POTENSI ENERGI NUKLIR

Ukuran: px
Mulai penontonan dengan halaman:

Download "POTENSI ENERGI NUKLIR"

Transkripsi

1 POTENSI ENERGI NUKLIR ABSTRACT Energi nuklir adalah sebuah energi alternatif yang relatif besar potensinya untuk menggantikan energi fosil. Saat ini, tanpa memperhitungkan eksplorasi baru, cadangan uranium dunia akan cukup untuk memenuhi kebutuhan energi dunia hingga 100 tahun. Fahmy Munawar ENERGI BARU DAN TERBARUKAN PROGRAM STUDI S1 TEKNIK FISIKA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

2 1 POTENSI SUMBER NUKLIR Energi nuklir adalah sebuah energi alternatif yang relatif besar potensinya untuk menggantikan energi fosil. Saat ini, tanpa memperhitungkan eksplorasi baru, cadangan uranium dunia akan cukup untuk memenuhi kebutuhan energi dunia hingga 100 tahun. Dan bahkan dengan teknologi pengolahan dan pembiakan (pada jens reaktor tertentu) dapat mencukupi hingga 3600 tahun mendatang. Dan uranium sendiri memiliki kelebihan karena punya potensi kekuatan yang besar dan lebih hemat. Melihat tingkat peluangnya energi nuklir dalam kaitannya dengan masa depan adalah potensi sumber yang bisa dikatakan tidak terbatas. Setelah uranium-235 habis terpakai (perkiraan dalam 50 tahun dengan tingkat konsumsi sekarang), PLTN generasi selanjutnya akan menggunakan uranium-238 yang dikonversikan ke plutonium-239. Cadangan uranium 238 yang dapat ditambang secara ekonomis diperkirakan dapat memasok PLTN yang ada sekarang selama 3000 tahun. Bandingkan dengan cadangan batubara, minyak dan gas yang akan berakhir masing2 setelah 210, 40, dan 70 tahun. Badan Tenaga Nuklir Nasional (Batan) memperkirakan terdapat cadangan 70 ribu ton Uranium dan 117 ribu ton Thorium yang tersebar di sejumlah lokasi di Indonesia, yang bisa bermanfaat sebagai energi alternatif di masa depan. Potensi uranium dikategorikan menjadi beberapa kategori, ada yang dengan kategori terukur, tereka, teridentifikasi dan kategori hipotesis, sedangkan Thorium baru kategori hipotesis belum sampai terukur. Sebagian besar cadangan Uranium kebanyakan berada di Kalimantan Barat, sebagian lagi ada di Papua, Bangka Belitung dan Sulawesi Barat, sedangkan Thorium kebanyakan di Babel dan sebagian di Kalbar. Kajian terakhir dilakukan di Mamuju, Sulbar, dimana deteksi pendahuluan menyebut kadar Uranium di lokasi tersebut berkisar antara ppm (part per milion) dan Thorium antara ppm. Kecamatan Singkep, Kabupaten Mamuju juga menjadi kawasan yang laju dosis radiasi gammanya tercepat di Indonesia dibanding rata-rata nilai laju dosis radiasi Gamma di Indonesia yang 46 nsv per jam. 1

3 2 IPTEK DAN REKAYASA BIDANG NUKLIR Panas yang digunakan untuk membangkitkan uap diproduksi sebagai hasil dari pembelahan inti atom yang dapat diuraikan sebagai berikut: Apabila satu neutron (dihasilkan dari sumber neutron) tertangkap oleh satu inti atom uranium-235, inti atom ini akan terbelah menjadi 2 atau 3 bagian/fragment. Sebagian dari energi yang semula mengikat fragmen-fragmen tersebut masing-masing dalam bentuk energi kinetik, sehingga mereka dapat bergerak dengan kecepatan tinggi. Oleh karena fragmen-fragmen itu berada di dalam struktur kristal uranium, mereka tidak dapat bergerak jauh dan gerakannya segera diperlambat. Dalam proses perlambatan ini energi kinetik diubah menjadi panas (energi termal). Sebagai gambaran dapat dikemukakan bahwa energi termal yang dihasilkan dari reaksi pembelahan 1 kg uranium-235 murni besarnya adalah 17 milyar kilo kalori, atau setara dengan energi termal yang dihasilkan dari pembakaran 2,4 juta kg (2400 ton) batubara. Selain fragmen-fragmen tersebut reaksi pembelahan menghasilkan pula 2 atau 3 neutron yang dilepaskan dengan kecepatan lebih besar dari km/s. Neutron-neutron ini disebut neutron cepat yang mampu bergerak bebas tanpa dirintangi oleh atom-atom uranium atau atom-atom kelongsongnya. Agar mudah ditangkap oleh inti atom uranium guna menghasilkan reaksi pembelahan, kecepatan neutron ini harus diperlambat. Zat yang dapat memperlambat kecepatan neutron disebut moderator. 2.1 AIR SEBAGAI PEMERLAMBAT NEUTRON (MODERATOR) Seperti telah disebutkan di atas, panas yang dihasilkan dari reaksi pembelaha, oleh air yang bertekanan 160 atm dan temperatur C secara terus menerus dipompakan ke dalam reaktor melalui saluran pendingin reaktor. Air bersirkulasi dalam saluran pendingin ini tidak hanya berfungsi sebagai pendingin saja melainkan juga bertindak sebagai moderator, yaitu sebagai medium yang dapat memperlambat neutron. Neutron cepat akan kehilangan sebagai energinya selama menumbuk atom-atom hidrogen. Setelah kecepatan neutron turun sampai 200 m/s atau sama dengan kecepatan molekul gas pada temperatur C, barulah ia mampu membelah inti atom uranium-235. Neutron yang telah diperlambat disebut neutron termal. 2.2 REAKSI PEMBELAHAN INTI BERANTAI TERKENDALI Untuk mendapatkan keluaran termal yang mantap, perlu dijamin agar banyaknya reaksi pembelahan inti yang terjadi dalam teras reaktor dipertahankan pada tingkat tetap, yaitu 2 atau 3 neutron yang dihasilkan dalam reaksi itu hanya satu yang dapat meneruskan reaksi pembelahan. Neutron lainnya dapat lolos keluar reaktor, atau terserap oleh bahan lainnya tanpa menimbulkan reaksi pembelahan atau diserap oleh batang kendali. Batang kendali dibuat dari bahan-bahan yang dapat menyerap neutron, sehingga jumlah neutron yang menyebabkan reaksi pembelahan dapat dikendalikan dengan mengatur keluar atau masuknya batang kendali ke dalam teras reaktor. Sehubungan dengan uraian di atas perlu digarisbagawi bahwa: a. Reaksi pembelahan berantai hanya dimungkinkan apabila ada moderator. b. Kandungan uranium-235 di dalam bahan bakar nuklir maksimum adalah 3,2%. Kandungan ini kecil sekali dan terdistribusi secara merata dalam isotop uranium-238, sehingga tidak mungkin terjadi reaksi pembelahan berantai secara tidak terkendali di dalamnya. 2

4 2.3 RADIASI DAN HASIL BELAHAN Fragmen-fragmen yang diproduksi selama reaksi pembelahan inti disebut hasil belahan, yang kebanyakan berupa atom-atom radioaktif seperti xenon-133, kripton-85 dan iodium-131. Zat radioaktif ini meluruh menjadi atom lain dengan memancarkan radiasi alpha, beta, gamma atau neutron. Selama proses peluruhan, radiasi yang dipancarkan dapat diserap oleh bahan-bahan lain yang berada di dalam reaktor, sehingga energi yang dilepaskan berubah menjadi panas. Panas ini disebut panas peluruhan yang akan terus diproduksi walaupun reaktor berhenti beroperasi. Oleh karena itu reaktor dilengkapi dengan suatu sistem pembuangan panas peluruhan. Selain hasil belahan, dalam reaktor dihasilkan pula bahan radioaktif lain sebagai hasil aktivitas neutron. Bahan radioaktif ini terjadi karena bahan-bahan lain yang berada dalam reaktor (seperti kelongsongan atau bahan struktur) menangkap neutron sehingga berubah menjadi unsur lain yang bersifat radioaktif. Radioaktif adalah sumber utama timbulnya bahaya dari suatu PLTN, oleh karena itu semua sistem pengamanan PLTN ditujukan untuk mencegah atau menghalangi terlepasnya zat radioaktif ke lingkungan dengan aktivitas yangmelampau nilai batas ambang yang diizinkan menurut peraturan yang berlaku. 3 TEKNOLOGI PEMBANGKIT LISTRIK TENAGA NUKLIR YANG SUDAH DIGUNAKAN Dalam pembangkit listrik konvensional, air diuapkan di dalam suatu ketel melalui pembakaran bahan fosil (minyak, batubara, dan gas). Uang yang dihasilkan dialirkan ke turbin uap yang akan bergerak apabila ada tekanan upa. Perputaran turbin selanjutnya digunakan untuk menggerakkan generator, sehingga akan dihasilkan tenaga listrik. Pembangkit listrik dengan bahan bakar batubara, minyak dan gas mempunyai potensi yang dapat menimbulkan dampak lingkungan dan masalah transportasi bahan bakar dari tambang menuju lokasi pembangkitan. Dampak lingkungan akibat pembakaran bahan fosil tersebut dapat berupa CO 2, SO 2, dan NO 2, serta debu yang mengandung logam berat. Kekhawatiran terbesar dalam pembangkit listrik dengan bahan bakar fosil adalah dapat menimbulkan hujan asam dan peningkatan pemanasan global. 3

5 PLTN beroperasi dengan prinsip yang sama seperti pembangkit listrik konvensional, hanya panas yang digunakan untuk menghasilkan uap tidak dihasilkan dari pembakaran bahan fosil, tetapi dihasilkan dari reaksi fisi inti uranium dalam suatu reaktor nuklir. Tenaga panas tersebut digunakan untuk membangkitkan uap di dalam sistem pembangkit uap (steam generator) dan selanjutnya sama seperti pada pembangkit listrik konvensional, uap digunakan untuk menggerakkan turbin-generator sebagai pembangkit tenaga listrik. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkitan listrik ini tidak membebaskan asap atau debu yang mengandung logam berat yang dibuang ke lingkungan atau melepaskan partikel yang berbahaya seperti CO 2, SO 2, dan NO 2 ke lingkungan, sehingga PLTN ini merupakan pembangkit listrik yang ramah lingkungan. limbah radioaktif yang dihasilkan dari pengoperasian PLTN adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN sebelum dilakukan penyimpanan secara lestari. 4 ALTERNATIF PENINGKATAN KINERJA PLTN Teknologi PLTN dirancang agar energi nuklir yang terlepas dari proses fisi dapat dimanfaatkan sebagai sumber energi dalam kehidupan sehari-hari. PLTN merupakan sebuah sistim yang dalam operasinya menggunakan reaktor daya yang berperan sebagai tungku penghasil panas. Dewasa ini ada berbagai jenis PLTN yang beroperasi. Perbedaan tersebut ditandai dengan perbedaan tipe reaktor daya yang digunakannya. Masing-masing jenis PLTN/tipe reaktor daya umumnya dikembangkan oleh negaranegara tertentu, sehingga seringkali suatu jenis PLTN sangat menonjol dalam suatu negara, tetapi tidak dioperasikan oleh negara lain. Perbedaan berbagai tipe reaktor daya itu bisa terletak pada penggunaan bahan bakar, moderator, jenis pendinging serta perbedaan-perbedaan lainnya. Perbedaan jenis reaktor daya yang dikembangkan antara satu negara dengan negara lain juga dipengaruhi oleh tingkat penguasaan teknologi yang terkait dengan nuklir oleh masing-masing negara. Pada awal pengembangan PLTN pada tahun 1950-an, pengayaan uranium baru bisa dilakukan oleh Amerika Serikat dan Rusia, sehingga kedua negara tersebut pada saat itu sudah mulai mengembangkan 4

6 reaktor daya berbahan bakar uranium diperkaya. Sementara itu di Kanada, Perancis dan Ingris pada saat itu dipusatkan pada program pengembangan reaktor daya berbahan bakar uranium alam. Oleh sebab itu, PLTN yang pertama kali beroperasi di ketiga negara tersebut menggunakan reaktor berbahan bakar uranium alam. Namun dalam perkembangan berikutnya, terutama Inggris dan Perancis juga mengoperasikan PLTN berbahan bakar uranium diperkaya. Sebagian besar reaktor daya yang beroperasi dewasa ini adalah jenis Reaktor Air Ringan atau LWR (Light Water Reactor) yang mula-mula dikembangkan di AS dan Rusia. Disebut Reaktor Air Ringan karena menggunakan H2O kemurnian tinggi sebagai bahan moderator sekaligus pendingin reaktor. Reaktor ini terdiri atas Reaktor Air tekan atau PWR (Pressurized Water Reactor) dan Reaktor Air Didih atau BWR (Boiling Water Reactor) dengan jumlah yang dioperasikan masing-masing mencapai 52 % dan 21,5 % dari total reaktor daya yang beroperasi. Sedang sisanya sebesar 26,5 % terdiri atas berbagai type reaktor daya lainnya. Berikut ini akan dibahas lebih lanjut berbagai jenis PLTN yang dewasa ini beroperasi diberbagai negara. Reaktor Air Didih Pada reaktor air didih, panas hasil fisi dipakai secara langsung untuk menguapkan air pendingin dan uap yang terbentuk langsung dipakai untuk memutar turbin. Turbin tekanan tinggi menerima uap pada suhu sekitar 290 ºC dan tekanan sebesar 7,2 MPa. Sebagian uap diteruskan lagi ke turbin tekanan rendah. Dengan sistim ini dapat diperoleh efisiensi thermal sebesar 34 %. Efisiensi thermal ini menunjukkan prosentase panas hasil fisi yang dapat dikonversikan menjadi energi listrik. Setelah melalui turbin, uap tersebut akan mengalami proses pendinginan sehingga berubah menjadi air yang langsung dialirkan ke teras reaktor untuk diuapkan lagi dan seterusnya. Dalam reaktor ini digunakan bahan bakar 235U dengan tingkat pengayaannya 3-4 % dalam bentuk UO2. Pada tahun 1981, perusahaan Toshiba, General Electric dan Hitachi melakukan kerja sama dengan perusahaan Tokyo Electric Power Co. Inc. untuk memulai suatu proyek pengembangan patungan dalam rangka meningkatkan unjuk kerja sistim Reaktor Air Didih dengan memperkenalkan Reaktor Air Didih Tingkat Lanjut atau A-BWR (Advanced Boiling Water Reactor). Kapasitas A-BWR dirancang lebih besar untuk mempertinggi keuntungan ekonomis. Di samping itu, beberapa komponen reaktor juga mengalami peningkatan, seperti peningkatan dalam fraksi bakar, penyempurnaan sistim pompa sirkulasi pendingin, mekanisme penggerak batang kendali dan lain-lain. Reaktor Air Tekan Reaktor Air Tekan juga menggunakan H2O sebagai pendingin sekaligus moderator. Bedanya dengan Reaktor Air Didih adalah penggunaan dua macam pendingin, yaitu pendingin primer dan sekunder. Panas yang dihasilkan dari reaksi fisi dipakai untuk memanaskan air pendingin primer. Dalam reaktor ini dilengkapi dengan alat pengontrol tekanan (pessurizer) yang dipakai untuk mempertahankan tekanan sistim pendingin primer. Sistim pressurizer terdiri atas sebuah tangki yang dilengkapi dengan pemanas listrik dan penyemprot air. Jika tekanan dalam teras reaktor berkurang, pemanas listrik akan memanaskan air yang terdapat di dalam tangki pressurizer sehingga terbentuklah uap tambahan yang akan menaikkan tekanan dalam sistim pendingin primer. Sebaliknya apabila tekanan dalam sistim pendingin primer bertambah, maka sistim penyemprot air akan mengembunkan sebagian uap sehingga tekanan uap berkurang dan sistim pendingin primer akan kembali ke keadaan semula. Tekanan pada sistim pendingin primer dipertahankan pada posisi 150 Atm untuk mencegah agar air pendingin primer tidak mendidih pada suhu sekitar 300 ºC. Pada tekanan udara normal, air akan mendidih dan menguap pada suhu 100 ºC. 5

7 Dalam proses kerjanya, air pendingin primer dialirkan ke sistim pembangkit uap sehingga terjadi pertukaran panas antara sistim pendingin primer dan sistim pendingin sekunder. Dalam hal ini antara kedua pendingin tersebut hanya terjadi pertukaran panas tanpa terjadi kontak atau percampuran, karena antara kedua pendingin itu dipisahkan oleh sistim pipa. Terjadinya pertukaran panas menyebabkan air pendingin sekunder menguap. Tekanan pada sistim pendingin sekunder dipertahankan pada tekanan udara normal sehingga air dapat menguap pada suhu 100 ºC. Uap yang terbentuk di dalam sistim pembangkit uap ini selanjutnya dialirkan untuk memutar turbin. Dari uraian di atas tergambar bahwa sistim kerja PLTN dengan Reaktor Air Tekan lebih rumit dibandingkan dengan sistim Reaktor Air Didih. Namun jika dilihat pada sistim keselamatannya, Reaktor Air Tekan lebih aman dibandingkan dengan Reaktor Air Didih. Pada Reaktor Air Tekan perputaran sistim pendingin primernya betul-betul tertutup, sehingga apabila terjadi kebocoran bahan radioaktif di dalam teras reaktor tidak akan menyebabkan kontaminasi pada turbin. Sedang pada Reaktor Air Didih, kebocoran bahan radioaktif yang terlarut dalam air pendingin primer dapat menyebabkan terjadinya kontaminasi pada turbin. Reaktor Air Tekan juga mempunyai keandalan operasi dan keselamatan yang sangat baik. Salah satu faktor penunjangnya adalah karena reaktor ini mempunyai koefisien reaktivitas negatif. Apabila terjadi kenaikan suhu dalam teras reaktor secara mendadak, maka daya reaktor akan segera turun dengan sendirinya. Namun karena menggunakan dua sistim pendingin, maka efisiensi thermalnya sedikit lebih rendah dibandingkan dengan Reaktor Air Didih. Reaktor Air Berat atau HWR (Heavy Water Reactor) Reaktor Air Berat merupakan jenis reaktor yang menggunakan D2O (air berat) sebagai moderator sekaligus pendingin. Reaktor ini menggunakan bahan bakar uranium alam sehingga harus digunakan air berat yang penampang lintang serapannya terhadap neutron sangat kecil. PLTN dengan Reaktor Air berat yang paling terkenal adalah CANDU (Canadian Deuterium Uranium) yang pertama kali dikembangkan oleh Canada. Seperti halnya Reaktor Air tekan, Reaktor CANDU juga mempunyai sistim pendingin primer dan sekunder, pembangkit uap dan pengontrol tekanan untuk mempertahankan tekanan tinggi pada sistim pendingin primer. D2O dalam reaktor CANDU hanya dimanfaatkan sebagai sistim pendingin primer, sedang sistim pendingin sekundernya menggunakan H2O. Dalam pengoperasian reaktor CANDU, kemurnian D2O harus dijaga pada tingkat 95-99,8 %. Air berat merupakan bahan yang harganya sangat mahal dan secara fisik maupun kimia tidak dapat dibedakan secara langsung dengan H2O. Oleh sebab itu, perlu adanya usaha penanggulangan kebocoran D2O baik dalam bentuk uap maupun cairan. Aliran ventilasi dari ruangan dilakukan secara tertutup dan selalu dipantau tingkat kebasahannya, sehingga kemungkinan adanya kebocoran D2O dapat diketahui secara dini. Reaktor Magnox atau MR (Magnox Reactor) Reaktor Magnox menggunakan bahan bakar dalam bentuk logam uranium atau paduannya yang dimasukkan ke dalam kelongsong paduan magnesium (Mg). Reaktor ini dikembangkan dan banyak dioperasikan oleh Inggris. Termasuk dalam reaktor jenis ini adalah reaktor penelitian pertama di dunia yang dibangun oleh tim pimpinan Enrico Fermi di Chicago, Amerika Serikat. Reaktor Magnox menggunakan CO2 sebagai pendingin, grafit sebagai moderator, dan uranium alam sebagai bahan bakar. Panas hasil fisi diambil dengan mengalirkan gas CO2 melalui elemen bakar menuju ke sistim pembangkit uap. Dari pertukaran panas ini akan dihasilkan uap air yang selanjutnya dapat dipakai untuk memutar turbin. 6

8 Hasil dari usaha dalam penyempurnaan unjuk kerja Reaktor Magnox adalah diperkenalkannya Reaktor Maju Berpendingin Gas atau AGR (Advanced Gas-cooled Reactor). Dalam reaktor ini juga menggunakan CO2 sebagai pendingin, grafit sebagai moderator, namun bahan bakarnya berupa uranium sedikit diperkaya yang dibungkus dengan kelongsong dari baja tahan karat. Pengayaan bahan bakar ini dimaksudkan untuk meningkatkan efisiensi thermal dan fraksi bakar bahan bakarnya. Reaktor Temperatur Tinggi atau HTR (High Temperature Reactor) Reaktor Temperatur Tinggi adalah jenis reaktor yang menggunakan pendingin gas helium (He) dan moderator grafit. Reaktor ini mampu menghasilkan panas hingga 750 ºC dengan efisiensi thermalnya sekitar 40 %. Panas yang dibangkitkan dalam teras reaktor dipindahkan menggunakan pendingin He (sistim primer) ke pembangkit uap. Dalam pembangkit uap ini panas akan diserap oleh sistim uap air umpan (sistim sekunder) dan uap yang dihasilkannya dialirkan ke turbin. Dalam reaktor ini juga ada sistim pemisah antara sistim pendingin primer yang radioaktif dan sistim pendingin sekunder yang tidak radioaktif. Elemen bahan bakar yang digunakan dalam Reaktor Temperatur Tinggi berbentuk bola, tiap elemen mengandung 192 gram carbon, 0,96 gram 235U dan 10,2 gram 232Th yang dapat dibiakkan menjadi bahan bakar baru 233U. Proses fisi dalam teras reaktor mampu memanaskan gas He hingga mencapai suhu 750 _C. Setelah terjadi pertukaran panas dengan sistim sekunder, suhu gas He akan turun menjadi 250 ºC. Gas He selanjutnya dipompakan lagi ke teras reaktor untuk mengambil panas fisi, demikian seterusnya. Dalam operasi normal, reaktor ini membutuhkan bahan bakar bola berdiameter 60 mm sebanyak ± butir yang diletakkan di dalam teras reaktor. Rata-rata setiap butir bahan bakar tinggal di dalam teras selama enam bulan pada operasi beban penuh. q 5 DAMPAK POSITIF DAN NEGATIF DARI PLTN Kelebihan dari PLTN adalah: a. Menghasilkan energi dalam jumlah besar Reaksi nuklir melepaskan energi satu juta kali lebih banyak dibandingkan dengan energi air dan angin. Oleh karena itu, sejumlah besar tenaga listrik dapat dihasilkan melalui energi nuklir. Saat ini, sekitar 10-15% dari listrik di dunia dihasilkan melalui energi nuklir. Dapat diperkirakan bahwa 1 kg uranium-235 menghasilkan energi sekitar 1500 ton batu bara. b. Tidak menimbulkan efek rumah kaca Keuntungan terbesar dari energi nuklir adalah bahwa gas rumah kaca seperti karbon dioksida, metana, ozon, dan chlorofuorocarbon (CFC) tidak dilepaskan selama reaksi nuklir. Gas rumah kaca adalah ancaman besar karena menyebabkan pemanasan globan dan perubahan iklim. c. Polusi udara Pembakaran bahan bakar minyak menyebabkan produksi karbondioksida. Ini adalah ancaman bagi lingkungan serta kehidupan semua makhluk. Produksi energi nuklir tidak memancarkan asap, maka tidak ada polusi udara. Namun, pembuangan limbah radioaktif merupakan masalah besar. d. Bahan Bakar 7

9 Reaktor nuklir menggunakan uranium sebagai bahan bakar. Reaksi fisi dari sejumlah kecil uranium menghasilkan sejumlah besar energi. Meski saat ini cadangan uranium yang ditemukan di bumi diperkirakan hanya dapat berlangsung untuk 100 tahun, menggunakan energi ini tidak tergantung pada bahan bakar minyak yang harus Tanpa adanya faktor human error, kecelakaan, atau bencana alam, maka reaktor nuklir akan bekerja dengan sangat baik untuk waktu yang lama. Selain itu juga membutuhkan sangat sedikit orang untuk mengoperasikannya, meski akhirnya berdampak pada pengangguran. Kelemahan PLTN adalah: a. Radiasi Kebocoran radiasi adalah salah satu kelemahan terbesar dari energi nuklir. Radiasi yang kontak dengna lingkungan mengakibatkan kerusakan parah pada ekosistem dan hilangnya nyawa. b. Bahan bakar Meskipun reaktor nuklir menghasilkan sejumlah besar energi, reaktor nuklir tergantung pada uranium, yang merupakan bahan bakar terbatas. Setelah habis, reaktor nuklir akan tetap menempati lahan tersebut dan mencemari lingkungan. c. Senjata nuklir Energi ini dapat digunakan untuk memproduksi dan proliferasi senjata nuklir. Senjata nuklir menggunakan fisi, fusi, atau kombinasi dari reaksi keduanya untuk tujuan merusak. Ini adalah ancaman besar bagi dunia karena dapat menyebabkan kerusakan besar-besaran. Efek buruknya dapat diamati, contohnya adalah bom atom Nagasaki dan hiroshima. d. Biaya Meskipun sejumlah besar energi dapat dihasilkan dari pembangkit listrik tenaga nuklir, hal itu memerlukan biaya yang sangat besar. sementara itu reaktor nuklir akan bekerja selama uranium masih tersedia. e. Limbah nuklir Limbah yang dihasilkan setelah reaksi fisi mengandung unsur tidak stabil. Hal ini sangat berbahaya bagi lingkungan serta kesehatan manusia, dan akan tetap begitu selama ratusan tahun. Perlu penanganan serius dan harus terisolasi dari lingkungan hidup. Hal ini sangat sulit untuk menyimpan elemen radioaktif untuk jangka waktu lama. f. Transportasi Transportasi bahan bakar uranium dan limbah radioaktif sangat sulit. Uranium memancarkan sejumlah radiasi, dan karenanya harus ditangani dengan hati-hati. Limbah nuklir yang dihasilkan lebih berbahaya dan membutuhkan perlindungan ekstra. Semua sarana transportasi harus mengikuti standar keamanan internasional. 6 PERAN PLTN TERHADAP ASPEK KEHIDUPAN Pada Nopember 2005, di seluruh dunia terdapat 441 buah pembangkit listrik tenaga nuklir yang beroperasi di 31 negara, menghasilkan tenaga listrik sebesar lebih dari 363 trilyun watt. Reaktor yang dalam tahap pembangunan sebanyak 30 buah dan 24 negara (termasuk 6 negara yang belum pernah 8

10 mengoperasikan reaktor nuklir) merencanakan untuk membangun 104 reaktor nuklir baru. Saat ini energi listrik yang dihasilkan PLTN menyumbang 16% dari seluruh kelistrikan dunia, yang secara kuantitatif jumlahnya lebih besar dari listrik yang dihasilkan di seluruh dunia pada tahun Negara-negara di Eropa merupakan negara yang paling tinggi persentase ketergantungannya pada energi nuklir. Perancis, Lithuania dan Slovakia merupakan tiga negara yang memiliki ketergantungan listrik pada energi nuklir yang tinggi, yaitu masing-masing sebesar 78%, 72% dan 55%. 9

11 10

12 Di masa mendatang, pemakaian energi nuklir akan berkembang lebih maju lagi, tidak hanya sekedar untuk pembangkit listrik saja, tetapi juga untuk keperluan energi selain kelistrikan, seperti produksi hidrogen, desalinasi air laut, dan pemanas ruangan. 7 PERAN PEMERINTAH DAN MASYARAKAT DALAM PENGEMBANGAN PLTN Pemerintah memiliki peran penting dalam pengembangan PLTN. Pemerintah menyusun strategi dalam pengembangan PLTN yang dituangkan dalam suatu buku putih energi. Langkah-langkah pengembangan PLTN dilakukan secara bertahap mulai tahun 2005 sampai dengan Target serta strategi disusun secara komprehensif. Berikut merupakan roadmap sektor industri energi nuklir. Jangka Pendek ( ) Bahan Bakar Nuklir dan Limbah Radioaktif Jangka Menengah ( ) Penelitian dan Pengembangan (litbang) Peran Pemerintah Jangka Panjang ( ) 11

13 Basis data untuk pengambilan kebijakan pengembangan bahan bakar nuklir dan pengelolaan Uranium jangka panjang. Eksplorasi uranium di daerah Kalimantan, serta pengembangan pabrik Uranium Oksida (Yellow Cake) skala pilot. Kajian teknologi dan ekonomi bahan bakar nuklir yang disesuaikan dengan jenis PLTN yang akan dikembangkan di Indonesia. Kajian teknologi pengolahan limbah nuklir dan proses penyimpanan bahan bakar nuklir bekas. Teknologi Reaktor dan Sistem PLTN Dukungan untuk persiapan pembangunan (Pre-project activites), penyiapan URD, BIS, PSAR, transfer teknologi dan partisipasi industri nasional. Pembangunan & Pengoperasian PLTN 4 x 1000 Mwe Public information & education, program penerimaan masyarakat terhadap PLTN. UU dan aturan pelaksanaannya, penyiapan dan penyelesaian sistem perizinan nasional, perizinan konstruksi PLTN ke 1 & 2. Penyiapan tapak dan draf dokumen pendukung URD, PSAR, BIS serta pendanaan dan pembentukan pemilik (owner) untuk PLTN 1 & 2. Litbang pembangunan dan pengoperasian PLTN, serta transfer teknologi dan partisipasi industri nasional (parnas). Updating data sebagian bagian dari pengembangan kapasitas pasokan Uraniun jangka panjang. Eksplorasi Uranium di daerah Sumatera dan daerah lainnya di Indonesia. Desain pabrik bahan dan elemen bahan nuklir Desain pabrik pengolahan limbah nuklir dan penyimpanan bahan bakar nuklir bekas. Penyiapan laboratorium Science & technology base bidang teknologi PLTN, khususnya nuklir Penerimaan masyarakat terhadap pembangunan PLTN. Sistem perizinan untuk pembangunan dan pengoperasian PLTN. Penyiapan tapak dan draf dokumen pendukung URD, PSAR, BIS untuk PLTN 3 & 4 Transfer teknologi dan partisipasi industri nasional. Data terbukti tentang pasokan Uranium jangka panjang untuk mengamankan operasi PLTN. Cadangan Uranium di seluruh wilayah Indonesia Produksi bahan dan elemen bakar nuklir. Proses pengolahan limbah nuklir dan penyimpanan bahan bakar nuklir bekas. Dukungan litbang untuk operasi dan perawatan serta desain komponen sistem PLTN. Penerimaan masyarakat terhadap pengoperasian PLTN. Perizinan pembangunan PLTN ke 3, 4 dan izin pengoperasian PLTN ke 2, 3, 4. Penyiapan studi tapak terpilih lainnya di Wilayah Jamali. Panas mencapai > 30 % 12

14 Litbang keselamatan untuk mendukung perizinan pembangunan dan pengoperasian PLTN, serta dikuasainya karakteristik keselamatan calon reaktor. Bahan Bakar Nuklir dan Limbah Radioaktif Bekerjasama dnegan institusi pengembangan teknolog, ekonomi dan pendanaan pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Teknologi Reaktor dan Sistem PLTN Bekerjasama dengan isntitusi pengembangan teknologi, ekonomi dan pendanaan dalam rangka persiapan pembangunan PLTN, rangka transfer teknologi dan partisipasi industri nasional. Pembangunan & Pengoperasian PLTN 4 x 1000 Mwe Bekerjasama dengan institusi penyiapan tapak dan draf dokumen pendukung URD, PSAR, BIS serta pendanaan dan pembentukan pemilik (owner) untuk PLTN 1 & 2. Bekerjasama dengan institusi pengembangan teknologi, ekonomi dan pendanaan dalam rangka persiapan Analisis keselamatan untuk dokumen izin konstruksi. Peran Industri Bekerjasama dengan institusi pengembangan teknologi produksi bahan bakar nuklir dan pengolahan limbah radioaktif dalam rangka transfer teknologi dan partisipasi industri nasional. Bekerjasama dengan institusi pengembangan teknologi PLTN, khususnya bagian kenukliran (nuclear island) dalam rangka transfer teknologi dan partisipasi industri nasional. Bekerjasama dengan institusi penyiapan tapak dan draf dokumen pendukung URD, PSAR, BIS untuk PLTN 3 & 4. Bekerjasama dengan institusi pengembangan teknologi PLTN, khususnya bagian kenukliran (nuclear island) Jaminan keselamatan operasi PLTN berikutnya. Bekerjasama dengan institusi pengembangan desain dan prototipe untuk komponen peralatan pabrikasi dan proses manufacturing serta pengembangan material/bahan peralatan yang semakin efisien dengan harga yang makin bersaing. Bekerjasama dengan institusi pengembangan desain dan prototipe untuk komponen PLTN dan proses manufacturing, serta pengembangan material/bahan peralatan yang semakin efisien dengan harga yang makin bersaing Bekerjasama dengan institusi pelaksanaan studi detil tapak terpilih lainnya di Wilayah Jamali. Bekerjasama dengan institusi pengembangan desain dan prototipe untuk komponen 13

15 pembangunan PLTN, rangka transfer teknologi dan partisipasi industri nasional. Bahan Bakar Nuklir dan Limbah Radioaktif Membantu BUMN dalam mengusahakan transfer teknologi tentang komponen dan sistem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Teknologi Reaktor dan Sistem PLTN Membantu BUMN/Swasta dalam mengushakan transfer teknologi dan pengembangan desain komponen dan sistem PLTN. Pembangunan & Pengoperasian PLTN 4x1000 Mwe Membantu BUMN/Swasta dalam program penyiapan pembangunan PLTN 1 & 2, termasuk penyiapan partisipasi industri nasional. Bahan Bakar Nuklir dan Limbah Radioaktif Mengusahakan transfer teknologi tentang komponen dan sistem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Teknologi Reaktor dan Sistem PLTN Mengusahakan transfer teknologi yang terkait dengan komponen dan sistem PLTN. dalam rangka transfer teknologi dan partisipasi industri nasional. Peluang Pasar Peran Pemerintah Membantu BUMN dalam mengembangankan desain komponen dan sistem pabrikasi, serta pembangunan pabrik bahan bakar nuklir dan pengolahan limbah radioaktif. Membantu BUMN/Swasta dalam pengembangan desain komponen dan sistem PLTN. Membantu BUMN/Swasta dalam proses pembangunan PLTN 1 & 2 dan penyiapan pembangunan PLTN 3 & 4. Peran Industri Mengembangkan desain komponen dan sistem pabrikasi, serta pembangunan pabrik bahan bakar nuklir dan pengolahan limbah radioaktif. Mengusahakan transfer teknologi serta pengembangan desain komponen dan sistem PLTN. PLTN dan proses manufacturing, serta pengembangan material/bahan peralatan yang semakin efisien dengan harga yang makin bersaing. Membantu BUMN dalam mengembangankan desain dan manufacturing komponen dan sistem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Membantu BUMN/Swasta dalam pengembangan desain komponen dan sistem PLTN. Membantu BUMN/Swasta dalam proses pembangunan PLTN 3 & 4. Mengembangkan desain dan manufacturing komponen dan sistem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Mengusahakan transfer teknologi serta pengembangan desain dan manufacturing komponen dan sistem PLTN. 14

16 Pembangunan & Pengoperasian PLTN 4x1000MWe Bekerjasama dengan institusi litbang pemerintah melaksanakan program penyiapan pembangunan PLTN 1 & 2, khususnya partisipasi industri nasional. Bahan Bakar Nuklir dan Limbah Radioaktif Bersama BUMN merencanakan dan mengusahakan sendiri pabrikasi bahan bakar nuklir dan pengolahan limbah adioaktif, karena sifatnya yang strategis secara politis dan keamanan nasional. Teknologi Reaktor dan Sistem PLTN Merencanakan dan melaksanakan program transfer teknologi, pengembangan/desain komponen dan sistem PLTN, serta mengusahakan partisipasi industri nasional Pembangunan & Pengoperasian PLTN 4x1000MWe Mendorong penggunaan energi nuklir dalam program diversifikasi energi nasional, serta menetapkan persentase kontribusi energi nuklir terhadap penyediaan energi nasional, dan kontribusi prosentasi parnas. Bahan Bakar Nuklir dan Limbah Radioaktif Merencanakan dan mengusahakan pabrikasi Berperan aktif pada proses pembangunan PLTN 1 & 2, khususnya partisipasi industri nasional dan penyiapan pembangunan PLTN 3 & 4. Kebijakan dan Inisiatif Peran Pemerintah Menetapkan sistem insentif dan disinsentif dalam transfer teknologi dan pengembangan istem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Menetapkan sistem insentif dan disinsentif dalam transfer teknologi dan pengembangan desain komponen dan sistem PLTN. Mendukung dan menetapkan sistem insentif dan disinsentif pada proses penyiapan dan pembangunan PLTN 1 & 2 dan penyiapan pembangunan PLTN 3 & 4. Peran Industri Mengusahakan transfer teknologi dan pengembangan sistem pabrikasi bahan bakar nuklir dan pengolahan limbah radioaktif. Berperan aktif pada proses pembangunan PLTN 3 & 4, khususnya partisipasi industri nasional. Menetapkan sistem insentif dan disinsentif dalam pengembangan/desain komponen dan sistem serta manufakturing pabrik bahan bakar nuklir dan pengolahan limbah radioaktif. Menetapkan sistem insentif dan disinsentif serta pengembangan desain komponen dan sistem PLTN. Mendukung dan menetapkan sistem insentif dan disinsentif pada proses pembangunan PLTN 3 & 4. Mengusahakan pengembangan/desain komponen dan sistem serta manufakturing pabrik bahan bakar nuklir dan 15

17 bahan bakar nuklir dan pengolahan limbah radioaktif. Teknologi Reaktor dan Sistem PLTN Merencanakan dan melaksanakan program transfer teknologi, pengembangan/desain komponen dan sistem PLTN, serta mengusahakan partisipasi industri nasional. Pembangunan & Pengoperasian PLTN 4x1000MWe Mengusahakan pembentukan pemilik (owner) PLTN dan proses pendanaannya. Melaksanakan program transfer teknologi dan pengembangan/desain komponen dan sistem PLTN. Mengusahakan proses penyiapan dan pembangunan PLTN 1 & 2 dan penyiapan pembangunan PLTN 3 & 4. pengolahan limbah radioaktif. Melaksanakan program pengembangan/ desain dan manufakturing komponen dan sistem PLTN. Mengusahakan proses pembangunan PLTN 3 & 4. 16

18 8 KENDALA DAN ALTERNATIF SOLUSI TERHADAP PENERAPAN PLTN Keadaan saat ini dan keadaan masa mendatang dalam penerapan PLTN ini dirumuskan dalam skema berikut. Kendala dalam penerapan PLTN dirinci sebagai berikut: 1. Potensi Energi nasional Potensi energi nasional yang melimpah ruah memang tidak diragukan, terutama energi terbarukan yang sangat bervariatif. Namun sejauh ini belum dimanfaatkan secara optimal. Besaran energi terbarukan di Indonesia dipetakan sebagai berikut: (a). Tenaga air diperkirakan 75,67 GW (b). Panas bumi: 28,00 GW; (c). Biomassa: 49,81 GW; (d). Energi laut (Hydro-kinetic Energi): 240,00GW dan (e). Matahari (6-8 jam/hari): 1200,00 GW. Disisi lain juga terdapat potensi energi fosil, seperti batubara (104 Miliar Ton) dan gas bumi (384,7 TSCF) yang cenderung produksinya saat ini diekspor sebagai sumber pendapatan negara. Disamping itu, Indonesia juga dikenal sebagai penghasil minyak kelapa sawit (Crude Palm Oil/CPO) terbesar di dunia, di mana CPO dapat dijadikan sebagai Biofuel. Meskipun besar potensi sumber daya energi baru dan terbarukan, akan tetapi yang terjadi sebaliknya, krisis energi listrik semakin menghantui Indonesia. Krisis energi listrik yang terjadi bukan disebabkan Indonesia tidak mempunyai sumber daya energi primer, namun lebih disebabkan karena belum melakukan tata kelola energi yang tepat, baik dan benar untuk memenuhi kebutuhan energi tersebut. 17

19 Sebagaimana diketahui, Indonesia telah memiliki Pusat Reaktor Atom pertama di Bandung, yang diresmikan oleh Presiden Soekarno pada Dengan fasilitas Reaktor Penelitian tersebut, maka berdasarkan UU No. 10 Tahun 1997 tentang Ketenaganukliran, Badan Tenaga Nuklir Nasional (BATAN) dapat menyelenggarakan penelitian dan pengembangan produksi bahan baku untuk pembuatan dan produksi bahan bakar nuklir. BATAN sudah mampu melakukan rekayasa isotop dan hasilnya telah diekspor ke berbagai negara untuk keperluan industri peralatan pencuci darah, pengembangan padi varietas unggul, dan lain-lain. Saat ini Indonesia belum memproduksi uranium dan belum mendapat ijin untuk melakukan pengayaan uranium sebagai bahan bakar nuklir. Kebijakan Energi Nasional 2010-Jurnal Kajian Lemhannas RI Edisi 16 November Ekonomi 2050 yang dikeluarkan Kementerian ESDM maupun Rencana Umum Pembangunan Tenaga Listrik sampai 2025 belum menyebutkan adanya rencana pembangunan PLTN. Dalam UU No. 10 Tahun 1997, BATAN ditugaskan untuk menguasai teknologi produksi uranium sebagai bahan baku untuk bahan bakar nuklir. Namun ironisnya apabila PLTN dibangun di Indonesia, maka uranium tersebut harus diimpor. Apabila tidak dipikirkan lebih jauh, maka hal ini menambah ketergantungan Indonesia dengan negara lain. 2. Keekonomian PLTN dan faktor lainnya Apabila PLTN menjadi pilihan di tengah ancaman krisis energi, maka pemerintah perlu memperhatikan studi keekonomian energi listrik yang dihasilkan oleh PLTN. Studi keekonomian PLTN yang pernah dilakukan oleh Keystone Center 2007 di Amerika menunjukan bahwa biaya konstruksi pembangunan PLTN bervariasi antara US$ /KW dengan harga listrik antara US$ 8-11 cents/kwh. Sementara, studi yang dilakukan oleh Standard & Poor s and Moody s, mendeskripsikan biaya konstruksi PLTN sebesar US$ /KW. Sedangkan berdasarkan beberapa kontrak PLTN di Amerika dengan menggunakan type Advanced Passive - AP 1000 diperlukan investasi sebesar US$ 5000/KW. Apabila biaya decommissioning dan biaya pengolahan limbah uranium dimasukan sebagai biaya investasi, maka harga listrik PLTN pada tahun 2008 adalah sebesar US$ 7000/KW dan harga energi listriknya sebesar U$ 8-11cents/KWH. Sedangkan harga pada 2020 diperkirakan akan meningkat dua kali lipatnya (Moody s Corporate Finance). Pembangunan PLTN di Indonesia harus memperhatikan kondisi geografs Indonesia yang beresiko tinggi, karena terletak di daerah gempa dan pada Ring of Fire. Disamping itu, instalasi PLTN juga menjadi titik terlemah dari serangan musuh dan kegiatan sabotase. Dalam konteks keamanan negara, instalasi PLTN perlu diinformasikan dengan rinci dan apa adanya tentang resiko apabila terjadi bencana nuklir (penguasaan teknologi, ketergantungan dengan negara lain, bahaya radiasi yang dapat meresahkan masyarakat, boikot negara lain, kondisi daerah bencana, SDM yang stabil secara emosional dan variabel lainnya). Pembangunan PLTN merupakan pilihan, karena Indonesia mempunyai sumber energi lain yang lebih murah dan tidak beresiko tinggi dengan memanfaatkan sumber energi yang tersedia secara optimal. Dengan demikian, PLTN bukan menjadi pilihan utama dalam memenuhi kebutuhan energi Indonesia. Pandangan serta pendapat yang menyarankan PLTN bukan dijadikan sebagai pilihan utama, bukan semata-mata menyiratkan penolakan pembangunan PLTN. Namun, dalam hal ini yang perlu menjadi penekanan bagaimana pemerintah dan masyarakat perlu mendapatkan informasi yang benar sebagai bahan pertimbangan secara komprehensif untuk pengambilan keputusan tentang pembangunan PLTN. 3. Perbandingan Biaya Pembangkitan Listrik 18

20 Untuk saat ini batubara memiliki efsiensi tertinggi jika dibandingkan dengan bahan bakar lainnya. Harga 1 Kwh itu sekitar Rp 500 atau Rp 600. Posisi kedua tingkat efsiensi adalah Pembangkit Listrik Tenaga Air (PLTA) dengan investasi awal lebih mahal. Pada kenyataannya PLN harus membeli listrik dari Pembangkit Listrik Mikrohidro (PLTMH) yaitu Rp787 per Kwh. Selanjutnya, nomor tiga adalah gas dengan harga sekitar Rp 900 per Kwh dan posisi keempat adalah BBM dengan kisaran harga sekitar Rp per Kwh. Untuk Pembangkit Listrik Tenaga Matahari (PLTM), jika digunakan siang dan malam harganya Rp hingga Rp per Kwh, sama seperti Pembangkit Listrik Tenaga Surya (PLTS). Bagaimana dengna PLTN? Data dari luar negeri memperlihatkan Korea, dengan pembangkit PLTN mempunyai harga jual listriknya hanya 4 sen per Kwh sekitar Rp 400. Hal ini berarti Indonesia mempunyai harga lebih mahal berdasarkan harga hasil subsidi, harga jual listrik Rp 700. Namun demikian perlu diperhatikan biaya awal dari pembangungan pembangkit tersebut. 4. PLTN dukung stabilitas politik Pada masa lalu penguasaan teknologi nuklir merupakan hal yang sensitif karena berkaitan erat dengan senjata nuklir, hal tersebut disebabkan oleh isu pengkayaan uranium dan olah ulang bahan bakar uranium tersebut. Sebagai contoh, dengan memiliki kemampuan pengkayaan uranium U235 di atas 20%, berarti negara tersebut kemungkinan mampu membuat senjata nuklir. Sedangkan kebutuhan uranium untuk PLTN hanya membutuhkan pengkayaan uranium sekitar 3 sampai dengan 4 %. Pada era an, BATAN melakukan penelitian terhadap teknologi pengkayaan dan olah ulang uranium, baik yang dilakukan di dalam maupun luar negeri, sehingga sumber daya manusia BATAN dapat menguasai IPTEK ketenaganukliran. Namun ketidakjelasan program pembangunan PLTN ke depan dan adanya inspeksi International Atomic Energy Agency (IAEA) secara berkala yang meminta rincian program nuklir di Indonesia, me-nyebabkan program dan kegiatan penelitian nuklir untuk PLTN menjadi surut. Indonesia memiliki potensi mineral radioaktif seperti uranium, yaitu di Kalan dan Kawat (Kalimantan) dengan total potensi sebesar ton U3O8. Disamping itu, juga terdapat di 20 daerah sumber daya spekulatif berindikasi memilki potensi yang tersebar di beberapa pulau, siap ditingkatkan menjadi sumber daya potensial. Sedangkan sumber daya potensial bahan baku nuklir berupa thorium, terdapat di daerah Bangka-Belitung dan sekitarnya, dengan total potensi di Bangka Selatan sebesar ton. Belum lagi terdapat potensi lainnya yang berada di dasar laut. Adanya laju pertumbuhan ekonomi dan pertumbuhan penduduk yang sebanding dengan meningkatnya kebutuhan energi, maka pemerintah Indonesia bermaksud menerapkan bauran energi secara optimum dari berbagai sumber energi, salah satunya yang memungkinkan dari PLTN. PLTN merupakan pembangkit paling cepat dan handal untuk memenuhi kebutuhan pasokan listrik berdaya besar dibandingkan pembangkit energi baru terbarukan lainnya, seperti tenaga surya, panas bumi atau angin. Paling tidak menurut Oktaufk; setidaknya pembangkit pertama sudah dimulai dengan pertimbangan teknis berkapasitas 2 GW dan ditambah sekitar 1 GW per tahun. 5. Kebijakan Kegiatan yang dilakukan oleh BATAN di daerah Bangka-Belitung merupakan studi kelayakan terhadap kemungkinan, bila suatu saat wilayah Bangka-Belitung dijadikan tapak PLTN. BATAN sendiri tidak memiliki wewenang membangun PLTN. Namun sebagai lembaga riset, BATAN mempunyai kewajiban melakukan penelitian pendahuluan untuk mempersiapkan bahan kebijakan pemerintah dalam memutuskan pembangunan PLTN. Dalam kegiatan studi tapak dan penelitian tersebut, BATAN menghadapi resistensi dari masyarakat di Bangka- 19

21 Belitung. Dilihat dari proses pengembangan energi nuklir, sebenarnya BATAN sudah menyiapkan peta jalan pengembangan PLTN seperti terlihat pada Gambar 3.Berdasarkan Gambar 3 di samping terlihat bahwa peta jalan pengembangan PLTN tidak serta merta dilakukan pada satu periode waktu saja, melainkan harus melalui beberapa fase hingga mencapai tahap yang betulbetul aman. Solusi atau upaya yang bisa dilakukan dalam penerapan PLTN adalah: 1. Studi Pengembangan Tapak dan Aspek Lingkungan Jawa merupakan pulau yang paling padat penduduknya (59% dari populasi nasional) dimana aktivitas industri terkonsentrasi di Pulau Jawa dan terdapat dua calon tapak alternatif untuk PLTN di Pulau Jawa, yaitu; Semenanjung Muria (Ujung Lemahabang, Ujung Grenggengan dan Ujung Watu) serta Banten (Kramatwatu-Bojonegara). Lokasi lain, Bangka merupakan tapak alternatif yang potensial dan tidak jauh dari sistem JAMALI (Jawa-Madura-Bali). Secara Geodinamic, pulau Bangka terletak pada Intra Plate, karena itu: Jauh dari gunung api aktif (terdekat adalah gunung Lumut Balai di Lampung, ±303 km dari Bangka), seismisitas (aktivitas seismik) rendah dan tidak ada potensi bahaya tsunami (kedalaman laut kurang dari 30m), populasinya rendah dengan total penduduk Bangka-Belitung sekitar Berdasarkan prediksi, untuk menyelesaikan studi tapak Bangka diperlukan waktu paling tidak 3 tahun. 2. Studi Teknologi Reaktor dan Material serta Teknologi Pengolahan Limbah Studi pemilihan tipe reaktor nuklir yang sesuai untuk kepentingan Indonesia, sesuai dengan persyaratan yang ditetapkan pada PP No. 43 Tahun 2006 pasal 4 ayat 2 bahwa PLTN hanya dibangun berdasarkan Ekonomi teknologi teruji (proven technology) adalah teknologi yang digunakan dalam suatu desain yang telah terbukti melalui pengalaman operasi reaktor paling singkat 3 (tiga) tahun secara selamat dengan faktor kapasitas rerata minimal 75% (tujuh puluh lima persen). 3. Studi investasi dan keekonomian PLTN Faktor yang mempengaruhi perbedaan biaya investasi PLTN antara lain adalah: harga komponen lokal yang meliputi biaya material dan pekerja bervariasi di setiap negara dan akan mempengaruhi tingkat kandungan lokal; lokasi di mana besarnya percepatan tanah akibat gempa /Peak Ground Acceleration (PGA) serta Insentif dan jaminan yang diberikan pemerintah terhadap proyek PLTN.Tinjauan keekonomian PLTN tidak hanya ditinjau dari harga listrik yang dibangkitkan oleh PLTN, namun juga dari aspek eksternalitas (internalisasi biaya eksternal), yaitu biaya yang seharusnya dibayar bila mempertimbangkan berbagai faktor lingkungan, misalnya aspek kesehatan penduduk di sekitar lokasi dan emisi karbon di mana PLTN harus sudah dilengkapi dengan sistem keselamatan yang sangat tinggi sehingga akhirnya tergolong sebagai pembangkit listrik teknologi yang bersih dan ramah lingkungan. 4. Studi Sosial Budaya Studi sosial budaya harus dilaksanakan berkenaan dengan kesiapan sumber daya manusia Indonesia dalam mengelola PLTN dan kesiapan masyarakat bangsa Indonesia menerima PLTN. Secara garis besar, masyarakat yang kurang senang akan kehadiran PLTN dapat digolongkan menjadi tiga kelompok, pertama adalah kelompok masyarakat awam, bagi mereka nuklir menimbulkan rasa takut, karena kurang paham terhadap sifat-sifat atau karakter nuklir itu. Termasuk dalam kelompok ini adalah beberapa budayawan, politikus, tokoh keagamaan dan beberapa anggota masyarakat umum lainnya. Ke dua adalah masyarakat yang 20

22 sedikit pahamnya tentang nuklir. Mereka menyangsikan kemampuan orang Indonesia dalam megoperasikan PLTN dengan aman, termasuk pengambilan limbah radioaktif yang timbul dari pengoperasian PLTN itu. Termasuk dalam kelompok ini adalah beberapa LSM dan kalangan akademis. Ke tiga adalah kelompok masyarakat yang cukup paham tentang nuklir, tetapi mereka menolak kehadiran PLTN. Karena mereka melihat PLTN dari kacamata berbeda, sehingga keluar argumen-argumen yang berbeda pula. Termasuk dalam kelompok ini adalah beberapa pejabat dan mantan pejabat pemerintah yang pernah berhubungan dengan masalah keenergian, kelistrikan dan penukliran. 5. Studi esensi pembangunan PLTN Kebutuhan akan listrik yang semakin meningkat sebagai konsekuensi dari pembangunan di Indonesia mengakibatkan pemerintah bekerja sama dengan banyak pihak, baik dari sesama lembaga pemerintah maupun pihak swasta, berusaha mencari solusi energi alternatif. Ditengah hiruk-pikuknya wacana akan kebutuhan atas ketenaga listrikan, PLTN dipandang menjadi salah satu solusi yang diperkirakan mampu menjawab permasalahan. Ditambah kebutuhan akan kesadaran lingkungan yang semakin menguat, sehingga beberapa kali diadakan konfrensi perubahan iklim, sehingga inovasi teknologi yang dipandang memiliki dampak lingkungan tingkat minimum dipertimbangkan menjadi prioritas. Tentunya sebuah program pembangunan apapun bentuknya tidak sekedar berlandaskan kecanggihan Teknologi semata. Perlu diperhatikan dan bahkan dibutuhkan kajian secara menyeluruh akibat-akibatnya bagi masyarakat secara umum ataupun khusus (masyarakat sekitar tapak pembangunan). Karena mereka inilah yang paling merasakan secara langsung proses pembangunan, dimulai dari studi tapak, proses pembangunan, operasional sampai pembongkaran bangunan ketika dirasa perlu dan renovasi terhadap alam sekitar, sehingga memungkinkan untuk digunakan kembali. 6. Membangun PLTN skala laboratorium/pilot Untuk mempersiapkan sumber daya manusia dalam menguasai teknologi PLTN, perlu dibangun PLTN skala laboratorium atau skala pilot, sehingga pada saatnya negeri ini membangun PLTN, maka tidak akan memiliki ketergantungan kepada pihak lain. Bila memang PLTN akan dibangung di Indonesia, maka harus memperhatikan pengembangan teknologi yang bersifat mandiri, tidak bergantung Negara Lain, aman dan ramah lingkungan serta mengadopsi teknologi terkini. Kajian aspek sosial dan budaya masyarakat serta lingkungan di calon lokasi yang bersifat komprehensif untuk memberikan pemahaman yang proporsional terhadap keberadaan PLTN. juga bahan baku PLTN harus dipastikan tersedia dan diolah di Indonesia tidak ke negara lain agar tidak menimbulkan ketergantungan. REFERENSI Buku Putih Energi: Penelitian, Pengembangan dan Penerapan Ilmu Pengetahuan dan Teknologi Bidang Sumber Energi Baru dan Terbarukan untuk Mendukung Keamanan Ketersediaan Energi Tahun Kementerian Negara Riset dan Teknologi Republik Indonesa. Jakarta:2006 Pengenalan Pembangkit Listrik Tenaga Nuklir (PLTN). Pusat Diseminasi Iptek Nuklir. Jakarta:

Nomor 36, Tahun VII, April 2001

Nomor 36, Tahun VII, April 2001 Nomor 36, Tahun VII, April 2001 Mengenal Proses Kerja dan Jenis-Jenis PLTN Di dalam inti atom tersimpan tenaga inti (nuklir) yang luar biasa besarnya. Tenaga nuklir itu hanya dapat dikeluarkan melalui

Lebih terperinci

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian

Lebih terperinci

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR PENGENALAN (PLTN) PEMBANGKIT L STR KTENAGANUKLTR I _ Sampai saat ini nuklir khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang seperti industri, kesehatan, pertanian, peternakan,

Lebih terperinci

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul

Lebih terperinci

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) RINGKASAN Reaktor Grafit Berpendingin Gas (Gas Cooled Reactor, GCR) adalah reaktor berbahan bakar uranium alam dengan moderator grafit dan berpendingin

Lebih terperinci

2. Prinsip kerja dan Komponen Utama PLTN

2. Prinsip kerja dan Komponen Utama PLTN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DAN JENIS-JENIS REAKTOR PLTN (Yopiter L.A.Titi, NRP:1114201016, PascaSarjana Fisika FMIPA Institut Teknologi Sepuluh November (ITS Surabaya) 1. Pendahuluan Nuklir

Lebih terperinci

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA PENDAHULUAN Disamping sebagai senjata nuklir, manusia juga memanfaatkan energi nuklir untuk kesejahteraan umat manusia. Salah satu pemanfaatan energi nuklir secara

Lebih terperinci

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar - Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. - PLTN dikelompokkan

Lebih terperinci

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI Dosen : Hasbullah, S.Pd., MT. Di susun oleh : Umar Wijaksono 1101563 PROGRAM STUDI S1 TEKNIK ELEKTRO JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI

Lebih terperinci

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR RINGKASAN Beberapa tipe Pembangkit Listrik Tenaga Nuklir (PLTN) adalah Reaktor Air Tekan (Pressurized Water Reactor, PWR), Reaktor Air Tekan Rusia (VVER),

Lebih terperinci

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Semakin maraknya krisis energi yang disebabkan oleh menipisnya cadangan minyak bumi, gas dan batubara di Indonesia,membuat kita harus segera memikirkan

Lebih terperinci

Definisi PLTN. Komponen PLTN

Definisi PLTN. Komponen PLTN Definisi PLTN PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik

Lebih terperinci

PENGENALAN DAUR BAHAN BAKAR NUKLIR

PENGENALAN DAUR BAHAN BAKAR NUKLIR PENGENALAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Daur bahan bakar nuklir merupakan rangkaian proses yang terdiri dari penambangan bijih uranium, pemurnian, konversi, pengayaan uranium dan konversi ulang menjadi

Lebih terperinci

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi. 1 I. PENDAHULUAN A. Latar Belakang Masalah energi merupakan salah satu hal yang sedang hangat dibicarakan saat ini. Di Indonesia, ketergantungan kepada energi fosil masih cukup tinggi hampir 50 persen

Lebih terperinci

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR AIR BERAT KANADA (CANDU) REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. AFRI YAHDI : 2013110067 2. M.RAZIF : 2013110071 3. SYAFA RIDHO ILHAM : 2013110073 4. IKMARIO : 2013110079 5. CAKSONO WIDOYONO : 2014110003

Lebih terperinci

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN TUGAS Mengenai : PLTN Di Susun Oleh: ADRIAN Kelas : 3 IPA MADRASAH ALIYAH ALKHAIRAT GALANG TAHUN AJARAN 2011-2012 BAB I PENDAHULUAN 1.1. Latar Belakang Masyarakat pertama kali mengenal tenaga nuklir dalam

Lebih terperinci

I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012),

I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012), 1 I. PENDAHULUAN A. Latar Belakang Seiring dengan perkembangan zaman dan semakin meningkatnya jumlah penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012), maka peningkatan kebutuhan

Lebih terperinci

PENTINGNYA REAKTOR PEMBIAK CEPAT

PENTINGNYA REAKTOR PEMBIAK CEPAT PENTINGNYA REAKTOR PEMBIAK CEPAT RINGKASAN Reaktor pembiak cepat (Fast Breeder Reactor/FBR) adalah reaktor yang memiliki kemampuan untuk melakukan "pembiakan", yaitu suatu proses di mana selama reaktor

Lebih terperinci

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan Energi ramah lingkungan atau energi hijau (Inggris: green energy) adalah suatu istilah yang menjelaskan apa yang dianggap sebagai sumber energi

Lebih terperinci

NUCLEAR CHEMISTRY & RADIOCHEMISTRY

NUCLEAR CHEMISTRY & RADIOCHEMISTRY Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret, Surakarta Lecture Presentation NUCLEAR CHEMISTRY & RADIOCHEMISTRY By : NANIK DWI NURHAYATI, S,Si, M.Si Program Studi Pendidikan Kimia Jurusan

Lebih terperinci

REAKTOR PENDINGIN GAS MAJU

REAKTOR PENDINGIN GAS MAJU REAKTOR PENDINGIN GAS MAJU RINGKASAN Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) adalah reaktor berbahan bakar uranium dengan pengkayaan rendah, moderator grafit dan pendingin gas yang

Lebih terperinci

REAKTOR PEMBIAK CEPAT

REAKTOR PEMBIAK CEPAT REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio

Lebih terperinci

GUNTINGAN BERITA Nomor : HHK 2.1/HM 01/05/2014

GUNTINGAN BERITA Nomor : HHK 2.1/HM 01/05/2014 Badan Tenaga Nuklir Nasional J A K A R T A Hari, tanggal Minggu, 10 Mei 2015 Yth.: Bp. Kepala BadanTenaga Nuklir Nasional GUNTINGAN BERITA Nomor : HHK 2.1/HM 01/05/2014 Sumber Berita Selasar.com Hal. -

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) RINGKASAN Reaktor Air Didih adalah salah satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Reaktor tipe ini menggunakan

Lebih terperinci

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong I. PENDAHULUAN 1.1 Latar Belakang Kebutuhan listrik di Indonesia semakin meningkat, sedangkan bahan bakar fosil akan segera habis. Oleh karena itu dibutuhkan pembangkit listrik yang dapat digunakan sebagai

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada masa mendatang penggunaan bahan bakar berbasis minyak bumi harus dikurangi karena semakin menipisnya cadangan minyak bumi dan dampak

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi energi listrik dunia dari tahun ke tahun terus meningkat. Dalam hal ini industri memegang peranan penting dalam kenaikan konsumsi listrik dunia. Di Indonesia,

Lebih terperinci

KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR

KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Penggunaan uranium sebagai bahan bakar pada Pembangkit Listrik Tenaga Nuklir (PLTN) selain menghasilkan tenaga listrik dapat juga menghasilkan bahan

Lebih terperinci

ENERGI TERBARUKAN MASA DEPAN ENERGI KITA

ENERGI TERBARUKAN MASA DEPAN ENERGI KITA ENERGI TERBARUKAN MASA DEPAN ENERGI KITA Dr. Muhammad Samsuri Kepala Bidag Transfer Iptek Masyarkat Kementerian Riset dan Teknologi Metro, 29 Agustus 2013 PERMASALAHAN ENERGI NASIONAL Produksi minyak menurun,

Lebih terperinci

BAB 1 PENDAHULUAN. 1 Universitas Indonesia

BAB 1 PENDAHULUAN. 1 Universitas Indonesia BAB 1 PENDAHULUAN 1.1 Latar Belakang Ketahanan nasional mutlak dimiliki setiap negara yang berdaulat. Salah satu faktor penentu pencapaian ketahanan nasional adalah dengan meningkatkan pertumbuhan ekonomi

Lebih terperinci

BAB I PENDAHULUAN. sehari-hari. Permasalahannya adalah, dengan tingkat konsumsi. masyarakat yang tinggi, bahan bakar tersebut lambat laun akan

BAB I PENDAHULUAN. sehari-hari. Permasalahannya adalah, dengan tingkat konsumsi. masyarakat yang tinggi, bahan bakar tersebut lambat laun akan BAB I PENDAHULUAN 1.1 Latar Belakang Bahan bakar minyak (BBM) dan gas merupakan bahan bakar yang tidak dapat terlepaskan dari kehidupan masyarakat sehari-hari. Permasalahannya adalah, dengan tingkat konsumsi

Lebih terperinci

KATA PENGANTAR. Palembang, Juni Penyusun

KATA PENGANTAR. Palembang, Juni Penyusun KATA PENGANTAR Alhamdulillahi Robbil Alamin, saya panjatkan puji syukur kepada allah SWT, karena atas izin dan rahmat-nya sehingga makalah Termodinamika nuklir ini dapat saya selesaikan. Dalam penyusunan

Lebih terperinci

BAB IV PEMBAHASAN. Tabel 2. Matriks SWOT Kearns

BAB IV PEMBAHASAN. Tabel 2. Matriks SWOT Kearns BAB IV PEMBAHASAN 4.1. GAMBARAN OBJEK PENELITIAN Penelitian ini menggunakan studi kasus dari beberapa negara pengguna nuklir. Dimana negara-negara tersebut selain menggunakan energi nuklir sebagai pembangkit

Lebih terperinci

Untuk mengatasi masalah pasokan listrik, ada beberapa alternatif yang dapat dilakukan, yaitu :

Untuk mengatasi masalah pasokan listrik, ada beberapa alternatif yang dapat dilakukan, yaitu : Untuk mengatasi masalah pasokan listrik, ada beberapa alternatif yang dapat dilakukan, yaitu : Pertama, mengatasi masalah listrik dengan menggunakan bahan bakar minyak. Minyak bumi merupakan bahan bakar

Lebih terperinci

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam BAB 1 PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan salah satu faktor yang sangat penting dalam menunjang pembangunan nasional. Penyediaan energi listrik secara komersial yang telah dimanfaatkan

Lebih terperinci

Disampaikan pada Seminar Nasional Optimalisasi Pengembangan Energi Baru dan Terbarukan Menuju Ketahanan Energi yang Berkelanjutan

Disampaikan pada Seminar Nasional Optimalisasi Pengembangan Energi Baru dan Terbarukan Menuju Ketahanan Energi yang Berkelanjutan KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA Disampaikan pada Seminar Nasional Optimalisasi Pengembangan Energi Baru dan Terbarukan Menuju Ketahanan Energi yang Berkelanjutan Direktorat

Lebih terperinci

KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH

KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI

ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI Oleh NAUSA NUGRAHA SP. 04 02 02 0471 DEPARTEMEN TEKNIK MESIN PROGRAM STUDI TEKNIK MESIN

Lebih terperinci

Makalah Fisika Modern. Pembangkit Listrik Tenaga Nuklir (PLTN) Dosen pengampu : Dr.Parlindungan Sinaga, M.Si

Makalah Fisika Modern. Pembangkit Listrik Tenaga Nuklir (PLTN) Dosen pengampu : Dr.Parlindungan Sinaga, M.Si Makalah Fisika Modern Pembangkit Listrik Tenaga Nuklir (PLTN) Disusun untuk memenuhi salah satu tugas mata kuliah Fisika Modern Dosen pengampu : Dr.Parlindungan Sinaga, M.Si Disusun Oleh : Iif Latifah

Lebih terperinci

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Kebutuhan akan energi semakin bertambah dari tahun ke tahun, sementara sumber yang ada masih berbanding terbalik dengan kebutuhan. Walaupun energi radiasi matahari (energi

Lebih terperinci

BAB I PENDAHULUAN. Cadangan potensial/ Potential Reserve. Cadangan Terbukti/ Proven Reserve. Tahun/ Year. Total

BAB I PENDAHULUAN. Cadangan potensial/ Potential Reserve. Cadangan Terbukti/ Proven Reserve. Tahun/ Year. Total BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan komponen yang selalu dibutuhkan manusia dalam memenuhi kebutuhan sehari-harinya karena hampir semua kegiatan manusia bergantung pada ketersediaan energi.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 SUMBER DATA a. KANADA (Bruce Doern, 2009) Kanada merupakan salah satu negara pengguna energi nuklir sebagai salah satu pasokan listrik di negara ini selain energi fosil. Kanada

Lebih terperinci

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA Rohana (1), Rimbawati (2) Jurusan Teknik Elektro Universitas Muhammadiyah sumatera Utara JL. Kapt Mukhtar Basri, BA No.3 Medan, 20238 E-mail

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang

BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang BAB I PENDAHULUAN I.1. Latar Belakang Perubahan iklim global akibat efek rumah kaca merupakan permasalahan lingkungan serius yang saat ini sedang dihadapi oleh manusia. Dampak yang ditimbulkan oleh pembakaran

Lebih terperinci

Efisiensi PLTU batubara

Efisiensi PLTU batubara Efisiensi PLTU batubara Ariesma Julianto 105100200111051 Vagga Satria Rizky 105100207111003 Sumber energi di Indonesia ditandai dengan keterbatasan cadangan minyak bumi, cadangan gas alam yang mencukupi

Lebih terperinci

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik

Lebih terperinci

BAB 1 PENDAHULUAN. Indonesia pun kena dampaknya. Cadangan bahan tambang yang ada di Indonesia

BAB 1 PENDAHULUAN. Indonesia pun kena dampaknya. Cadangan bahan tambang yang ada di Indonesia BAB 1 PENDAHULUAN 1.1 Latar Belakang Dewasa ini dunia sedang dilanda krisis Energi terutama energi fosil seperti minyak, batubara dan lainnya yang sudah semakin habis tidak terkecuali Indonesia pun kena

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Nuklir (PLTN) didesain berdasarkan 3 (tiga) prinsip yaitu mampu dipadamkan dengan aman (safe shutdown), didinginkan serta mengungkung produk

Lebih terperinci

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi BAB III KARAKTERISTIK DESAIN HTTR BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi 3.1 Konfigurasi Teras Reaktor Spesifikasi utama dari HTTR diberikan pada tabel 3.1 di bawah ini. Reaktor terdiri

Lebih terperinci

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam.

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam. BAB I PENDAHULUAN. Latar Belakang Konsumsi energi dunia tumbuh dua puluh kali lipat sejak tahun 850 sementara populasi dunia tumbuh hanya empat kali lipat. Pada pertumbuhan awal terutama dipenuhi dengan

Lebih terperinci

SAMBUTAN MENTERI PERINDUSTRIAN RI PADA ACARA SEMINAR NASIONAL: THORIUM SEBAGAI SUMBER DAYA REVOLUSI INDUSTRI JAKARTA, 24 MEI 2016

SAMBUTAN MENTERI PERINDUSTRIAN RI PADA ACARA SEMINAR NASIONAL: THORIUM SEBAGAI SUMBER DAYA REVOLUSI INDUSTRI JAKARTA, 24 MEI 2016 SAMBUTAN MENTERI PERINDUSTRIAN RI PADA ACARA SEMINAR NASIONAL: THORIUM SEBAGAI SUMBER DAYA REVOLUSI INDUSTRI JAKARTA, 24 MEI 2016 Kepada Yang Terhormat: 1. Menteri Koordinator Bidang Perekonomian; 2. Menteri

Lebih terperinci

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02 ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN Disusun Oleh: GRACE ELIZABETH 30408397 3 ID 02 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA 2011 ENERGI TERBARUKAN Konsep energi

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Dalam kehidupan sehari-hari, kita sangat membutuhkan energi listrik, seperti saat kita berangkat dari rumah untuk bekerja, kuliah, rekreasi, acara keluarga ataupun

Lebih terperinci

Prarancangan Pabrik Karbon Aktif Grade Industri Dari Tempurung Kelapa dengan Kapasitas 4000 ton/tahun BAB I PENGANTAR

Prarancangan Pabrik Karbon Aktif Grade Industri Dari Tempurung Kelapa dengan Kapasitas 4000 ton/tahun BAB I PENGANTAR BAB I PENGANTAR A. Latar Belakang Perkembangan industri di Indonesia mengalami peningkatan secara kualitatif maupun kuantitatif, khususnya industri kimia. Hal ini menyebabkan kebutuhan bahan baku dan bahan

Lebih terperinci

Krisis Pangan, Energi, dan Pemanasan Global

Krisis Pangan, Energi, dan Pemanasan Global Krisis Pangan, Energi, dan Pemanasan Global Benyamin Lakitan Kementerian Negara Riset dan Teknologi Rakorda MUI Lampung & Jawa Jakarta, 22 Juli 2008 Isu Global [dan Nasional] Krisis Pangan Krisis Energi

Lebih terperinci

PEMANFAATAN ENERGI NUKLIR

PEMANFAATAN ENERGI NUKLIR MAKALAH SUMBER DAYA ENERGI PEMANFAATAN ENERGI NUKLIR OLEH : Noor Padya Rahmi 9228.0023 Muhammad Rusman 9228.0025 Muhammad Syahrul 9228.0026 JURUSAN TEKNIK KIMIA UNIVERSITAS MUSLIM INDONESIA MAKASSAR 2011

Lebih terperinci

BAB 6 KESIMPULAN DAN SARAN

BAB 6 KESIMPULAN DAN SARAN BAB 6 KESIMPULAN DAN SARAN Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan salah satu solusi terbaik untuk mengatasi krisis energi yang dihadapi Indonesia. Energi nuklir yang seringkali dicap jelek sebagai

Lebih terperinci

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama.

I. PENDAHULUAN. Pengembangan energi ini di beberapa negara sudah dilakukan sejak lama. I. PENDAHULUAN A. Latar Belakang Seiring perkembangan zaman, ketergantungan manusia terhadap energi sangat tinggi. Sementara itu, ketersediaan sumber energi tak terbaharui (bahan bakar fosil) semakin menipis

Lebih terperinci

235 U + n 148 La + 85 Br + 3n

235 U + n 148 La + 85 Br + 3n 1 A. Definisi dan Sejarah Reaktor Nuklir Reaktor nuklir adalah alat yang didesain untuk mempertahankan reaksi berantai, di mana aliran neutron yang stabil dan terkontrol dihasilkan dari reaksi fisi suatu

Lebih terperinci

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun BAB I PENDAHULUAN 1.1 Latar Belakang Listrik merupakan energi paling cocok dan nyaman bagi rumah tangga dan berbagai bidang industri karena selain energi llistrik itu tidak menimmbulkan bising energi listrik

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan ekonomi yang cepat di dunia. Saat ini Indonesia merupakan negara dengan ekonomi terbesar ke 16 di dunia dan dalam

Lebih terperinci

BAB I PENDAHULUAN I. 1. Latar Belakang

BAB I PENDAHULUAN I. 1. Latar Belakang BAB I PENDAHULUAN I. 1. Latar Belakang Pengembangan pemanfaatan energi nuklir dalam berbagai sektor saat ini kian pesat. Hal ini dikarenakan energi nuklir dapat menghasilkan daya dalam jumlah besar secara

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Ada beberapa kategori power/daya yang digunakan, antara lain backbone power, green power dan mobile power. Backbone power adalah sumber energi primer yang selalu tersedia

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Perubahan lingkungan udara pada umumnya disebabkan oleh pencemaran,

BAB I PENDAHULUAN Latar Belakang. Perubahan lingkungan udara pada umumnya disebabkan oleh pencemaran, 1 BAB I PENDAHULUAN 1.1. Latar Belakang Perubahan lingkungan udara pada umumnya disebabkan oleh pencemaran, yaitu masuknya zat pencemar yang berbentuk gas, partikel kecil atau aerosol ke dalam udara (Soedomo,

Lebih terperinci

BAB I PENDAHULUAN. faktor utama penyebab meningkatnya kebutuhan energi dunia. Berbagai jenis

BAB I PENDAHULUAN. faktor utama penyebab meningkatnya kebutuhan energi dunia. Berbagai jenis BAB I PENDAHULUAN I.1 Latar Belakang Perningkatan jumlah penduduk dan kemajuan teknologi merupakan faktor utama penyebab meningkatnya kebutuhan energi dunia. Berbagai jenis industri didirikan guna memenuhi

Lebih terperinci

Disusun Oleh: Ir. Erlinda Muslim, MEE Nip : Departemen Teknik Industri-Fakultas Teknik-Universitas Indonesia 2008

Disusun Oleh: Ir. Erlinda Muslim, MEE Nip : Departemen Teknik Industri-Fakultas Teknik-Universitas Indonesia 2008 Disusun Oleh: Ir. Erlinda Muslim, MEE Nip : 131 803 987 Departemen Teknik Industri-Fakultas Teknik-Universitas Indonesia 2008 1 KEBIJAKSANAAN ENERGI 1. Menjamin penyediaan di dalam negeri secara terus-menerus

Lebih terperinci

BAB I PENDAHULUAN. tahun 2008 subsidi ini meningkat menjadi 61 trilyun 1. Masalah ini sebenarnya bisa

BAB I PENDAHULUAN. tahun 2008 subsidi ini meningkat menjadi 61 trilyun 1. Masalah ini sebenarnya bisa BAB I PENDAHULUAN A.Latar Belakang Pemanfaatan listrik telah demikian luas. Mulai dari aktifitas rumah tangga hingga aktifitas perindustrian, semuanya membutuhkan listrik. Kebutuhan ini, dalam kenyataannya,

Lebih terperinci

*39525 PERATURAN PEMERINTAH REPUBLIK INDONESIA (PP) NOMOR 27 TAHUN 2002 (27/2002) TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA,

*39525 PERATURAN PEMERINTAH REPUBLIK INDONESIA (PP) NOMOR 27 TAHUN 2002 (27/2002) TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA, Copyright (C) 2000 BPHN PP 27/2002, PENGELOLAAN LIMBAH RADIOAKTIF *39525 PERATURAN PEMERINTAH REPUBLIK INDONESIA (PP) NOMOR 27 TAHUN 2002 (27/2002) TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK

Lebih terperinci

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Seiring dengan berkembangnya teknologi dan peradabaan manusia, kebutuhan terhadap energi mengalami peningkatan yang cukup tinggi. Untuk mencukupi kebutuhan-kebutuhan

Lebih terperinci

PERCEPATAN PENGEMBANGAN EBTKE DALAM RANGKA MENOPANG KEDAULATAN ENERGI NASIONAL

PERCEPATAN PENGEMBANGAN EBTKE DALAM RANGKA MENOPANG KEDAULATAN ENERGI NASIONAL PERCEPATAN PENGEMBANGAN EBTKE DALAM RANGKA MENOPANG KEDAULATAN ENERGI NASIONAL Diskusi Panel National Integration of the Centre of Excellence Jakarta, 8 Oktober 2015 1 Daftar Isi 1. Membangun Kedaulatan

Lebih terperinci

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap

BAB I PENDAHULUAN. permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap BAB I PENDAHULUAN 1.1. Latar Belakang Beberapa tahun terakhir ini energi merupakan persoalan yang krusial didunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya

Lebih terperinci

BAB I PENDAHULUAN. l.1 LATAR BELAKANG

BAB I PENDAHULUAN. l.1 LATAR BELAKANG 1 BAB I PENDAHULUAN l.1 LATAR BELAKANG Konsumsi per kapita sumber energi non terbarukan di bumi yang meliputi gas, minyak bumi, batu bara, merupakan salah satu kekayaan ekonomi yang dimiliki suatu Negara

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 1 PENDAHULUAN 1.1 Latar Belakang Perairan pesisir merupakan daerah peralihan antara daratan dan laut. Dalam suatu wilayah pesisir terdapat bermacam ekosistem dan sumber daya pesisir. Ekosistem pesisir

Lebih terperinci

OLEH :: INDRA PERMATA KUSUMA

OLEH :: INDRA PERMATA KUSUMA STUDI PEMANFAATAN BIOMASSA LIMBAH KELAPA SAWIT SEBAGAI BAHAN BAKAR PEMBANGKIT LISTRIK TENAGA UAP DI KALIMANTAN SELATAN (STUDI KASUS KAB TANAH LAUT) OLEH :: INDRA PERMATA KUSUMA 2206 100 036 Dosen Dosen

Lebih terperinci

I. BAB I PENDAHULUAN

I. BAB I PENDAHULUAN I. BAB I PENDAHULUAN I.1. Latar Belakang Energi merupakan sektor yang sangat penting dalam menunjang berbagai aspek di bidang ekonomi dan sosial. Seringkali energi digunakan sebagai tolok ukur kesejahteraan

Lebih terperinci

KEBIJAKAN PENYEDIAAN TENAGA LISTRIK DAN PEMANFAATAN ENERGI

KEBIJAKAN PENYEDIAAN TENAGA LISTRIK DAN PEMANFAATAN ENERGI KEBIJAKAN PENYEDIAAN TENAGA LISTRIK DAN PEMANFAATAN ENERGI J. PURWONO Direktorat Jenderal Listrik dan Pemanfaatan Energi Departemen Energi dan Sumber Daya Mineral Disampaikan pada: Pertemuan Nasional Forum

Lebih terperinci

LEMBARAN NEGARA REPUBLIK INDONESIA

LEMBARAN NEGARA REPUBLIK INDONESIA Teks tidak dalam format asli. Kembali: tekan backspace LEMBARAN NEGARA REPUBLIK INDONESIA No. 52, 2002 (Penjelasan dalam Tambahan Lembaran Negara Republik Indonesia 4202) PERATURAN PEMERINTAH REPUBLIK

Lebih terperinci

BAB I PENDAHULUAN. yang ada dibumi ini, hanya ada beberapa energi saja yang dapat digunakan. seperti energi surya dan energi angin.

BAB I PENDAHULUAN. yang ada dibumi ini, hanya ada beberapa energi saja yang dapat digunakan. seperti energi surya dan energi angin. BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan energi pada saat ini dan pada masa kedepannya sangatlah besar. Apabila energi yang digunakan ini selalu berasal dari penggunaan bahan bakar fosil tentunya

Lebih terperinci

LEMBARAN NEGARA REPUBLIK INDONESIA

LEMBARAN NEGARA REPUBLIK INDONESIA Teks tidak dalam format asli. Kembali: tekan backspace LEMBARAN NEGARA REPUBLIK INDONESIA No. 106, 2006 (Penjelasan dalam Tambahan Lembaran Negara Republik Indonesia Nomor 4668) PERATURAN PEMERINTAH REPUBLIK

Lebih terperinci

DEWAN ENERGI NASIONAL OUTLOOK ENERGI INDONESIA 2014

DEWAN ENERGI NASIONAL OUTLOOK ENERGI INDONESIA 2014 OUTLOOK ENERGI INDONESIA 2014 23 DESEMBER 2014 METODOLOGI 1 ASUMSI DASAR Periode proyeksi 2013 2050 dimana tahun 2013 digunakan sebagai tahun dasar. Target pertumbuhan ekonomi Indonesia rata-rata sebesar

Lebih terperinci

V. PENGEMBANGAN ENERGI INDONESIA DAN PELUANG

V. PENGEMBANGAN ENERGI INDONESIA DAN PELUANG V. PENGEMBANGAN ENERGI INDONESIA 2015-2019 DAN PELUANG MEMANFAATKAN FORUM G20 Siwi Nugraheni Abstrak Sektor energi Indonesia mengahadapi beberapa tantangan utama, yaitu kebutuhan yang lebih besar daripada

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Berkurangnya cadangan sumber energi dan kelangkaan bahan bakar minyak yang terjadi di Indonesia dewasa ini membutuhkan solusi yang tepat, terbukti dengan dikeluarkannya

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di dunia, yang menghasilkan energi listrik dalam jumlah yang besar. PLTN

Lebih terperinci

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RINGKASAN Apabila ada sistem perpipaan reaktor pecah, sehingga pendingin reaktor mengalir keluar, maka kondisi ini disebut kecelakaan

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA,

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA, PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk melaksanakan ketentuan Pasal 27 ayat (2) Undang-undang

Lebih terperinci

BAB IV KESIMPULAN DAN SARAN

BAB IV KESIMPULAN DAN SARAN BAB IV KESIMPULAN DAN SARAN 4.1. Kesimpulan Berdasarkan hasil analisis deskriptif yang telah diuraikan dalam pembahasan sebelumnya, maka dapat ditarik beberapa kesimpulan penelitian. Pertama, hadirnya

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA 1 PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 43 TAHUN 2006 TENTANG PERIZINAN REAKTOR NUKLIR DENGAN RAHMAT TUHAN YANG MAHA ESA PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk melaksanakan ketentuan

Lebih terperinci

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan bakar utama berbasis energi fosil menjadi semakin mahal dan langka. Mengacu pada kebijaksanaan

Lebih terperinci

Bab I Pendahuluan 1.1 Latar Belakang

Bab I Pendahuluan 1.1 Latar Belakang Bab I Pendahuluan 1.1 Latar Belakang Indonesia sebagai salah satu negara berkembang turut menerapkan teknologi yang hingga saat ini terus berkembang. Penerapan teknologi untuk menunjang kehidupan masyarakat

Lebih terperinci

Analisis netronik 3-D tentang Skenario SUPEL pada BWR

Analisis netronik 3-D tentang Skenario SUPEL pada BWR 1 DESKRIPSI RISET I (Daur Ulang Secara Langsung Limbah Nuklir dengan Metode SUPEL Menuju Zero Release Waste) 1.1 Deskripsi singkat Kebutuhan energi global yang terus meningkat menjadi salah satu pendorong

Lebih terperinci

Soal-soal Open Ended Bidang Kimia

Soal-soal Open Ended Bidang Kimia Soal-soal Open Ended Bidang Kimia 1. Fuel cell Permintaan energi di dunia terus meningkat sepanjang tahun, dan menurut Proyek International Energy Outlook 2013 (IEO-2013) konsumsi energi dari 2010 sampai

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA,

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA, PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN REPUBLIK INDONESIA, Menimbang : bahwa untuk melaksanakan ketentuan Pasal 27 ayat (2) Undang-undang

Lebih terperinci

PRESIDEN REPUBLIK INDONESIA PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF

PRESIDEN REPUBLIK INDONESIA PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PERATURAN PEMERINTAH NOMOR 27 TAHUN 2002 TENTANG PENGELOLAAN LIMBAH RADIOAKTIF PRESIDEN, Menimbang : bahwa untuk melaksanakan ketentuan Pasal 27 ayat (2) Undang-undang Nomor 10 Tahun 1997 tentang Ketenaganukliran,

Lebih terperinci

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015 SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA Dr. Setiyono Depok, 26 Januari 2015 KETAHANAN ENERGI DAN PENGEMBANGAN PEMBANGKITAN Ketahanan Energi Usaha mengamankan energi masa depan suatu bangsa dengan

Lebih terperinci

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga TAMBAHAN LEMBARAN NEGARA RI (Penjelasan Atas Lembaran Negara Republik Indonesia Tahun 2012 Nomor 107) PENJELASAN ATAS PERATURAN PEMERINTAH NOMOR 54 TAHUN 2012 TENTANG KESELAMATAN DAN KEAMANAN INSTALASI

Lebih terperinci

OPSI NUKLIR DALAM BAURAN ENERGI NASIONAL

OPSI NUKLIR DALAM BAURAN ENERGI NASIONAL KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA OPSI NUKLIR DALAM BAURAN ENERGI NASIONAL Konferensi Informasi Pengawasan Oleh : Direktur Aneka Energi Baru dan Energi Terbarukan Jakarta, 12

Lebih terperinci