BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan Penyebaran dan Habitat Tumbuhan Ingul, (Toona sureni (Blume) Merr.) adalah genus Toona yang terdistribusi merata secara alami didaerah Nepal, India, Bhutan, Myanmar, Indochina, China selatan, Thailand, dan seluruh daerah malaysia kedaerah barat New Guinea. Di Indonesia ditemukan di Sumatera, Jawa, dan Sulawesi. Tumbuhan Ingul sering ditemukan di daerah hutan pedesaan, lereng-lereng bukit, padaketinggian1,200-2,700mdi daerah dengansuhu tahunanrata-ratasekitar22 C. Tumbuhan Ingul memiliki nama sinonim Cedrela febrifuga Blume, Toona fbrifuga (Blume) M.J Roemer, Cedrela sureni (Blume) Burkill (Darmawati, 2003) Deskripsi Tumbuhan Tumbuhan Ingul digambarkan secara botani merupakan tumbuhan yang memiliki pohon yang cukup besar, sampai dengan ketinggian meter dengan diameter 100 cm, di daerah pengunungan hingga 300 cm. Kulit kayu biasanya pecah-pecah bersisik, keputihan, coklat keabu-abuan atau coklat pucat, dan memiliki aromatik ketika dipotong. Kayunya ringan dan berwarna coklat muda. Daun sering bergerombol diujung ranting cm, dengan 8-30 pasang selebaran. Buah yang matang berwarna coklat berbentuk kapsul oval, dimana memiliki beberapa ruang yang didalamnya terdapat 6-9 biji. Biji berwarna coklat yang

2 memiliki panjang 3-6 mm dan lebar 2-4 mm. Dan bunganya dijumpai diujung cabang, berukuran kecil, berwarna putih atau merah muda pucat. Di Indonesia dikenal dua jenis genus Toona yaitu Toona sinensis dan Toona sureni. Kedua jenis tersebut sangat sulit untuk dibedakan, tetapi jika dilihat secara jeli terdapat perbedaan pada daun dan buahnya. Tulang daun pada T.sinensis terdapat bulu-bulu halus dan ujung daun muda berwarna merah, sedangkan pada T.sureni tidak terdapat bulu-bulu halus dan daun muda berwarna hijau. Buah dari T.sinensis terdapat pada ujung ranting, sedangkan T.sureni terdapat pada batangnya (Darmawanti, 2003) Meliaceae Tumbuhan yang tergolong dalam suku Meliaceae biasanya berupa semak atau pohon, mempunyai kelenjer resin atau minyak, daun majemuk menyirip, duduknya tersebar, tanpa daun penumpu, bunga antinomorf. Kelopak seringkali kecil, terdiri atas 4-5 daun kelopak. Buahnya berupa daun kendaga atau buah batu. Biji dengan atau tanpa endosperm, seringkali bersayap (Gembong, 1991) Sistematika Tumbuhan Menurut hasil identifikasi tanaman dari Herbarium Medanesense (MEDA) Universitas Sumatera Utara diperoleh sistematika tumbuhan Ingul sebagai berikut : Kingdom Divisi Class : Plantae : Spermatophyta : Dicotyledonae

3 Ordo Famili Genus Spesies Nama lokal : Meliales : Meliaceae : Toona : Toona sureni (Blume) Merr. : Ingul Nama daerah Nama daerah dari tumbuhan Ingul secara umum Indonesia (suren), Sumatera (surian amba), Malaysia (surian wangi), Philippines (danupra), Myanmar (ye tama), Thailand (surian), dan nama dagang (cedar merah, toon, surian, limpaga) Manfaat Banyak penelitian telah membuktikan mamfaat mengkomsumsi tanaman yang berkhasiat antioksidan, seperti dapat menurunkan resiko penyakit jantung, kanker, katarak, dan penyakit degeneratif lain. Ingul merupakan salah satu tumbuhan tingkat tinggi yang terdapat di Indonesia. Tumbuhan ini telah banyak dimamfaatkan oleh masyarakat untuk berbagai keperluan. Kayu Ingul berkualitas tinggi karena sangat kuat dan tahan terhadap serangga sehingga sering digunakan untuk bahan bangunan dan pembuatan meubel. Seiring dengan pemamfaatan batangnya, bagian-bagian lain dari tumbuhan ini pun dapat digunakan secara tradisional. Dalam bidang kesehatan, daun Ingul digunakan sebagai astrigen, tonikum, obat diare, kronis, disentri, dan penyakit usus lainnya. Ekstrak daun Ingul

4 diketahui mempunyai efek antibiotik serta mempunyai bioaktivitas sebagai anti mikroba terhadap staphylococcus. Pucuk daun Ingul juga dapat digunakan untuk mengatasi pembengkakan ginjal. Kulit kayu, daun, dan buahnya kaya akan kandungan minyak atsiri. 2.2 Senyawa Bahan Alam Senyawa bahan alam didefenisikan sebagai senyawa organik yang melimpah dari alam seperti bahan tanaman mentah, bahan makanan, resin, dan eksudat tanaman atau ekstrak tanaman. Peninjauan pada setiap farmakope akan menunjukkan bahan alam memiliki peran penting sebagai senyawa yang aktif secara biologis, kenyataannya, diperkirakan bahwa 20-25% dari seluruh obat diperoleh dari alam. Ada beberapa pendekatan yang dapat digunakan untuk menemukan induk obat baru dari alam, dan semuanya pernah digunakan oleh perusahaan farmasi dalam upaya memamfaatkan potensi hayati bahan alam yaitu : 1. Pendekatan etnobotani Penetahuan tentang penggunaan tumbuhan tertentu oleh penduduk asli dimamfaatkan untuk mengarahkan pencarian induk obat baru, biasanya dilakukan oleh ahli botani dan kemudian menguji aktifitas biologisnya. 2. Pendekatan Kemotaksonomik Pengetahuan bahwa suatu kelompok tumbuhan khusus mengandung golongan bahan alam tertentu yang dimamfaatkan untuk memperkirakan bahwa tumbuhan sejenis secara taksoomi mungkin mengandung senyawa yang secara struktural mirip. Pendekatan ini sangat bermamfaat jika aktifitas kimia dan biologi senyawa diketahui dengan baik serta senyawa berstuktur kimia yang sama perlu diuji biologis lebih lanjut.

5 3. Pendekatan acak Tanaman dikumpulakan tanpa memperhatikan aktifitas kimia atau biologis yang telah ada sebelumnya. Pendekatan ini tergantung pada ketersediaan tanama yang melimpah diwilayah tertentu. Pendekatan ini murni coba-coba karena seleksi tanaman secara acak akan mengarah pada penemuan ekstrak yang memiliki aktifitas biologis (bioaktivitas). 4. Pendekatan berbasis-informasi Memamfaatkan kombinasi pendekatan etnobotani, kemotaksonomi dan acak bersama dengan mengumpulkan data yang memiliki semua informasi yang relevan mengenai spesies tumbuhan tertentu. Kumpulan data ini digunakan untuk memprioritaskan tanaman yang harus diekstraksi dan diskrining untuk mencari bioaktivitasnya. Sejumlah kelompok senyawa bahan alam dapat dibuat dari asam amino fenillalanin, terutama fenilpropana, lignan, kumarin, dan flavonoida, semuanya memiliki substruktur umum yang berbasis cicin 6-karbon aaromatik (unit C6) dengan rantai 3-karbon (unit 3) yang melekat pada cicin aromatik ( Heinrich M, 2005). 2.3 Uraian Kandungan Kimia Tumbuhan Senyawa Fenol Senyawa fenol merupakan senyawa yang memiliki cincin aromatik yang mengandung satu atau lebih gugus hidroksil. Senyawa fenol cenderung mudah larut dalam air karena umumnya mereka seringkali berikatan dengan gula sebagai glikosida, dan biasanya terdapat dalam vakuola sel (Harborne, 1987).

6 Jika murni, fenol sederhana berupa zat warna tan warna kelarutan dalam air kecil dan semakin besar jika gugus hidroksil semakin besar. Banyak senyawa fenolik alami mengandung sekurang-kurangnya gugus hidroksil, dan lebih banyak yang membentuk senyawa eter, ester dan glikosida (Robinson, 1995). Senyawa fenol yang sering ditemui dialam dan telah diketahui strukturnya adalah flavonoida, fenol monosiklik sederhana, fenilpropanoid, dan kuinon fenolik terdapat dalam jumlah besar. Dan beberapa golongan bahan polimer penting dalam tumbuhan lignin, melanin, dan tanin adalah senyawa polifenol. Bagi biokimiawan tumbuhan, senyawa fenol tumbuhan dapat menimbulkan gangguan besar karena kemampuannya membentuk kompleks dengan protein melalui ikatan hidrogen. Bila kandungan sel tumbuhan dan membran menjadi rusak selama proses isolasi, senyawa fenol cepat sekali membentuk kompleks dengan protein. Akibatnya, sering terjadi hambatan terhadap kerja enzim pada ekstrak tumbuhan kasar. Sebaliknya fenol sendiri sangat peka terhadap isolasi enzim dan mungkin hilang pada proses isolasi akibat kerja enzim fenolase yang terdapat dalam tumbuhan. Secara klasik untuk mendeteksi senyawa fenol sederhana ialah dengan menambahakan larutan besi (III) klorida 1% dalam air dan kalium heksasianoferrat (III) 1%. Semua senyawa fenol berupa senyawa aromatik sehingga semuanya menunjukkan serapan kuat didaerah spektrum UV. Selain itu secara khas senyawa fenol menunjukkan pergeseran batokrom pada spektrumnya bila ditambahakan basa. Asam galat terdapat dalam banyak tumbuhan berkayu, terikat sebagai galotanin tetapi merupakan senyawa yang sangat reaktif. Senyawa ini lebih lazim terdapat dalam ekstrak tumbuhan yang sudah dihidrolisa dalam suasana asam. Asam galat termasuk fenol sederhana dan cara identifikasinya penting sehubungan dengan penentuan struktur flavonoida (Harborne, 1987).

7 2.3.2 Senyawa Flavonoida Flavonoida berasal dari biosintesis gabungan terdiri atas unit-unit yang diturunkan dari asam sikimat dan jalur poliketida. Senyawa flavonoida diturunkan dari unit C 6 -C 3 (fenilpropana) yang bersumber dari asam sikimat (viafenilalanin) dan unit C 6 yang diturunkan dari jalur poliketida. Fragmen poliketida ini disusun dari tiga molekul malonil Ko-A, yang bergabung dengan unit C 6 -C 3 (sebagai tioester) untuk membentuk unit awal triketida ( Heinrich M, 2005). Senyawa flavonoida adalah senyawa yang mengandung C15 terdiri atas dua inti fenolat yang dihubungkan dengan tiga satuan karbon. Struktur dasar flavonoida dapat digambarkan sebagai berikut: A C C C B Kerangka Dasar Flavonoida (Sastrohamidjojo, 1996). Senyawa flavonoida adalah senyawa-senyawa polifenol yang mempunyai 15 atom karbon, terdiri dari dua cincin benzena yang dihubungkan menjadi satu oleh rantai linear yang terdiri dari tiga atom karbon. Kerangka ini dapat ditullis sebagai C 6 -C 3 -C 6. Jadi senyawa flavonoida adalah senyawa 1,3 diarilpropana, senyawa isoflavonoida adalah senyawa 1,2 biarilpropana, sedang senyawa-senyawa neoflavonoida adalah senyawa 1,1 diarilpropana. Istilah flavonoida dikenakan pada suatu golongan besar senyawa yang yang berasal dari kelompok senyawa yang paling umum yaitu flavon. Suatu jembatan oksigen terdapat diantara cincin A dalam kedudukan orto dan atom karbon benzil yang terletak di sebelah cincin B membentuk cincin baari tipe 4-piron. Senyawa heterosiklik ini pada tingkat oksidasi yang berbeda terdapat dalam kebanyakan tumbuhan. Flavon adalah bentuk yang mempunyai

8 cincin C dengan tingkat oksidasi yang paling rendah dan dianggap sebagai struktur induk dalam nomenklatur kelompok senyawa ini (Manitto, 1992). Menurut perkiraan, kira-kira 2% dari seluruh karbon yang difotosintesis oleh tumbuhan diubah menjadi flavonoida atau senyawa yang berkaitan erat dengannya. Flavonoida terdapat dalam semua tumbuhan hijau. Flavonoida terdapat pada semua bagian tumbuhan termasuk daun, akar, kayu, kulit, tepung sari, nektar, bunga, buah dan biji. Semua varian flavonoida saling berkaitan karena alur biosintesis yang sama, yang memasukkan prazat dari alur sikimat dan asetat malonat. Flavonoida pertama dihasilkan segera setelah kedua alur tersebut bertemu. Flavonoida yang dianggap pertama kali terbentuk pada biosintesis adalah khalkkon dan semua bentuk lain diturunkan darinya melalui berbagai alur (Markham, 1988). Dalam tubuh manusia, flavonoida berfungsi sebagai antioksidan sehingga sangat baik untuk pencegahan kanker. Manfaat lain lain flavonoida adalah melindungi struktur sel, meningkatkan efektivitas vitamin C, antiinflamasi, mencegah keropos tulang dan sebagai anti bioktik (Muhammad, 2011). Dalam dosis kecil flavon bekerja sebagai stimulan pada jantung, hesperidin mempengaruhi pembuluh darah kapiler, flavon terhidroksilasi bekerja sebagai diuretik dan antioksidan pada lemak. Kegunaan flavonoida pada tumbuhan adalah untuk menarik serangga yang membantu proses penyerbukan, membantu menarik perhatian binatang yang membantu penyebaran biji (Midian, 2007).

9 Gambar 1 Biosintesa hubungan antara jenis monomer flavonoida dari alur asetat-malonat dan alur sikimat

10 Sifat Kelarutan Senyawa Flavonoida Aglikon flavonoida adalah polifenol dan karena itu mempunyai sifat kimia seperti fenol yaitu bersifat agak asam sehingga dapat larut dalam basa. Tetapi bila didiamkan dalam larutan basa dan disamping itu terdapat banyak oksigen maka akan banyak yang terurai. Karena mempunyai sejumlah gugus hidroksil yang tak tersulih atau suatu gula, flavonoida merupakan senyawa polar maka umumnya flavonoida larut dalam pelarut polar seperti etanol, metanol, butanol, aseton, dimetilsulfoksida, dimetilformamida, air dan lain-lain. Adanya gula yang terikat pada flavonoida cenderung menyebabkan flavonoida lebih mudah larut dalam air. Dengan demikian campuran pelarut di atas dengan air merupakan pelarut yang lebih baik untuk glikosida. Sebaliknya, aglikon yang kurang polar seperti isoflavon, flavanon, flavon serta flavonol yang termetoksilasi cenderung lebih mudah larut dalam pelarut seperti eter dan kloroform (Markham, 1988) Klasifikasi Senyawa Flavonoida Flavonoida biasanya terdapat sebagai flavonoida O-glikosida. Pada senyawa tersebut satu gugus hidroksil flavonoida atau lebih terikat pada satu gula atau lebih dengan ikatan hemimasetal yang tak tahan asam. Pengaruh glikosilasi menyebabkan flavonoida menjadi kurang reaktif dan lebih mudah larut dalam air. Glukosa merupakan gula yang paling umum terlibat walaupun galaktosa, ramnosa, xilosa dan arabinosa juga sering ditemukan. Gula dapat juga terikat pada atom karbon flavonoida dan dalam hal ini gula tersebut terikat langsung pada inti benzena dengan suatu ikatan karbon-karbon yang tahan asam. Glikosida yang demikian disebut C-glikosida. Jenis gula yang terlibat lebih sedikit dibandingkan dengan gula pada O-glikosida. Flavonoida sulfat adalah golongan flavonoida lain yang mudah larut dalam air. Senyawa ini mengandung satu ion sulfat atau lebih yang terikat pada hidroksi fenol atau gula. Secara teknis senyawa ini sebenarnya bisulfat karena terdapat sebagai garam yaitu flavon-o- SO 3 K. Banyak yang berupa glikosida bisulfat, bagian bisulfat terikat pada hidroksil fenol yang mana saja yang masih bebas atau pada suatu gula.

11 Biflavonoida merupakan flavonoida dimer. Flavonoida yang biasanya terlibat adalah flavon dan flavanon yang secara biosintesis mempunyai pola oksigenasi yang sederhana dan ikatan antar flavonoida berupa ikatan karbon-karbon atau ikatan eter. Monomer flavonoida yang digabungkan menjadi biflavonoida dapat berjenis sama atau berbeda, dan letak ikatannya berbeda-beda. Banyak sifat fisika dan kimia biflavnoida menyerupai sifat monoflavonoida pembentuknya dan akibatnya kadang-kadang biflavonoida sukar dikenali. Biflavonoida jarang ditemukan sebagai glikosida. Sejumlah aglikon flavonoida mempunyai atom karbon asimetrik dengan demikian dapat menunjukkan keaktifan optik (yaitu memutar cahaya terpolarisasi-datar). Yang termasuk dalam golongan flavonoida ini adalah flavanon, dihidroflavonol, katekin, pterokarpan, rotenoid dan beberapa biflavonoida (Markham, 1988). Menurut Robinson (1995), flavonoida dapat dikelompokkan berdasarkan keragaman pada rantai C 3 yaitu: 1. Flavonol Flavonol sering terdapat sebagai glikosida, biasanya 3-glikosida dan aglikon flavonol yang umum yaitu kamferol, kuarsetin dan miresetin yang berkhasiat sebagai antioksidan dan antiinflamasi. Flavonol lain yang terdapat di alam bebas kebanyakan merupakan variasi struktur sederhana dari flavonol. Larutan flavonol dalam suasana basa dioksidasi oleh udara tetapi tidak begitu cepat sehingga penggunaan basa pada pengerjaannya masih dapat dilakukan. O OH O Flavonol 2. Flavon Flavon berbeda dengan flavonol dimana pada flavon tidak terdapat gugusan 3-hidroksi. Hal ini mempunyai serapan UV-nya, gerakan kromatografi, serta reaksiwarnanya. Flavon terdapat juga sebagai glikosidanya lebih sedikit daripada jenisglikosida pada flavonol. Flavon yang

12 paling umum dijumpai adalah apigenin danluteolin. Luteolin merupakan zat warna yang pertama kali dipakai di Eropa. Jenis yangpaling umum adalah 7-glukosida dan terdapat juga flavon yang terikat pada gulamelalui ikatan karbon-karbon. Contohnya luteolin 8-Cglikosida.Flavon dianggapsebagai induk dalam nomenklatur kelompok senyawa flavonoida. O O Flavon 3. Isoflavon Isoflavon merupakan isomer flavon, tetapi jumlahnya sangat sedikit dan sebagai fitoaleksin yaitu senyawa pelindung yang terbentuk dalam tumbuhan sebagai pertahanan terhadap serangan penyakit. Isoflavon sukar dicirikan karena reaksinyatidak khas dengan pereaksi warna manapun. Beberapa isoflavon (misalnya daidzein)memberikan warna biru muda cemerlang dengan sinar UV bila diuapi amonia, tetapikebanyakan yang lain tampak sebagai bercak lembayung yang pudar dengan amonia berubah menjadi coklat. O O Isoflavon 4. Flavanon Flavanon terdistribusi luas di alam. Flavanon terdapat di dalam kayu, daun dan bunga. Flavanon glikosida merupakan konstituen utama dari tanaman genus prenus dan buah jeruk, dua glikosida yang paling lazim adalah neringenin dan hesperitin, terdapat dalam buah anggur dan jeruk.

13 O Flavanon O 5. Flavanonol Senyawa ini berkhasiat sebagai antioksidan dan hanya terdapat sedikit sekali jika dibandingkan dengan flavonoida lain. Sebagian besar senyawa ini diabaikan karena konsentrasinya rendah dan tidak berwarna. O OH O Flavanonol 6. Katekin Katekin terdapat pada seluruh dunia tumbuhan, terutama pada tumbuhan berkayu. Senyawa ini mudah diperoleh dalam jumlah besar dari ekstrak kental Uncaria gambir dan daun teh kering yang mengandung kira-kira 30% senyawa ini. Katekin berkhasiat sebagai antioksidan. HO O OH OH OH OH 7. Leukoantosianidin Katekin

14 Leukoantosianidin merupakan senyawa tanwarna, terutama terdapat pada tumbuhan berkayu. Senyawa ini jarang terdapat sebagai glikosida, contohnya melaksidin, apiferol. O OH HO OH Leukoantosianidin 8. Antosianidin Antosianin merupakan pewarna yang paling penting dan paling tersebar luas dalam tumbuhan. pigmen yang berwarna kuat dan larut dalam air ini adalah penyebab hampir semua warnamerah jambu, merah marak, ungu dan biru dalam daun, bunga dan buah pada tumbuhan tinggi. Secara kimia semua antosianin merupakan struktur aromatik tunggal yaitu sianidin dan semuanya terbentuk dari pigmen sianidin ini dengan penambahan atau pengurangan gugus hidroksil atau dengan metilasi atau glikosilasi. O OH Antosianidin 9. Khalkon Khalkon adalah pigmen fenol kuning yang berwarna coklat tua dengan sinar UV bila dikromatografi kertas. Aglikon khalkon dapat dibedakan dari glikosidanya karena hanya pigmen dalam bentuk glikosida yang dapat bergerak pada kromatografi kertas dalam pengembang air.

15 O Khalkon 10. Auron Auron berupa pigmen kuning emas yang terdapat dalam bunga tertentu dan briofita. Dalam larutan basa senyawa ini berwarna ros dan tampak pada kromatografi kertas berupa bercak kuning, dengan sinar ultraviolet warna kuning kuat berubah menjadi merah jungga bila diberi uap amonia (Robinson, 1995). O HC O Auron Menurut Harbone (1996), dikenal sekitar sepuluh kelas flavonoida, dimana semua flavonoida menurut strukturnya merupakan turunan senyawa induk flavon dan memiliki sifat tertentu yaitu:

16 Tabel 1 Sifat golongan flavonoida Golongan Penyebaran flavonoida Antosianin Pigmenbunga merah marak,dan biru juga dalam daun dan jaringan lain. Ciri khas Larutdalam air, λmaks nm, bergerak dengan BAA pada kertas. Proantosianidin Terutama tanwarna, dalam daun tumbuhan berkayu. Flavonol Terutamako-pigmen tanwarna dalam bunga sianik dan asianik tersebar luas dalam daun. Menghasilkan antosianidin bila jaringan dipanaskan dalam HCl 2M selama setengah jam. Setelah hidrolisis, berupa bercak kuning murup pada kromatogram Forestal bila disinari sinar UV; λmaks spektrum pada nm. Flavon Seperti flavonol Setelah hidrolisis, berupa bercak coklat redup pada kromatogram Forestal; λmaks spektrum pada nm. Glikoflavon flavonol Mengandung gula yang terikat melalui ikatan C-C; bergerak dengan pengembang air, tidak seperti flavon biasa. Biflavonil Tanwarna;hampir seluruhnya terbatas pada gimnospermae Pada kromatogram BAA beupa bercak redup dengan R F tinggi. Khalkon dan Pigmenbunga kuning, kadang- Dengan amonia berwarna merah auron kadang terdapat juga dalam (perubahan warna dapat diamati in situ), jaringan lain maksimal spektrum nm. Flavanon Tanwarna; dalam daun dan buah(terutama dalamcitrus) Isoflavon TanwaTanwarna; sering kali dalam akar; hanya terdapat dalam satu suku,leguminosae Berwarna merah kuat dengan Mg/HCl; kadang kadang sangat pahit BergerBergerak pada kertas dengan pengembang air; tak ada uji warna yang khas.

17 2.3.3 Senyawa Alkaloid Alkaloid merupakan senyawa metabolit sekunder bersifat basa yang mengandung satu atau lebih atom nitrogen membetuk heterosiklik. Alkaloid seringkali beracun bagi manusia dan banyak mempunyai kegiatan fisiologis yang menonjol jadi digunakan secara luas dalam bidang pengobatan (Harbone,1987). Pembagian alkaloid menurut Hegnauer sebagai berikut : 1. Alkaloid sesungguhnya Alkaloid sesungguhnya bersifat basa yang merupakan turunan asam amino dan mengandung gugus nitrogen dalam cicin heterosiklik dan biasanya terdapat dalam tanaman sebagai garam asam organik. 2. Protoalkaloid Protoalkaloid merupakan amin yang relatif sederhana dimana nitrogen asam amino tidak terdapat dalam cincin heterosiklik diperoleh berdasarkan biosintesa asam amino. 3. Pseudoalkaloid Pseudoalkaloid merupakan alkaloid yang tidak diturunkan dari asam amino dan biasanya bersifat basa (Sastrohamidjojo,1996). Mamfaat Alkaloida dalam bidang farmakologi yaitu : 1. Sebagai analgetika dan narkotika seperti opium dan morfin 2. Alkaloid jantung digunakan untuk mengubah kerja jantung seperti kinidin dan spartein. 3. Alkaloid mempengaruhi peredaran darah dan pernapasan seperti Veratum, Rauvolfia 4. Sebagai kemoteraupika dan antiparasit seperti alkaloid kina 5. Sebagai stimulan uterus seperti secale alkaloid 6. Sebagai anastetika lokal seperti kokain (Midian, 2007)

18 Alkaloid merupakan senyawa bahan alam yang telah menyumbangkan begitu banyak bagi dunia medis dan sediaan farmasetik. Alkaloid menunjukkan aktifitas biologis dan tersebar luas, terdapat pada tanaman, fungi, bakteri, amfibi, serangga, hewan laut dan manusia. Alkaloid juga terdapat dialam sebagai garam yang merupakan hasil reaksi antara basa (alkaloid) dan asam. Alakaloid merupakan bahan alam heterosiklik yang mengandung nitrogen ( Heinrich M, 2005) Senyawa Terpenoida Senyawa terpen tersebar luas dialam dalam banyak spesies, kadang-kadang disebut isoprena unit C 5 berulang bercabang. Senyawa terpen adalah contoh sempurna bahan alam yang memiliki struktur sangat beragam, mempunyai banyak angota kiral dan memiliki gugus kimia fungsional yang ekstensif. Terpen yang paling sederhana adalah hemiterpen (C 5 ) kemudian monoterpen (C 10 ), seskuiterpen (C 15 ), diterpen (C 20 ), triterpen, dan steroid (Turunan C 30 ), dan tetraterpen (Kareotenoid, C 40 ), semuanya berfungsi penting dalam pengobatan ( Heinrich M, 2005). Terpenoid merupakan senyawa alam yang terbentuk dengan proses biosintesis, terdistribusi luas dalam dunia tumbuhan dan hewan. Struktur terpenoid dibangun oleh molekul isoprena.senyawa terpenoid berkisar dari senyawa yang volatil, yakni komponen minyak atsiri, yang merupakan monoterpen dan seskuiterpen, senyawa yang kurang volatil yakni diterpen sampai senyawa yang nonvolatil seperti triterpenoid dan sterol serta pigmen karotenoid (Midian, 2007). Triterpenoid adalah senyawa yaang kerangka karbonya berasal dari enam satuan isoprena dan secara biosintesis diturunkan dari hidrokarbon C 3 asiklik, yaitu skualena. Triterpenoid sekurang-kurangnya dibagi menjadi empat golongan senyawa yaitu triterpena sederhana, steroid, saponin, dan glikosida jantung (Harborne,1987).

19 2.3.5 Senyawa Sterol Sterol merupakan triterpena yang kerangka dasarnya sistem cicin siklopentana perhidropenantrena. Senyawa fitosterol yang sering ditemukan yaitu sitosterol, stigmasterol, dan kampesterol. Saponin adalah glikosida triterpen dan sterol dimana merupakan senyawa aktif yang bersifat seperti sabun membentuk busa dan menghemolisis sel darah (Harbone, 1987) Senyawa Glikosida Glikosida adalah suatu senyawa, bila dihidrolisis akan terurai menjadi gula (glikon) dan senyawa lain (aglikon atau genin). Glikosida yang gulanya berupa glukosa disebut glukosida. Pembagian glikosida dapat dilakukan berdasarkan glikon, aglikon, dan khsiatnya. Glikosida yang berkasiat obat dapat digolongkan menjadi kardioaktif, antrakinon, saponin, sianofor, tiosianat, flavonol, alkohol, aldehid, lakton, dan fenol. Umunya glikosida mudah terhidrolisis oleh asam mineral atau enzim. Hidrolisis oleh asam memerlukan panas. Dan hidrolisis dengan enzim tidak memerlukan panas. Kegunaannya bagi manusia sebagai obat jantung, diuretika, tonika, ekspektoran, dan sebagai prekursor hormon steroid (Midian, 2007) Senyawa Tanin Senyawa Tanin merupakan senyawa kandungan kimia pada tumbuhan yang bersifat fenol yang mempunyaai rasa sepat dan mempunyai kemampuan menyamak kulit. Tanin terhidrolisiskan mengandung ikatan ester yang dapat terhidrolisis jika dididihkan dalam asam klorida encer. Struktur asam fenolat yang sering dijumpai dalam tanin salah satu asam galat, asam elagat demikian pula dengan asam kelabut mungkin merupakan hasil sekunder pada

20 hidrolisis tanin. Beberapa tanin yang terbukti mempunyai aktivitas antioksidan, menghambat pertumbuhan tumor, dan menghambat enzim (Robbinson, 1995). Secara garis besar tanin dibagi menjadi dua golongan: tanin dapat terhidrolisis, yang terbentuk dari esterifikasi gula dengan asam fenolat sederhana yang merupakan tanin turunan sikimat ( misalnya asam galat) dan tidak dapat terhidrolisis, yang terkadang disebut sebagai tanin terkondensasi, yang berasal dari reaksi polimerisasi (kondensasi) antar flavonoid ( Heinrich M, 2005). 2.4 Teknik Pemisahan Tujuan dari teknik pemisahan adalah untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponen-komponen lainnya. Ada 2 jenis teknik pemisahan yaitu : 1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan. 2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaanperbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam suatu golongan (Muldja, 1995) Ekstraksi Ekstraksi dapat dilakukan dengan metoda maserasi, sokletasi, dan perkolasi. Sebelum ekstraksi dilakukan, biasanya serbuk tumbuhan dikeringkan lalu dihaluskan dengan derajat kehalusan tertentu, kemudian diekstraksi dengan salah satu cara di atas. Ekstraksi dengan

21 metoda sokletasi dapat dilakukan secara bertingkat dengan berbagai pelarut berdasarkan kepolarannya, misalnya n-heksana, eter, benzena, kloroform, etil asetat, etanol, metanol, dan air. Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak yang pekat biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator (Harborne, 1987) Kromatografi Kromatografi adalah berbagai cara pemisahan berdasarkan partisi cuplikan antara fase yang bergerak, dapat berupa gas atau zat cair, dan fase diam, dapat berupa zat cair atau zat padat. Pemisahan secara kromatografi yang berhasil baik berkaitan dengan mengkompromikan daya pisah kromatografi, beban cuplikan, dan waktu analisis (Gritter, 1991) Cara-cara kromatografi dapat digolongkan sesuai dengan sifat sifat dari fasa diam, yang dapat berupa zat padat atau zat cair.jika fasa diam berupa zat padat disebut kromatografi serapan, jika berupa zat cair disebut kromatografi partisi. Karena fasa gerak dapat berupa zat cair atau gas maka ada empat macam sistem kromatografi yaitu: 1) Fasa gerak cair fasa diam padat (kromatografi serapan): a.kromatografi lapis tipis b.kromatografi penukar ion 2) Fasa gerak gas fasa diam padat, yakni kromatografi gas padat 3) Fasa gerak cair fasa diam cair (kromatografi partisi), yakni kromatografi kertas. 4) Fasa gerak gas fasa diam zat cair, yakni :

22 a. kromatografi gas cair b. kromatografi kolom kapiler Semua pemisahan dengan kromatografi tergantung pada kenyataan bahwa senyawa senyawa yang dipisahkan terdistribusi diantara fasa gerak dan fasa diam dalam perbandingan yang sangat berbeda beda dari satu senyawa terhadap senyawa yang lain (Sastrohamidjojo, 1985) Kromatografi Lapis Tipis Kromatografi Lapis Tipis pada plat berlapis yang berukuran lebih besar, biasanya 5x20 cm, 10x20 cm, atau 20x20 cm. Biasanya memerlukan waktu pengembangan 30 menit sampai satu jam. Pada hakikatnya KLT melibatkan dua fase yaitu fase diam atau sifat lapisan, dan fase gerak atau campuran pelarut pengembang. Fase diam dapat berupa serbuk halus yang berfungsi sebagai permukaan penyerap atau penyangga untuk lapisan zat cair. Fase gerak dapat berupa hampir segala macam pelarut atau campuran pelarut (Sudjadi, 1986). Pemisahan senyawa dengan Kromatografi Lapis Tipis seperti senyawa organik alam dan senyawa organik sintetik dapat dilakukan dalam beberapa menit dengan alat yang harganya tidak terlalu mahal. Jumlah cuplikan beberapa mikrogram atau sebanyak 5 g dapat ditangani. Kelebihan KLT yang lain ialah pemakaian jumlah pelarut dan jumlah cuplikan yang sedikit. Kromatografi Lapis Tipis (KLT) merupakan salah satu metode pemisahan yang cukup sederhana yaitu dengan menggunakan plat kaca yang dilapisi silika gel dengan menggunakan pelarut tertentu (Gritter, 1991).

23 Lempeng lapis penyerap sering menggunanakan indikator flueresensi sehingga bahan alam yang mengabsobsi sinar uv gelombang pendek 245 nm akan tampak sebagai bercak hitam pada latar hijau Kromatografi Kolom Pemisahan senyawa dengan kromatografi kolom merupakan salah satu teknik pemisahan biokimia yang banyak dipakai. Hal yang perlu diperhatikan adalah penyediaan kolom, operasi kolom, serta pemilihan pelarut yang tepat sebelum melakukan kromatografi. Kolom kromatografi biasanya terbuat dari gelas. Panjang kolom biasanya disesuaikan dengan jumlah komponen yang akan dianalisa dalam suatu senyawa, sedangkan lebar kolom disesuikan dengan jumlah senyawa yang akan dianalisis. Bahan yang dapat dipakai untuk sediaan kromatografi sebagai pengisi kolom cukup banyak jenisnya. Sebagai contoh adalah beberapa jenis gel yang dapat menyerap air (hidrofi); suatu matriks (isi kolom) yang dapat aktif dengan pemanasan atau perlakuan dengan asam; dan untuk pertukaran ion resin, yang diperlakukan adalah bentuk ionik yang dapat dicuci. Selama proses kesetimbangan dengan pelarut, bahan pengisi kolom dibiarkan mengendap, dan partiket-partikel halus yang tertinggal dalam suspensi dibuang dengan cara dekantasi. Kolom kromatografi harus benar-benar padat, bahan kolom kira-kira sepertiga pelarutnya dan penambahan bahan kolom pada pelarut harus hati- hati. Awalnya sampel dilarutkan dengan pelarut atau dapat ditambahkan dengan larutan buffer bila diperlukan, atau dielusi dengan larutan buffer setelah masuk kedalam kolom. Lebih baik kalo turunnya pelarut pada kolom dibantu dengan membuka kran agar larutan menetes hingga isi kolom lebih cepat turun. Saat meneteskan sampel dengan pipet pada permukaan kolom, sebaiknya kran kolom dibuka, agar eluen menetes dan sampel masuk kedalam kolom (Bintang, 2011).

24 Penjerap dapat dikemas kedalam tabung, dengan cara basah maupun dengan cara kering. Pada cara kering, adsorbent diletakkan didalam kolom, penjerap dituangkan kedalam tabung sedikit demi sedikit. Setelah siap penambahan permukaan diratakan dan dimampatkan sedikit menggunakan alat pemampat. Alat pemampat ini dapat berupa sumbat karet atau silinder kayu yang dipasang pada ujung batang kaca atau gagang. Setelah semua penjerap dimasukkan, diatasnya diletakkan kertas saring. Kemudian pengelusi dibiarkan mengalir kebawah melalui penjerap dengan kran terbuka sampai permukaan pelarut tepat sedikit diatas bagian kolom. Cara basah, adsorben dimasukkan kedalam kolom, dan tabung diisi dengan sepertiganya dengan pelarut. Pelarut yang dipakai untuk proses pengemasan sesuai dengan pelarut yang akan digunakan dalam kromatografi kolom atau mungkin pelarut yang kepolarannya lebih rendah. Kromatografi cair yang dilakukan dalam kolom besar merupakan metode kromatografi terbaik untuk pemisahan dalam jumlah besar (lebih dari 1 g). Pada kromatografi kolom, campuran yang akan dipisahkan diletakkan berupa pita pada bagian atas kolom penyerap yang berada dalam tabung kaca, tabung logam, dan tabung plastik. Pelarut atau fasa gerak dibiarkan mengalir melalui kolom karena aliran yang disebabkan oleh gaya berat atau didorong dengan tekanan. Pita senyawa linarut bergerak melalui kolom dengan laju yang berbeda, memisah, dan dikumpulkan berupa fraksi ketika keluar dari atas kolom (Gritter, 1991). Dengan menggunakan cara ini, skala isolasi senyawa fenol dapat ditingkatkan hampir ke skala industri. Pada dasarnya, cara ini meliputi penempatan campuran fenol (berupa larutan) diatas kolom yang berisi serbuk penyerap (seperti selulose, silika atau poliamida), dilanjutkan dengan elusi beruntun setiap komponen memakai pelarut yang cocok. Kolom hanya berupa tabung kaca yang dilengkapi dengan keran pada salah satu ujung(markham, 1988).

25 Harga Rf (Reterdation Factor) Mengidentifikasi noda-noda dalam lapisan tipis lazim menggunakan harga Rf yang diidentifikasikan sebagai perbandingan antara jarak perambatan suatu zat dengan jarak perambatan pelarut yang dihitung dari titik penotolan pelarut zat. Jarak yang ditempuh oleh tiap bercak dari titik penotolan diukur dari pusat bercak. Untuk mengidentifikasi suatu senyawa, maka harga Rf senyawa tersebut dapat dibandingkan dengan harga Rf senyawa pembanding. Jarak perambatan bercak dari titik penotolan Rf = Jarak perambatan pelarut dari titik penotolan (Sastrohamidjojo, 1985) Pemurnian Amorf yang diperoleh dari hasil isolasi dilarutkan kembali dengan EtOAc, diaduk hingga semua amorf larut sempurna. Kemudian ditambahkan n heksana secara perlahan lahan hingga pembentukan kembali senyawa yang lebih murni dari sebelumnya dan jatuh di dasar wadah. Didekantasi larutan bagian atas wadah. Lalu diuapkan sisa pelarut dari amorf hingga diperoleh kristal yang benar benar bebas dari pelarut (Jacobs, 1974). 2.5Spektroskopi Spektrofotometer merupakan alat untuk mempelajari interaksi sinar elektromagnetik dengan materi. Gelombang elekromaknetik yang digunakan adalah sekitar nm. Energi

26 elektromagnetik akan diubah menjadi besaran listrik dan melalui amplifier akan diubah menjadi besaran yang dapat diamati. Radiasi elektromagnetik adalah energi yang digunakan untuk penyerapan dan emisi radiasi magnetik yang diteruskan melalui ruang dengan kecepatan luar biasa. Dikenal dua kelompok utama spektroskopi, yaitu spektroskopi atom dan spektroskopi molekul. Dasar dari spektroskopi atom adalah tingkat energi elektron terluar suatu atom atau unsur, sedangkan dasar dari spektroskopi molekul adalah tingkat energi molekul yang melibatkan energi elektronik, energi vibrasi, dan energi rotasi. Energi elektronik yaitu energi yang melibatkan tingkat energi yang ditempati orbit elektron suatu atom dari molekul- molekul. Energi vibrasi yaitu energi yang melibatkan vibrasional antar atom dalam molekul. Energi rotasi yaitu energi yang melibatkan rotasi dari molekul (Bintang, 2011) Spektrofotometri Ultra Violet Serapan molekul di dalam derah ultra violet dan terlihat dari spektrum bergantung pada struktur ultra elektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yang berenergi lebih tinggi di dalam keadaan tereskitasi (Silverstein, 1986). Fenol menyerap didaerah UV pendek dan dapat dideteksi pada pelat silika gel yang mengandung indikator fluoresensi gelombang 253 nm, terlihat sebagai bercak gelap dengan latar belakang berfluoresensi. Akan tetapi, biasanya lebih baik mendeteksinya dengan pereaksi yang lebih khas.semua senyawa fenol berupa senyawa aromatik sehingga semuanya menunjukan serapan kuat didaerah spektrum UV. Selain itu secara khas senyawa fenol menunjukan geseran batokrom pada spektrumnya bila ditambahkan basa (Markham, 1988).

27 2.5.2 Spektrofotometri Infra Merah (FT-IR) Spektrum inframerah terletak pada daerah dengan panjang gelombang berkisar 0, µm atau bilangan gelombang sampai Penggunaan paling banyak spektroskopi inframerah adalah untuk identifikasi senyawa organik, karena spektrumnya sangat kompleks, yaitu terdiri dari banyak puncak-puncak. Spektrum inframerah dari senyawa organik mempunyai sifat fisik yang khas, artinya kemungkinannya kecil sekali dua senyawa mempunyai spektrum yang sama (Bintang, 2011). Pancaran inframerah yang kerapatannya kurang dari 100 cm -1 (panjang gelombang lebih daripada 100 µm) diserap oleh sebuah molekul organik dan diubah menjadi putaran energi molekul maka spektrum rotasi molekul terdiri dari garis-garis yang tersendiri. Pancaran inframerah antara cm -1 (Panjang gelombang µm), diserap oleh sebuah molekul organik dan diubah menjadi energi getaran molekul (Silverstein, 1986). Dalam molekul sederhana beratom dua atau beratom tiga tidak sukar untuk menentukan jumlah dan jenis vibrasinya dan menghubungkan vibrasi-vibrasi tersebut dengan energi serapan. Tetapi untuk molekul-molekul beratom banyak, analisis jumlah dan jenis vibrasi itu menjadi sukar sekali atau tidak mungkin sama sekali, karena bukan saja disebabkan besarnya jumlah pusat pusat vibrasi, melainkan karena juga harus diperhitungkan terjadinya saling mempengaruhi (inter-aksi) beberapa pusat vibrasi. Vibrasi molekul dapat dibagi dalam dua golongan, yaitu vibrasi regang dan vibrasi lentur. 1. Vibrasi regang Di sini terjadi terus menerus perubahan jarak antara dua atomdidalam suatu molekul.vibrasi regang ini ada dua macam yaitu vibrasi regang simetris dan tak simetri.

28 2.Vibrasi lentur Di sini terjadi perubahan sudut antara dua ikatan kimia. Ada empat macam vibrasi lentur yaitu vibrasi lentur dalam bidang yang dapat berupa vibrasi scissoring atau vibrasi rocking dan vibrasi keluar bidang yang dapat berupa waging atau berupa twisting (Noerdin, 1985) Spektrometri Resonansi Magnetik Inti Proton ( 1- H-NMR) Resonansi magnet inti (nuclear magnetic resonance, NMR) merupakan spektroskopi absorbsi yang didasarkan pada pengukuran adsorbsi radiasi elektromagnetik pada daerah frekuensi radio 0,1 100 MHz (1MHz = 10 6 putaran per detik) atau panjang gelombang m, oleh partikel ( inti atom) yang berputar didalam medan magnet. Inti atom hidrogen atau proton mempunyai sifat-sifat magnet. Bila suatu senyawa yang mengandung hidrogen diletakkan pada bidang magnet yang sangat kuat dan diradiasi dengan dengan radiasi elektromagnetik, maka inti atom hidrogen dari senyawa tersebut akan menyerap energi melalui suatu proses adsorbsi yang dikenal dengan resonansi magnetik. Adsorbsi radiasi terjadi bila kekuatan medan magnet sesuai dengan frekuensi radiasi elektomagnet. Spektrometri Resonansi Magnetik Inti Proton ( 1- H-NMR) merupakan alat yang berguna pada penentuan struktur molekul organik. Teknik ini memberikan informasi mengenai berbagai jenis atom hidrogen dalam molekul. Spektrum 1- HNMR memberikan informasi mengenai lingkungan kimia atom hidrogen, jumlah atom hidrogen dalam setiap lingkungan dan struktur gugusan yang berdekatan dengan setiap atom hidrogen (Cresswell, 1982). Spektrometri Resonansi Magnetik Inti Proton ( 1- H-NMR) pada umumnya digunakan untuk :

29 1. Menentukan jumlah proton yang memiliki lingkungan kimia yang sama pada suatu senyawa organik. 2. Mengetahui informasi mengenai struktur suatu senyawa organik (Dachriyanus, 2004). Pergeseran kimia adalah pengukuran medan magnet dalam keadaan bebas. Semua proton-proton dalam satu molekul yang ada dalam lingkungan kimia yang serupa kadangkadang menunjukkan pergeseran kimia yang sama. Setiap senyawa memberikan penaikan menjadi puncak absorbsi tunggal dalam spektrum 1- H-NMR. Di dalam medan magnet, perputaran elektron-elektron valensi dari proton menghasilkan medan magnet yang melawan medan magnet yang digunakan. Hingga setiap proton dalam molekul dilindungi dari medan magnet yang digunakan dan bahwa besarnya perlindungan ini tergantung pada kerapatan elektron yang mengelilinginya. Makin besar kerapatan elektron yang mengelilingi inti, maka makin besar pula medan magnet yang dihasilkan yang melawan medan magnet yang digunakan (Bernasconi,1995). Senyawa yang paling lazim dan paling berguna dipakai sebagai acuan adalah tetrametilsilana (TMS). Beberapa keuntungan dari pemakaian standar internal TMS yaitu: 1. TMS mempunyai 12 proton yang setara sehingga akan memberikan spektrum puncak tunggal yang kuat. H 3 C CH 3 Si CH 3 CH 3 2. TMS merupakan cairan yang mudah menguap, dapat ditambahkan kedalam larutan sampel dalam pelarut CDCl 3 atau CCl 4 (Silverstein, 1986)

30 Pada spektrometri RMI integrasi sangat penting. Harga integrasi menunjukkan daerah atau luas puncak dari tiap tiap proton. Sedangkan luas daerah atau luas puncak tersebut sesuai dengan jumlah proton. Dengan demikian perbandingan tiap integrasi proton sama dengan perbandingan jumlah proton dalam molekul (Muldja, 1995). Informasi Spektroskopi Inframerah menunjukkan tipe tipe dari adanya gugus fungsi dalam satu molekul dan Resonansi Magnetik Inti yang memberikan informasi tentang bilangan dari setiap tipe dari atom hidrogen dan juga memberikan informasi yang menyatakan tentang lingkungan dari setiap tipe dari atom hidrogen.kombinasinya dan data yang ada kadang kadang menentukan struktur yang lengkap dari molekul yang tidak diketahui (Pavia, 1979).

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Alpukat 2.1.1. Morfologi Tumbuhan Alpukat Pohon buah ini berasal dari Amerika tengah, tumbuh liar di hutan-hutan, banyak juga ditanam di kebun, dan di pekarangan yang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.)

BAB 2 TINJAUAN PUSTAKA Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.) BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Balik Angin 2.1.1 Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.) Balik angin (M.recurvata Gage.) merupakan jenis pohon teduhan, biasanya ditemui di tempat-tempat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mahkota Dewa 2.1.1 Morfologi Tumbuhan Mahkota Dewa Tumbuhan Mahkota dewa merupakan tumbuhan yang hidup di daerah tropis, juga bisa ditemukan di pekarangan rumah sebagai

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Harimonting 2.1.1. Morfologi Tumbuhan Harimonting Tumbuhan Harimonting adalah termasuk familli Myrtaceae (suku jambu-jambuan). Harimonting adalah sejenis tanaman liar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Kecapi Pohon, tinggi 30 m,memiliki cabang dan ranting yang banyak. Batang melengkung, berkayu, bergetah, percabangan mulai dari bagian pangkalnya. Daun majemuk, lonjong,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Bawang Merah 2.1.1 Morfologi Bawang Merah (Allium cepa L.) Bawang merah (lihat lampiran B) merupakan tanaman semusim yang berbentuk rumput, berbatang pendek dan berakar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Pidada Merah 2.1.1 Morfologi Tumbuhan Pidada Merah Tumbuhan pidada (Soneratia) adalah sejenis pohon penghuni rawa-rawa tepi sungai, dan bagian dari vegetasi mangrove.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Lagundi Tumbuhan Lagundi (V. trifolia L.) merupakan pohon semak, tinggi berkisar 5 meter dan batangnya ditutupi oleh rambut-rambut lembut. Meski banyak kasiatnya, orang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Senggani Tumbuhan senggani merupakan tumbuhan yang tumbuh liar di tempat-tempat yang mendapat cukup sinar matahari, seperti dilereng gunung, semak belukar, lapangan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.)

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.) 17 A 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) oerl.) 2.1.1. Morfologi Tumbuhan Mahkota Dewa Tanaman mahkota dewa sebenarnya berasal dari Papua, oleh karena itu dinamakan

Lebih terperinci

UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) Surakarta 57127

UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) Surakarta 57127 UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) 852518 Surakarta 57127 UJIAN TENGAH SEMESTER GANJIL TAHUN AKADEMIK 2006 / 2007 Mata Kuliah : Fitokimia II

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di 30 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan April 2012 - Januari 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo,

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, BAB IV HASIL DAN PEMBAHASAN 4.1 Penyiapan Sampel Sampel daging buah sirsak (Anonna Muricata Linn) yang diambil didesa Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, terlebih

Lebih terperinci

J. Gaji dan upah Peneliti ,- 4. Pembuatan laporan ,- Jumlah ,-

J. Gaji dan upah Peneliti ,- 4. Pembuatan laporan ,- Jumlah ,- Anggaran Tabel 2. Rencana Anggaran No. Komponen Biaya Rp 1. Bahan habis pakai ( pemesanan 2.500.000,- daun gambir, dan bahan-bahan kimia) 2. Sewa alat instrument (analisa) 1.000.000,- J. Gaji dan upah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston)

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston) 2 BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston) 2.1.1 Morfologi Tumbuhan Jambu Air Syzygium aquea asli dari Malaysia dan Indonesia yang tergolong ke dalam family Myrtaceae

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Morfologi tumbuhan sirsak Sirsak (Annona muricata L) berupa tumbuhan atau potion yang berbatang utama berukuran kecil dan rendah. Daunnya berbentuk bulat telur agak tebal dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Benalu cengkeh (Scurrula ferruginea (jack) Danser) Benalu merupakan tumbuhan parasit terhadap inang tumbuhnya, walaupun bersifat parasit benalu berpotensi sebagai tumbuhan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Jati Tanaman jati merupakan tanaman tropika dan subtropika yang sejak abad ke-9 telah dikenal sebagai pohon yang memiliki kualitas tinggi. Di Indonesia, jati digolongkan

Lebih terperinci

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman 17 HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Sebanyak 5 kg buah segar tanaman andaliman asal Medan diperoleh dari Pasar Senen, Jakarta. Hasil identifikasi yang dilakukan oleh Pusat Penelitian

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di Laboratorium Kimia Organik, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Alat-alat 1. Alat Destilasi 2. Batang Pengaduk 3. Beaker Glass Pyrex 4. Botol Vial 5. Chamber 6. Corong Kaca 7. Corong Pisah 500 ml Pyrex 8. Ekstraktor 5000 ml Schoot/ Duran

Lebih terperinci

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K 7 Persentase inhibisi = K ( S1 S ) 1 K K : absorban kontrol negatif S 1 : absorban sampel dengan penambahan enzim S : absorban sampel tanpa penambahan enzim Isolasi Golongan Flavonoid (Sutradhar et al

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium Kimia Organik, Jurusan Kimia Fakultas MIPA Universitas Lampung.

Lebih terperinci

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak 15 HASIL DAN PEMBAHASAN Penetapan Kadar Air Penentuan kadar air berguna untuk mengidentifikasi kandungan air pada sampel sebagai persen bahan keringnya. Selain itu penentuan kadar air berfungsi untuk mengetahui

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Petai Cina Petai cina berasal dari Amerika tropis, tersebar di daerah tropik dan ditemukan pada ketinggian antara 1-1.500 m dpl. Petai cina akan berbuah lebih baik jika

Lebih terperinci

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc)

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) Zuhelmi Aziz*, Ratna Djamil Fakultas Farmasi Universitas Pancasila,Jakarta 12640 email : emi.ffup@yahoo.com

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1.

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1. BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pada awal penelitian dilakukan determinasi tanaman yang bertujuan untuk mengetahui kebenaran identitas botani dari tanaman yang digunakan. Hasil determinasi menyatakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis 22 BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis Roem) yang diperoleh dari daerah Tegalpanjang, Garut dan digunakan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar IV. HASIL DAN PEMBAHASAN A. Isolasi Senyawa Fenolik Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar tumbuhan kenangkan yang diperoleh dari Desa Keputran Sukoharjo Kabupaten

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mangga 2.1.1. Morfologi Tumbuhan Mangga Mangga adalah tanaman buah asli dari India. Kini, tanaman ini tersebar di berbagai penjuru dunia termasuk Indonesia. Tanaman

Lebih terperinci

BAB 1 TINJAUAN PUSTAKA

BAB 1 TINJAUAN PUSTAKA BAB 1 TIJAUA PUSTAKA 1.1 Glibenklamid Glibenklamid adalah 1-[4-[2-(5-kloro-2-metoksobenzamido)etil]benzensulfonil]-3- sikloheksilurea. Glibenklamid juga dikenal sebagai 5-kloro--[2-[4{{{(sikloheksilamino)

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014,

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas Matematika

Lebih terperinci

BAB 1 TINJAUAN PUSTAKA

BAB 1 TINJAUAN PUSTAKA PENDAHULUAN Glibenklamid merupakan sulfonylurea generasi kedua yang digunakan sebagai obat antidiabetik oral yang berperan menurunkan konsentrasi glukosa darah. Glibenklamid merupakan salah satu senyawa

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Agustus April 2013, bertempat di

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Agustus April 2013, bertempat di III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini akan dilakukan pada bulan Agustus 2012 -April 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal.

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal. IV. HASIL DAN PEMBAHASAN 4.1 Hasil 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa Roxb.) menunjukkan adanya golongan senyawa flavonoid, terpenoid, steroid, saponin, dan fenolik.(lampiran

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Sistematika tumbuhan Sambang Darah adalah sebagai berikut : : Excoecaria cochinchinensis Lour.

BAB 2 TINJAUAN PUSTAKA. Sistematika tumbuhan Sambang Darah adalah sebagai berikut : : Excoecaria cochinchinensis Lour. BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Sambang Darah 2.1.1 Sistematika Tumbuhan Sambang Darah Sistematika tumbuhan Sambang Darah adalah sebagai berikut : Kingdom Divisi Class rdo Famili Genus Spesies Nama

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi BAB IV HASIL DAN PEMBAHASAN 4.1. Determinasi Tumbuhan Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi FPMIPA UPI Bandung untuk mengetahui dan memastikan famili dan spesies tumbuhan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 13 HASIL DAN PEMBAHASAN Ekstraksi dan Fraksinasi Sampel buah mahkota dewa yang digunakan pada penelitian ini diperoleh dari kebun percobaan Pusat Studi Biofarmaka, Institut Pertanian Bogor dalam bentuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan penelitian ini adalah daun M. australis (hasil determinasi tumbuhan dilampirkan pada Lampiran 1) yang diperoleh dari perkebunan

Lebih terperinci

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi 2 dikeringkan pada suhu 105 C. Setelah 6 jam, sampel diambil dan didinginkan dalam eksikator, lalu ditimbang. Hal ini dilakukan beberapa kali sampai diperoleh bobot yang konstan (b). Kadar air sampel ditentukan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Iler 2.1.1. Morfologi Tumbuhan Iler Tumbuhan iler tumbuh subur di daerah dataran rendah sampai ketinggian 1500 meter diatas permukaan laut dan merupakan tanaman semusim.

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L IV. HASIL DAN PEMBAHASAN 4.1 Hasil Dari penelitian yang telah dilakukan, maka diperoleh hasil sebagai berikut: 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L etanol, diperoleh ekstrak

Lebih terperinci

BAB I PENDAHULUAN. Metode fitokimia yang digunakan setelah dilakukan metode

BAB I PENDAHULUAN. Metode fitokimia yang digunakan setelah dilakukan metode BAB I PENDAHULUAN I.1 Latar Belakang Metode fitokimia yang digunakan setelah dilakukan metode kromatografi kolom dan vakum adalah fraksinasi dan idnetifikasi dari suatu sampel dalam hal ini yang digunakan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. - Beaker glass 1000 ml Pyrex. - Erlenmeyer 1000 ml Pyrex. - Labu didih 1000 ml Buchi. - Labu rotap 1000 ml Buchi

BAB 3 METODOLOGI PENELITIAN. - Beaker glass 1000 ml Pyrex. - Erlenmeyer 1000 ml Pyrex. - Labu didih 1000 ml Buchi. - Labu rotap 1000 ml Buchi BAB 3 METODOLOGI PENELITIAN 3.1. Alat-alat - Beaker glass 1000 ml Pyrex - Erlenmeyer 1000 ml Pyrex - Maserator - Labu didih 1000 ml Buchi - Labu rotap 1000 ml Buchi - Rotaryevaporator Buchi R 210 - Kain

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah biji paria (Momordica charantia)

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah biji paria (Momordica charantia) BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah biji paria (Momordica charantia) yang diperoleh dari Kampung Pamahan, Jati Asih, Bekasi Determinasi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar IV. HASIL DAN PEMBAHASAN A. Persiapan Sampel Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar Bringharjo Yogyakarta, dibersihkan dan dikeringkan untuk menghilangkan kandungan air yang

Lebih terperinci

Kromatografi tambahan. Imam S

Kromatografi tambahan. Imam S Kromatografi tambahan Imam S Kromatografi serapan Bentuk alat : mirip buret, didalamnya berisi, glass wool/kapas untuk penyangga, penyaring dari gelas yang dilapisi kertas saring, bahan isian kolom yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Muhammadiyah Semarang di Jalan Wonodri Sendang Raya 2A Semarang.

BAB III METODOLOGI PENELITIAN. Muhammadiyah Semarang di Jalan Wonodri Sendang Raya 2A Semarang. BAB III METODOLOGI PENELITIAN A. Jenis Penelitian Jenis penelitian yang digunakan adalah jenis penelitian deskriptif. B. Tempat dan Waktu Penelitian Penelitian dilakukan di laboratorium kimia program studi

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab

BAB III METODE PENELITIAN. Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab BAB III METODE PENELITIAN 3.1 Deskripsi Penelitian Lokasi pengambilan sampel bertempat di daerah Cihideung Lembang Kab Bandung Barat. Sampel yang diambil berupa tanaman KPD. Penelitian berlangsung sekitar

Lebih terperinci

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat)

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) Abstrak Kulit buah langsat diekstraksi menggunakan metode maserasi dengan pelarut yang berbeda

Lebih terperinci

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1.

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1. PEMBAHASAN Pengaruh Pencucian, Delignifikasi, dan Aktivasi Ampas tebu mengandung tiga senyawa kimia utama, yaitu selulosa, lignin, dan hemiselulosa. Menurut Samsuri et al. (2007), ampas tebu mengandung

Lebih terperinci

Beberapa keuntungan dari kromatografi planar ini :

Beberapa keuntungan dari kromatografi planar ini : Kompetensi Dasar: Mahasiswa diharapkan dapat menjelaskan metode pemisahan dengan KLT dan dapat mengaplikasikannya untuk analisis suatu sampel Gambaran Umum KLT Kromatografi lapis tipis (KLT) dikembangkan

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van 22 BAB III HASIL DAN PEMBAHASAN A. Determinasi Tanaman Determinasi merupakan suatu langkah untuk mengidentifikasi suatu spesies tanaman berdasarkan kemiripan bentuk morfologi tanaman dengan buku acuan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Penelitian ini dilakukan untuk mengetahui pengaruh perbedaan jenis pelarut terhadap kemampuan ekstrak daun beluntas (Pluchea indica Less.) dalam menghambat oksidasi gula. Parameter

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Aktivitas Antibakteri Fraksi Etil Asetat Ekstrak Ampas Teh Hijau Metode Difusi Agar Hasil pengujian aktivitas antibakteri ampas teh hijau (kadar air 78,65 %

Lebih terperinci

HASIL DA PEMBAHASA. Kadar Air

HASIL DA PEMBAHASA. Kadar Air Pemilihan Eluen Terbaik Pelat Kromatografi Lapis Tipis (KLT) yang digunakan adalah pelat aluminium jenis silika gel G 60 F 4. Ekstrak pekat ditotolkan pada pelat KLT. Setelah kering, langsung dielusi dalam

Lebih terperinci

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan III. METODOLOGI PENELITIAN Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan preparasi sampel, bahan, alat dan prosedur kerja yang dilakukan, yaitu : A. Sampel Uji Penelitian Tanaman Ara

Lebih terperinci

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. November Pengambilan sampel Phaeoceros laevis (L.) Prosk.

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. November Pengambilan sampel Phaeoceros laevis (L.) Prosk. BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan pada bulan Oktober sampai dengan November 2015. Pengambilan sampel Phaeoceros laevis (L.) Prosk. dilakukan di daerah

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. 1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai dari bulan Februari sampai Juni 2014. Lokasi penelitian dilakukan di berbagai tempat, antara lain: a. Determinasi sampel

Lebih terperinci

PEMISAHAN ZAT WARNA SECARA KROMATORAFI. A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan.

PEMISAHAN ZAT WARNA SECARA KROMATORAFI. A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan. PEMISAHAN ZAT WARNA SECARA KROMATORAFI A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan. B. Pelaksanaan Kegiatan Praktikum Hari : Senin, 13 April 2009 Waktu : 10.20 12.00 Tempat : Laboratorium

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 12 BAB II TINJAUAN PUSTAKA 2.1 Sirup 2.1.1 Defenisi Sirup Sirup adalah larutan pekat dari gula yang ditambah obat dan merupakan larutan jernih berasa manis. Dapat ditambah gliserol, sorbitol atau polialkohol

Lebih terperinci

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung.

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung. 16 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Agustus 2012 sampai dengan bulan Maret 2013 di Laboratorium Biomassa Terpadu Universitas Lampung. 3.2 Alat

Lebih terperinci

Noda tidak naik Minyak 35 - Noda tidak naik Minyak 39 - Noda tidak naik Minyak 43

Noda tidak naik Minyak 35 - Noda tidak naik Minyak 39 - Noda tidak naik Minyak 43 BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Hasil uji pendahuluan Setelah dilakukan uji kandungan kimia, diperoleh hasil bahwa tumbuhan Tabemaemontana sphaerocarpa positif mengandung senyawa alkaloid,

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Mei-Desember 2013, bertempat di

III. METODELOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Mei-Desember 2013, bertempat di 22 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini akan dilakukan pada bulan Mei-Desember 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta

BAB II TINJAUAN PUSTAKA. nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta BAB II TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan Uraian tumbuhan meliputi habitat dan daerah tumbuh, sistematika tumbuhan, nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta penggunaan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan yang digunakan dalam penelitian ini adalah daun Artocarpus communis (sukun) yang diperoleh dari Garut, Jawa Barat serta

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil 4.1.1. Uji fitokimia daun tumbulian Tabernaenwntana sphaerocarpa Bl Berdasarkan hasil uji fitokimia, tumbuhan Tabemaemontana sphaerocarpa Bl mengandung senyawa dari

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia L.) yang diperoleh dari Kampung Pipisan, Indramayu. Dan untuk

Lebih terperinci

II. TINJAUAN PUSTAKA. berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia

II. TINJAUAN PUSTAKA. berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia 4 II. TINJAUAN PUSTAKA 2.1. Tunibiilian nenas (Ananas comosus) Nenas atau nanas "Pineapple" bukan tanaman asli Indonesia. Nenas berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilakukan selama lima bulan dari bulan Mei hingga September 2011, bertempat di Laboratorium Kimia Hasil Hutan, Bengkel Teknologi Peningkatan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Instrumen Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan

BAB III METODOLOGI PENELITIAN. Instrumen Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan 21 BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dimulai pada bulan Maret sampai Juni 2012 di Laboratorium Riset Kimia dan Material Jurusan Pendidikan Kimia FPMIPA Universitas Pendidikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek penelitian ini adalah bagian daun tumbuhan suren (Toona sinensis

BAB III METODOLOGI PENELITIAN. Objek penelitian ini adalah bagian daun tumbuhan suren (Toona sinensis 29 BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek penelitian ini adalah bagian daun tumbuhan suren (Toona sinensis Roem.). Determinasi tumbuhan ini dilakukan di Laboratorium Struktur

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan dari bulan Agustus hingga bulan Desember 2013 di Laboratorium Bioteknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan

Lebih terperinci

III. METODE PENELITIAN. Penelitian telah dilakukan pada bulan Maret Juli 2014, bertempat di

III. METODE PENELITIAN. Penelitian telah dilakukan pada bulan Maret Juli 2014, bertempat di 19 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian telah dilakukan pada bulan Maret 2014 - Juli 2014, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas Lampung.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara kepulauan yang kaya akan kekayaan alamnya. Tanahnya yang subur dan iklimnya yang tropis memungkinkan berbagai jenis tumbuhan dapat dibudidayakan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di 21 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di Laboratorium Kimia Organik Jurusan Kimia FMIPA Universitas Lampung.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Lokasi Pengambilan Sampel, Waktu, dan Tempat Penelitian Lokasi pengambilan sampel bertempat di daerah Cibarunai, Kelurahan Sarijadi, Bandung. Sampel yang diambil berupa tanaman

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sistematika dari hewan teripang (Martoyo dkk, 2006) adalah sebagai berikut:

BAB II TINJAUAN PUSTAKA. Sistematika dari hewan teripang (Martoyo dkk, 2006) adalah sebagai berikut: BAB II TINJAUAN PUSTAKA 2.1 Uraian Hewan 2.1.1 Sistematika Hewan Sistematika dari hewan teripang (Martoyo dkk, 2006) adalah sebagai berikut: Filum Sub-filum Kelas Sub-kelas Ordo (bangsa) Famili (suku)

Lebih terperinci

BAB III METODOLOGI PENELITIAN. polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam

BAB III METODOLOGI PENELITIAN. polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daun salam (Syzygium polyanthum) asal NTB. Untuk memastikan identitas dari tanaman salam yang didapatkan

Lebih terperinci

Lampiran 1. Identifikasi tumbuhan.

Lampiran 1. Identifikasi tumbuhan. Lampiran 1. Identifikasi tumbuhan. 43 Lampiran 2. Gambar tumbuhan eceng gondok, daun, dan serbuk simplisia Eichhornia crassipes (Mart.) Solms. Gambar tumbuhan eceng gondok segar Daun eceng gondok 44 Lampiran

Lebih terperinci

OLIMPIADE SAINS NASIONAL Medan, 1-7 Agustus 2010 BIDANG KIMIA. Ujian Praktikum KIMIA ORGANIK. Waktu 150 menit. Kementerian Pendidikan Nasional

OLIMPIADE SAINS NASIONAL Medan, 1-7 Agustus 2010 BIDANG KIMIA. Ujian Praktikum KIMIA ORGANIK. Waktu 150 menit. Kementerian Pendidikan Nasional OLIMPIADE SAINS NASIONAL 2010 Medan, 1-7 Agustus 2010 BIDANG KIMIA Ujian Praktikum KIMIA ORGANIK Waktu 150 menit Kementerian Pendidikan Nasional Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah

Lebih terperinci

BAB I TINJAUAN PUSTAKA

BAB I TINJAUAN PUSTAKA BAB I TINJAUAN PUSTAKA 1.1. Klasifikasi Kacang Hijau Klasifikasi tanaman kacang hijau adalah sebagai berikut (Heyne, 1987 :1051) : Kingdom Divisi Kelas Ordo Famili Genus Spesies : Plantae : Magnoliophyta

Lebih terperinci

BAB IV PROSEDUR PENELITIAN

BAB IV PROSEDUR PENELITIAN BAB IV PROSEDUR PENELITIAN 4.1. Pengumpulan Bahan Tumbuhan yang digunakan sebagai bahan penelitian ini adalah daun steril Stenochlaena palustris. Bahan penelitian dalam bentuk simplisia, diperoleh dari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Gambar 14. Hasil Uji Alkaloid dengan Pereaksi Meyer; a) Akar, b) Batang, c) Kulit batang, d) Daun

BAB IV HASIL DAN PEMBAHASAN. Gambar 14. Hasil Uji Alkaloid dengan Pereaksi Meyer; a) Akar, b) Batang, c) Kulit batang, d) Daun BAB IV HASIL DAN PEMBAHASAN 4.1 Uji Fitokimia Sampel Kering Avicennia marina Uji fitokimia ini dilakukan sebagai screening awal untuk mengetahui kandungan metabolit sekunder pada sampel. Dilakukan 6 uji

Lebih terperinci

Company LOGO ZAT WARNA /PIGMEN

Company LOGO ZAT WARNA /PIGMEN Company LOGO ZAT WARNA /PIGMEN Banyak sekali faktor yang menentukan kualitas produk akhir. Kualitas bahan pangan juga ditentukan oleh faktor sensoris (warna, kenampakan, citarasa, dan tekstur) dan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Toona sinensis (sinonim.cedrella sinensis A. Juss.) adalah spesies Toona

BAB II TINJAUAN PUSTAKA. Toona sinensis (sinonim.cedrella sinensis A. Juss.) adalah spesies Toona BAB II TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan 2.1.1 Penyebaran dan Habitat Toona sinensis (sinonim.cedrella sinensis A. Juss.) adalah spesies Toona yang terdapat di Asia Tenggara, Korea Selatan dan Utara,

Lebih terperinci

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang-

BAB III METODE PENELITIAN. 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian. Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- 18 BAB III METODE PENELITIAN 3.1 Lokasi Pengambilan Sampel, Waktu dan Tempat Penelitian Lokasi pengambilan sampel bertempat di sepanjang jalan Lembang- Cihideung. Sampel yang diambil adalah CAF. Penelitian

Lebih terperinci

BAB III METODOLOGI. Metodologi penelitian ini meliputi penyiapan dan pengolahan sampel, uji

BAB III METODOLOGI. Metodologi penelitian ini meliputi penyiapan dan pengolahan sampel, uji 19 BAB III METODOLOGI Metodologi penelitian ini meliputi penyiapan dan pengolahan sampel, uji pendahuluan golongan senyawa kimia, pembuatan ekstrak, dan analisis kandungan golongan senyawa kimia secara

Lebih terperinci

Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.)

Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.) Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.) Gambar 1. Tumbuhan gambas (Luffa acutangula L. Roxb.) Gambar 2. Biji Tumbuhan Gambas (Luffa acutangula L. Roxb.) Lampiran 2. Gambar Mikroskopik

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pemeriksaan karakteristik dilakukan untuk mengetahui kebenaran identitas zat yang digunakan. Dari hasil pengujian, diperoleh karakteristik zat seperti yang tercantum

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 27 4 HASIL DAN PEMBAHASAN 4.1 Karakteristik Api-api (Avicennia marina (Forks.)Vierh.) Pohon api-api (Avicennia marina (Forks.)Vierh.) merupakan tumbuhan sejati yang hidup di kawasan mangrove. Morfologi

Lebih terperinci

II. TINJAUAN PUSTAKA. Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat

II. TINJAUAN PUSTAKA. Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat 4 II. TINJAUAN PUSTAKA 2.1 Gamal (Gliricidia maculata) Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat polong - polongan (suku Fabaceae atau Leguminosae). Penyebaran alami tidak

Lebih terperinci

PENDAHULUAN PEMBAHASAN

PENDAHULUAN PEMBAHASAN PENDAHULUAN Taksonomi tanaman memaminkan peranan penting dalam konservasi keanekaragaman hayati, karena itu memerlukan karakterisasi yang tepat untuk distribusi serta lokalisasi daerah pada spesies dengan

Lebih terperinci

BAB I PENDAHULUAN. kuat dilaboratorium kimia. Metode kromatografi, karena pemanfaatannya

BAB I PENDAHULUAN. kuat dilaboratorium kimia. Metode kromatografi, karena pemanfaatannya BAB I PENDAHULUAN Berbagai metode kromatografi memberikan cara pemisahan paling kuat dilaboratorium kimia. Metode kromatografi, karena pemanfaatannya yang leluasa, dipakai secara luas untuk pemisahan analitik

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Uji fitokimia kulit batang Polyalthia sp (DA-TN 052) Pada uji fitokimia terhadap kulit batang Polyalthia sp (DA-TN 052) memberikan hasil positif terhadap alkaloid,

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 25 HASIL DAN PEMBAHASAN Kandungan Zat Ekstraktif Hasil penelitian menunjukkan bahwa kandungan ekstrak aseton yang diperoleh dari 2000 gram kulit A. auriculiformis A. Cunn. ex Benth. (kadar air 13,94%)

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 14 BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Bunga Tanjung 2.1.1 Morfologi Tumbuhan Bunga Tanjung Tumbuhan Bunga Tanjung ( Mimusops elengi L.) temasuk famili Sapotaceae dikenal sebagai pohon serba guna kayunya

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian III.1 Pengumpulan dan Persiapan Sampel Sampel yang digunakan dalam penelitian ini adalah daun Artocarpus champeden Spreng yang diperoleh dari Kp.Sawah, Depok, Jawa Barat,

Lebih terperinci

Lampiran 1. Universitas Sumatera Utara

Lampiran 1. Universitas Sumatera Utara Lampiran 1 Lampiran 2 Gambar 12: Tumbuhan Patikan kebo (Euphorbia hirta L.) Gambar 13: Simplisia Herba Patikan kebo (Euphorbiae hirtae herba) Lampiran 3 Herba Patikan kebo Dicuci Ditiriskan lalu disebarkan

Lebih terperinci

BAHAN DAN METODE. Tempat dan Waktu Penelitian

BAHAN DAN METODE. Tempat dan Waktu Penelitian 19 BAHAN DAN METODE Tempat dan Waktu Penelitian Penelitian ini dilakukan di Bagian Kimia Hasil Hutan Departemen Hasil Hutan Fakultas Kehutanan, Laboratorium Kimia Organik Departemen Kimia Fakultas MIPA

Lebih terperinci