahaan Umum Listrik Negara (PLN) B.

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

PERENCANAAN PEMASANGAN GARDU SISIP P117

PERENCANAAN PEMASANGAN GARDU SISIP P117 Jurnal Desiminasi Teknologi, Volume 1, Nomor 1, Januari 2013, Hal 17-26 PERENCANAAN PEMASANGAN GARDU SISIP P117 Di PT PLN (PERSERO) AREA BANGKA Lisma [1], Yusro Hakimah [2] Jurusan Teknik Elektro, Fakultas

Lebih terperinci

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO Muhammad Ade Nugroho, 1410017211121 Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Adapun hasil studi yang dikaji oleh penulis dari pemasangan gardu portal type

BAB IV HASIL DAN PEMBAHASAN. Adapun hasil studi yang dikaji oleh penulis dari pemasangan gardu portal type 39 BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Adapun hasil studi yang dikaji oleh penulis dari pemasangan gardu portal type GARPOL/GP6 di lokasi HOTEL AMARIS Jl. Cimanuk No. 14 Bandung, meliputi : 4.1.1 Tiang

Lebih terperinci

PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN

PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN Rendy F Sibarani, Ir. Syamsul Amien, MS Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 24 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metodologi yang digunakan dalam penelitian Tugas Akhir Skripsi ini antara lain adalah sebagai berikut : a. Studi literatur, yaitu langkah pertaman yang

Lebih terperinci

ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN

ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN Rizky Ferdinan Eddy Warman Konsentrasi Teknik Energi Listrik Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

Transformator : peralatan listrik elektromagnetik statis yang berfungsi untuk memindahkan dan mengubah daya listrik dari suatu rangkaian listrik ke ra

Transformator : peralatan listrik elektromagnetik statis yang berfungsi untuk memindahkan dan mengubah daya listrik dari suatu rangkaian listrik ke ra TRANSFORMATOR Transformator : peralatan listrik elektromagnetik statis yang berfungsi untuk memindahkan dan mengubah daya listrik dari suatu rangkaian listrik ke rangkaian listrik lainnya,dengan frekuensi

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA

PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA PENGARUH HARMONISA PADA GARDU TRAFO TIANG DAYA 200 KVA DI PT PLN (Persero) APJ SURABAYA UTARA Titiek Suheta Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Adhi Tama Surabaya sondysuheta@yahoo.com

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

Standar Pengujian Peralatan Transformator

Standar Pengujian Peralatan Transformator Standar Pengujian Peralatan Transformator Fahmi Arif Kurnia Rahman Jurusan Teknik Elektro POLINES Jl. Prof. H. Sudarto, S. H. Tembalang Semarang 50275 INDONESIA Abstrak Transformer atau trafo merupakan

Lebih terperinci

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke BAB II TRANSFORMATOR II.1. Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian listrik

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK

BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK 3.1 TAHAP PERANCANGAN DISTRIBUSI KELISTRIKAN Tahapan dalam perancangan sistem distribusi kelistrikan di bangunan bertingkat

Lebih terperinci

BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA)

BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA) BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA) 4.1 Pola Penggunaan Energi Daya listrik yang dipasok oleh PT PLN (Persero) ke Gedung AUTO 2000 Cabang

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA

BAB IV PERHITUNGAN DAN ANALISA BAB V PERHTUNGAN DAN ANALSA 4.1 Sistem nstalasi Listrik Sistem instalasi listrik di gedung perkantoran Dinas Teknis Kuningan menggunakan sistem radial. Sumber utama untuk suplai listrik berasal dari PLN.

Lebih terperinci

Core and Winding Design

Core and Winding Design ENERGY IS OUR BUSINESS Core and Winding Design Himawan Samodra Pauwels Trafo Asia 1 Core Cutting Type BLOO But lap cutting type BLOO: Higher no load losses and higher noise generated Without V notch cutting

Lebih terperinci

BAB III PENGAMBILAN DATA

BAB III PENGAMBILAN DATA BAB III PENGAMBILAN DATA Didalam pengambilan data pada skripsi ini harus di perhatikan beberapa hal sebagai berikut : 3.1 PEMILIHAN TRANSFORMATOR Pemilihan transformator kapasitas trafo distribusi berdasarkan

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

D. Relay Arus Lebih Berarah E. Koordinasi Proteksi Distribusi Tenaga Listrik BAB V PENUTUP A. KESIMPULAN B. SARAN...

D. Relay Arus Lebih Berarah E. Koordinasi Proteksi Distribusi Tenaga Listrik BAB V PENUTUP A. KESIMPULAN B. SARAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... v MOTTO... vi HALAMAN PERSEMBAHAN... vii KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR GAMBAR... xii DAFTAR TABEL... xiv INTISARI...

Lebih terperinci

BAB I PENDAHULUAN. atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik

BAB I PENDAHULUAN. atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik BAB I PENDAHULUAN I.1. Latar Belakang Salah satu masalah yang terdapat dalam sistim tenaga listrik adalah perubahan atau penurunan tegangan yang diakibatkan pusat-pusat pembangkit tenaga listrik berada

Lebih terperinci

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah BAB 1 PENDAHULUAN 1.1 Latar belakang masalah Kualitas daya listrik sangat dipengaruhi oleh penggunaan jenis-jenis beban tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

Lebih terperinci

BAB IV DATA DAN PEMBAHASAN. Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery

BAB IV DATA DAN PEMBAHASAN. Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery BAB IV DATA DAN PEMBAHASAN 4.1 Pengumpulan Data Pengumpulan data dilaksanakan di PT Pertamina (Persero) Refinery Unit V Balikpapan selama 2 bulan mulai tanggal 1 November 2016 sampai tanggal 30 Desember

Lebih terperinci

ABSTRAK Kata Kunci :

ABSTRAK Kata Kunci : ABSTRAK Transformator 3 pada GI Pesanggaran mendapat penambahan 4 blok pembangkit dengan daya maksimum sebesar 60 MW daya dari keempat blok pembangkit tersebut digunakan untuk mensuplai beban penyulang

Lebih terperinci

Analisis Kualitas Minyak Transformator Daya 25 Kva Berdasarkan Data Citra Kamera Termal Dan Data Hasil Uji Gas Chromatograph

Analisis Kualitas Minyak Transformator Daya 25 Kva Berdasarkan Data Citra Kamera Termal Dan Data Hasil Uji Gas Chromatograph Analisis Kualitas Minyak Transformator Daya 25 Kva Berdasarkan Data Citra Kamera Termal Dan Data Hasil Uji Gas Chromatograph Subkhi Abdul Aziz 2208 100 149 Pembimbing: Dr. Eng. Ardyono Priyadi, ST., M.Eng.

Lebih terperinci