MAKALAH GENETIKA MOLEKULER SENTRAL DOGMA OLEH FITRIA DELA. DOSEN PENGAMPU : Dr. Dewi Imelda Roesma, M.Si.

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH GENETIKA MOLEKULER SENTRAL DOGMA OLEH FITRIA DELA. DOSEN PENGAMPU : Dr. Dewi Imelda Roesma, M.Si."

Transkripsi

1 MAKALAH GENETIKA MOLEKULER SENTRAL DOGMA OLEH FITRIA DELA DOSEN PENGAMPU : Dr. Dewi Imelda Roesma, M.Si. JURUSAN BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG, 2016

2 BAB I PENDAHULUAN 1.1 Latar Belakang DNA sebagai bahan genetik karena DNA dapat mewariskan sifat-sifat organisma induk, sudah diidentifikasi pada pertengahan abad 20 (Greenspan and Baxter 1994). Genom adalah sepotong DNA/segment DNA yang menyandi protein mengandung semua informasi genetik yang dimilikinya. Dengan penemuan ini ditemukan bagaimana informasi genetik diwariskan dan diekspresikan. Mekanisme molekuler dari pewarisan melibatkan proses yang dikenal sebagai replikasi, dimana rantai DNA induk berfungsi sebagai cetakan untuk sintesis salinan DNA (Murray et al. 2000) Setiap kita yang ingin memahami bagaimana metabolisme sel dan pewarisan sifat dari induk (parental) ke generasi berikutnya adalah dengan memahami mekanisme kerja DNA. Berbagai eksperimen dan kajian sampai pada kesimpulan bahwa mekanisme kerja DNA adalah replikasi, transkripsi dan translasi. Tiga proses ini dikenal dengan sebutan dogma sentral. Replikasi adalah proses menyalin secara utuh 2 untai DNA menjadi 2 untai yang baru.transkripsi adalah proses menyalin salah satu untai DNA menjadi mrna sedangkan translasi adalah proses penterjemahan mrna menjadi polipeptida (Yuwono, 2013). Materi genetik (DNA) yang terdapat pada suatu sel selalu dalam keadaan aktif karena senantiasa melakukan replikasi, transkripsi, translasi, reparasi (perbaikan) dan rekombinasi. Proses penyimpanan dan pemindahan informasi genetik dinyatakan dalam suatu dalil yang disebut dogma sentral, yang ditemukan oleh Francis Crick dan George Gamov pada tahun Prinsip dogma sentral bahwa DNA menjadi penentu jenis RNA yang selanjutnya akan diterjemahkan menjadi suatu protein (Yuwono, 2013). Bahan genetik yang ada pada setiap jasad akan mengalami proses perbanyakan sebagai salah satu tahapan sangat penting dalam proses pertumbuhan sel atau perbanyakan partikel virus. Proses perbanyakan bahan genetik dikenal sebagai proses replikasi. Replikasi bahan genetik dapat dikatakan sebagai proses yang mengawali pertumbuhan sel, meskipun sebenarnya pertumbuhan merupakan suatu resultan banyak

3 proses yang saling berkaitan satu sama lain. Replikasi bahan genetik diikuti oleh pembentukan sel-sel anakan yang membawa duplikat bahan genetik hasil replikasi. Oleh karena itu, kesalahan dalam proses replikasi bahan genetik dapat mengakibatkan perubahan pada sifat-sifat sel anakan (Yuwono, 2005). Pada transkripsi sinte-sa mrna (messenger RNA) dari DNA template dilakukan oleh enzim RNA polymerase. Mula-mula RNA po-lymerase berikatan dengan bagi-an DNA template yang disebut promotor. Kemudian RNA poly-merase akan bergerak dengan a-rah 5 3, transkripsi akan di-mulai pada tempat yang disebut initiation site dan berakhir pada termination site. Sedangkan translasi (atau sintesa protein) adalah proses penerjemahan bahasa asam nukleat (mrna) menjadi ba-hasa protein oleh ribosom dan trna. Mula-mula ribosom dan trna akan berikatan pada start codon (urutan basa nukleotida: AUG) di mrna. Kemudian a-kan terjadi elongasi dan berakhir pada stop codon. Satu segmen DNA yang mengkode suatu pro-tein disebut open reading frame (orf). 1.2 Rumusan Masalah 1. Apakah yang dimaksud dengan Sentral Dogma? Bagaimanakah pembagian serta tahapan dari Sentral Dogma 3. Apakah yang dimaksud dengan replikasi? Bagaimanakah tahap dari replikasi? 4. Apakah yang dimaksud dengan transkripsi? Bagaimanakah tahap dari transkripsi? 5. Apakah yang dimaksud dengan translasi? Bagaimanakah tahap dari translasi? 6. Apa itu RNA coding dan noncoding? 1.3. Tujuan 1. Untuk mengetahui pengertian dari Sentral Dogma serta tahapan nya. 2. untuk mengetahui pengertian dari replikasi serta tahapannya 3. untuk mengetahui pengertian dari transkripsi serta tahapannya 4. untuk mengetahui pengertian dari translasi serta tahapannya 5. untuk mengetahui pengertian dari RNA coding dan noncoding serta contohnya.

4 BAB II ISI Dogma sentral biologi menjelaskan mengenai proses perubahan gen dari DNA menjadi RNA, dan RNA menjadi protein. Dogma ini menjelaskan bagaimana proses pembacaan materi genetik menjadi protein yang berperan di setiap tahap metabolisme di dalam tubuh suatu organisme (Bettelheim et al, 1984) Sebagai pernbawa informasi genetika, DNA rnempunyai dua fungsi utama: 1) rnembuat kopi yang tepat dari pada dirinya sendiri pada waktu proses repllkasi atau duplikasi dan 2) rneneruskan koda-koda informasi yang dimiliki ke.nrna (tnessenger RNA) pada waktu proses transkripsi. Dengan demikian mrna kelaknya dapat menterjemahkan (mengtranslasikan) informasi-informasi "bahasa dalam 4 huruf" dari pada asam nukleat ke dalam "bahasa dalam 24 huruf" darl pada protein. Konsep ini (gambar 1) merupakan dasar yang terkenal sebagai Dogma Sentral yang dlkemukakan oleh Crick (2) pada tahun 1958 (Soedigdo, 1973). Dogma yang berlaku universal ini menyatakan bahwa sekali informasi telah diteruskan menjadi protein, maka tidak dapat dikembalikan menjadi bentuk asalnya (DNA). Aliran informasi dari asam nukleat ke asam nukleat memang memungkinkan, tetapi aliran informasi dari protein ke asam nukleat atau dari protein ke protein tidak memungkinkan. Dogma sentral terdiri dari tiga tahap yaitu replikasi, transkripsi dan translasi. Tahap replikasi dilakukan untuk memasok DNA pada setiap organisme, sedangkan tahap transkripsi bertujuan untuk menulis ulang DNA dalam bentuk mrna (messenger RNA). Tahap translasi untuk menterjemahkan mrna tersebut menjadi suatu protein (Yuwono, 2013). Gambar 1. Tahap dalam sentral dogma A. Replikasi

5 Secara umum, replikasi bahan genetik merupakan proses pengkopian rangkaian molekul bahan genetik (DNA atau RNA) sehingga dihasilkan molekul anakan yang sangat identik. Meskipun konsep dasar replikasi antara struktur bahan genetik yang satu dengan yang lainnya adalah serupa, namun diketahui ada banyak perbedaan dalam hal mekanisme rincinya. Sebagai contoh, bahan genetik yang berupa molekul RNA mempunyai mekanisme replikasi rinci yang berbeda dengan replikasi molekul DNA. Pada kelompok virus, misalnya, replikasi bahan genetiknya terjadi di dalam sel inang yang sebenarnya merupakan jasad hidup yang lain dari jasad virus itu sendiri. Hal ini dapat terjadi karena virus merupakan jasad parasit obligat. Di lain pihak, replikasi DNA pada prokaryot dan eukaryot terjadi di dalam sel jasad hidup yang bersangkutan. Selain itu perbedaan struktural molekul bahan genetik, misalnya antara DNA lingkar (Circular DNA) dengan DNA linear juga berimplikasi pada perbedaan mekanisme replikasi (Yuwono, 2005). Beberapa hipotesa diajukan untuk menjelaskan proses sintesa/replikasi DNA ini yaitu model konservatif, semikonservatif dan dispersif. Pada model konservatif disintesa masing-masing satu untai lama dan satu untai baru, kemudian kedua untai tersebut mensintesa komplemennya. Model ini tidak sesuai dengan struktur DNA yang ada. Demikian pula model dispersif, tidak mungkin terjadi sintesa secara berselang-seling antar yang lama dan yang baru semacam suatu hybrid. Sifat komplementer pada model DNA untai ganda (double helix) dari Watson dan Crick memberi kesan bahwa replikasi DNA terjadi secara semikonsevatif. Dengan demikian, jika masing-masing untai pada molekul induk DNA untai ganda terpisah dari komplemennya saat replikasi, setiap bagian tersebut akan berfungsi sebagai cetakan (template), yang dengan cetakan ini disintesis sebuah untai komplementer yang baru (Yuwono, 2013)

6 Gambar 2. Tiga Hipotesa tentang Replikasi DNA Replikasi DNA dimulai pada tempat-tempat khusus yang disebut pangkal replikasi (origin of replication). Pangkal replikasi yaitu satu bagian DNA yang mempunyai urutan nukleotida yang spesifik. Protein yang memulai replikasi DNA mengenali urutan ini dan menempel pada DNA, memisahkan kedua untaian dan membuka sebuah gelembung replikasi. Tahap pembukaan DNA untai ganda dikatalis oleh 3 macam enzim yaitu : 1. Helikase adalah sejenis enzim yang berfungsi membuka untai ganda di cabang replikasi, dan memisahkan kedua untai lama. 2. Enzim untai destabilizing protein, atau single stranded DNA binding protein (SSB), molekul dari protein pengikat untai tunggal kemudian berjajar disepanjang untai-untai lama yang tidak berpasangan menjaga agar untai-untai ini tetap terpisah selama mereka bertindak sebagai cetakan untuk sintesis untai-untai komplementer yang baru 3. DNA girase, enzim ini mengkatalis pembukaan untai ganda sebelum proses replikasi dimulai. Replikasi DNA kemudian berjalan dalam dua arah sampai seluruh molekul tersebut disalin. Setiap kromosom eukariot mempunyai ratusan atau ribuan pangkal replikasi. Gelembung replikasi terbentuk dan akhirnya menyatu, sehingga mempercepat

7 penyalinan molekul DNA yang sangat panjang ini. Di setiap ujung gelembung replikasi terdapat cabang replikasi (replication fork), suatu daerah berbentuk huruf Y dimana untai DNA baru mulai memanjang (Yuwono, 2013). Terdapat beberapa komponen-komponen penting dalam replikasi DNA. Replikasi bahan genetik ditentukan oleh beberapa komponen utama, yaitu: 1) DNA cetakan, yaitu molekul DNA atau RNA yang akan direplikasi. 2) molekul deoksi ribonukleotida yaitu datp, dttp, dctp, dan dgtp. Deoksi ribonukleotida terdiri atas tiga omponen yaitu basa purin atau pirimidin, gula 5-karbon (deoksiribosa) dan gugus fosfat. 3) enzim polimerase, yaitu enzim utama yang mengkatalisis proses polimerasi nukelotida menjadi untaian DNA. Pada bakteri Escherichia coli terdapat tiga macam DNA polimerase yaitu DNA polimerase I, DNA polimerase II dan DNA polimerase III. Pada jasad eukaryot terdapat lima macam DNA polimerase yaitu DNA polimerase α, DNA polimerase δ, DNA polimerase ε, DNA polimerase β dan DNA polimerase γ. 4) Enzim primase yaitu enzim yang mengkatalisis sintesis primer untuk memulai replikasi DNA. Pada bakteri E. Coli kompleks enzim ini disebut primosom yang terdiri atas beberapa macam protein. 5) enzim pembuka ikatan untaian DNA induk, yaitu helikase dan enzim lain yang membantu proses tersebut yaitu enzim girase. 6) molekul protein yang menstabilkan untaian DNA yang sudah terbuka yaitu protein SSB (single strand bonding protein). 7) enzim DNA ligase yaitu suatu enzim yang berdungsi untuk menyambung fragmen-fragmen DNA (Yuwono, 2005). Enzim utama yang berpe-ran dalam replikasi adalah DNA polymerase. DNA polymerase mensintesa DNA baru dengan arah 5 3. DNA polymerase tidak dapat memulai pembuatan untaian DNA baru, enzim ini hanya dapat menambahkan nukleotida pada 3 -OH yang sudah ada. Oleh karena itu, untuk memulai untai yang baru harus ada primer (biasanya berupa RNA) di mana DNA polymerase dapat menempelkan nukleotida yang pertama. Karena untaian DNA berpasangan secara anti-paralel, maka pada untai di-mana pembentukan untai DNA barunya itu dari 5 ke 3 akan terjadi sintesa DNA secara ber-sinambungan dan disebut lead-ing strand, sedangkan pada untai yang lainnya akan terjadi sintesa DNA dengan terputus-putus dan disebut lagging strand.

8 Re-plikasi dimulai pada tempat yang disebut ori (origin of repli-cation) dan berakhir pada termi-nator (Lucianus, 2003). Gambar 3. bagian Replikasi DNA semikonservatif Replikasi DNA berlangsung dalam beberapa tahap yaitu: (1) denaturasi (pemisahan) untaian DNA induk, (2) peng- awal -an (initiation, inisiasi) sintesis DNA, (3) pemanjangan untaian DNA, (4) ligasi fragmen fragmen DNA, dan (5) peng- akhir - an (termination, terminasi) sintesis DNA. Sintesis untaian DNA baru akan dimulai setelah kedua DNA induk terpisah membentuk garpu replikasi, pemisahan dilakukan oleh enzim DNA helikase. Sintesis DNA berlangsung dengan orientasi 5 -P 3 -OH. Oleh karena ada dua untaian DNA cetakan yang orientasinya berlawanan, maka sintesis kedua untaian DNA baru juga berlangsung dengan arah geometris yang berlawanan namun semuanya teteap dengan orientasi5 3. Keadaan semacam ini menimbulkan perbedaan dalam hal meanisme sintesis antara keua untaian DNA yang baru (Yuwono, 2005). Proses replikasi diawali dengan pembukaan untaian ganda DNA pada titik-titik tertentu di sepanjang rantai DNA. Proses pembukaan rantai DNA ini dibantu oleh beberapa jenis protein yang dapat mengenali titik-titik tersebut, dan juga protein yang mampu membuka pilinan rantai DNA. Setelah cukup ruang terbentuk akibat pembukaan untaian ganda ini, DNA polimerase masuk dan mengikat diri pada kedua rantai DNA

9 yang sudah terbuka secara lokal tersebut. Proses pembukaan rantai ganda tersebut berlangsung disertai dengan pergeseran DNA polimerase mengikuti arah membukanya rantai ganda. Monomer DNA ditambahkan di kedua sisi rantai yang membuka setiap kali DNA polimerase bergeser. Hal ini berlanjut sampai seluruh rantai telah benar-benar terpisah Pada model replikasi biasa umumnya replikasi berlangsung ke satu arah sehingga hanya ada satu untaian DNA awal dan satu untaian DNA lambat. Pada kenyataannya telah diketahui bahwa replikasi juga dapat berlangsung ke dua arah yang berlawanan, yiatu dikenal sebagai replikasi dua arah (bidirectional replication). Dalam replikasi dua arah akan terbentuk dua garpu replikasi yang bergerak ke arah yang berlawanan. Pada kedua garpu replikasi tersebut juga terjadi sintesis DNA baru secara kontinu dan diskontinu sehingga ada dua untaian DNA awal dan dua untaian DNA lambat (Yuwono, 2005). Inisiasi (peng- awal -an) replikasi DNA adalah proses permulaan sintesis untaian DNA yang sebelumnya didahului oleh sintesis molekul primer. Proses inisiasi berlangsung dengan mekanisme yang berbeda antara suatu jasad dengan jasad yang lain. Pada bakteri E. coli sintesis primer dikatalisis oleh kompleks protein yang disebut primosom. Primosom terdiri atas enzim primase/dnag (berperan dalam sintesis molekul primer). Protein PriA, PriB, PriC, DnaTm, DnaB dan DnaC. Pada E. coli diketahui ada dua tipe atau sistem reaksi inisiasi, yaitu (1) sistem фx dan (2) sistem oric. Sistem фx adalah sistem inisiasi replikasi DNA virus фx174, sedangkan sistem oric aladah sistem inisiasi yang melibatkan ori pada E. coli (Yuwono, 2005). Struktur untai ganda ini akan mempengaruhi replikasi DNA. DNA polimerase menambahkan nukleotida hanya pada ujung 3' yang bebas dari untai DNA yang sedang terbentuk, tidak pernah pada ujung 5'. Jadi untai DNA baru dapat memanjang hanya pada arah 5' 3'. Di sepanjang salah satu untai cetakan, DNA polimerase dapat mensintesa untai komplementer yang kontinu memanjangkan DNA yang baru dengan arah 5' 3'. Untai DNA yang dibuat dengan metode ini disebut leading strand. Untuk memanjangkan untai baru DNA yang lain, polimerase harus bekerja disepanjang cetakan jauh dari cabang replikasi. Untai DNA yang disintesis dalam arah ini disebut lagging

10 strand. Berbeda dengan leading strand, yang memanjang terus menerus, lagging strand pertama kali disintesis sebagai serangkaian segmen. Potongan ini disebut fragmen Okazaki, sesuai dengan nama ilmuwan Jepang yang menemukannya. Panjang fragmenfragmen ini sekitar 100 sampai 200 nukleotida pada eukariot. Proses ini mengandung satu untai utuh DNA anak mengikuti DNA induk dan satu untai lagi fragmen berupa DNA anak. Fragmen anak ini kemudian dirangkaikan menjadi satu untai utuh oleh enzim DNA ligase sehingga akhirnya satu DNA untai ganda menghasilkan 2 DNA anak untai ganda dan seterusnya (Yuwono, 2013). Setelah dilakukan inisiasi dan polimerasi akhirnya proses replikasi DNA akan diakhiri dengan proses terminasi atau pengakhiran replikasi. Pada prokaryot replikasi genom berbentuk lingkar akan berakhir pada waktu kedua garpu replikasi bertemu pada suatu titik namun pada eukaryot keadaannya menjad lain karena struktur genomnya linear sehingga ada komplikasi terminasi replikasi pada ujung-ujung kromosom. Titik tempat pengakhiran replikasi disebut sisi terminasi. Pada E. coli ada enam sisi terminasi yaitu TerA, TerB, TerC, TerD, TerE, dan TerF. Urutan konsensus sisi terminasi adalah sebagai berikut AATTAGTATGTTGTAACTAAANT. Urutan basa DNA tersebut diperlukan untuk menghentikan garpu replikasi yang mendekati daerah tersebut dari ujung 5 (Yuwono, 2005). Kesalahan proses replikasi molekul DNA hanya terjadi satu dalam 1 miliar nukleotida, tetapi kesalahan pemasangan awal antara nukleotida yang sudah ada pada untai cetakan dapat mencapai kalinya atau sebesar pasang basa. Sel memiliki mekanisme reparasi yaitu perbaikan salah pasang (mismatch repair ) yang akan memperbaiki kesalahan-kesalahan yang terjadi ketika DNA disalin. Selama replikasi DNA, DNA polimerase sendirilah yang melakukan perbaikan salah-pasang. Polimerase ini mengoreksi setiap nukleotida terhadap cetakannya begitu nukleotida ditambah pada untaian. Dalam rangka mencari nukleotida yang pasangannya tidak benar, polimerase memindahkan nukleotida tersebut kemudian melanjutkan kembali sintesis. Protein lain selain DNA polimerase juga melakukan perbaikan salah-pasang (Yuwono, 2013). TRANSKRIPSI

11 Transkripsi merupakan tahapan penting dalam sintesis protein atau ekspresi gen. Proses transkripsi terjadi pada nukleus (prokaryotik: nukleoid) di mana DNA diterjemahkan menjadi kode-kode dalam bentuk basa nitrogen membentuk rantai RNA yang bersifat single strain. Namun, pada rantai RNA yang terbentuk basa Timin digantikan dengan basa Urasil. Pada prokaryotik, rantai RNA langsung ditranslasikan sebelum transkripsi selesai. Sedangkan pada eukaryotik, rantai di bawa menuju sitoplasma (ribosom) untuk ditranslasi menjadi produk gen. Pembentukan RNA pada proses transkripsi melibatkan enzim RNA polymerase. Fungsi dasar kedua yang harus dijalankan oleh DNA sebagai materi genetik adalah fungsi fenotipik. Artinya, DNA harus mampu mengatur pertumbuhan dan diferensiasi individu organisme sehingga dihasilkan suatu fenotipe tertentu. Fungsi ini dilaksanakan melalui ekspresi gen, yang tahap pertamanya adalah proses transkripsi, yaitu perubahan urutan basa molekul DNA menjadi urutan basa molekul RNA. Dengan perkataan lain, transkripsi merupakan proses sintesis RNA menggunakan salah satu untai molekul DNA sebagai cetakan (templat) nya (Warianto, 2011). Transkripsi terdiri dari tiga tahap, yaitu: (a) Inisiasi (permulaan). Transkripsi diawali oleh promoter, yaitu daerah DNA tempat RNA polimerase melekat. Promoter mencakup titik awal transkripsi dan biasanya membentang beberapa pasang nukleotida di depan titik awal tersebut. Fungsi promoter selain menentukan di mana transkripsi dimulai, juga menentukan yang mana dari kedua rantai ganda DNA yang digunakan sebagai cetakan. (b) Elongasi (pemanjangan). Ketika RNA bergerak di sepanjang DNA, pilinan rantai ganda DNA tersebut terbuka secara berurutan kira-kira basa DNA. Enzim RNA polimerase menambahkan nukleotida ke ujung 3 dari molekul RNA yang dibentuk di sepanjang rantai ganda DNA. Setelah sintesis RNA berlangsung, rantai ganda DNA akan terbetuk kembali dan RNA baru akan terlepas dari cetakannya. (c) Terminasi (pengakhiran). Transkripsi berlangsung hingga RNA polimerase mentranskripsi urutan DNA yang dinamakan terminator. Terminator merupakan urutan DNA yang berfungsi untuk mengakhiri proses transkripsi. Pada prokariotik, transkripsi berhenti pada saat RNA polimerase mencapai titik terminasi. Pada eukariotik, RNA

12 polimerase terus melewati titik terminasi, nukleotida, RNA yang telah terbentuk terlepas dari enzim tersebut (Kusnadi, 2010). Interaksi antara RNA polimerase eukariot dan faktor transkripsi merupakan suatu contoh betapa pentingnya interaksi protein-protein dalam mengontrol transkripsi. Salah satu faktor transkripsi adalah TATA box. Pada sel eukariot enzim yang mentranskripsi gen pengkode-protein menjadi pra mrna ialah RNA polimerase II. Enzim ini memulai sintesis RNA pada promoter yang biasanya berupa TATA box yaitu suatu urutan nukleotida TATAAAA. TATA ini terletak kira-kira 25 nukleotida upstream jauhnya dari titik awal transkripsi. RNA polimerase II tidak dapat mengenali TATA dan tanda-tanda khusus lain pada promoter. Protein lain dari faktor transkripsi yang membantu mengenali TATA ini, mengikatkan diri pada DNA sebelum RNA polimerase memulai transkripsi (Yuwono, 2013). Jika inisiasi berhasil, RNA polimerase melepaskan faktor s, dan bersama-sama dengan DNA dan RNA nasen (RNA yang baru disintesis), akan membentuk kompleks terner atau kompleks yang terdiri atas tiga komponen. Dengan adanya kompleks terner ini RNA polimerase dapat berjalan di sepanjang molekul DNA. Artinya, promoter akan ditinggalkannya untuk kemudian ditempati oleh holoenzim RNA polimerase berikutnya sehingga terjadi reinisiasi transkripsi. Bagian DNA yang mengalami pembukaan heliks, atau disebut dengan gelembung transkripsi (transcription bubble), akan terlihat bergeser di sepanjang molekul DNA sejalan dengan gerakan RNA polimerase. Panjang bagian DNA yang mengalami pembukaan heliks tersebut relatif konstan, yakni sekitar 17 pb sedangkan ujung 5 molekul RNA yang disintesis akan membentuk heliks hibrid dengan pita antisens DNA sepanjang lebih kurang 12 pb. Ukuran ini ternyata tidak mencapai satu putaran heliks. RNA polimerase E. coli bergerak dengan kecepatan ratarata 40 nukleotida per detik. Akan tetapi, angka ini dapat bervariasi sesuai dengan urutan lokal DNA (urutan DNA yang telah dicapai oleh RNA polimerase). Tetap dipertahankannya bagian DNA yang mengalami pembukaan heliks menunjukkan bahwa RNA polimerase membuka heliks DNA di depan gelembung transkripsi dan menutup heliks DNA di belakangnya. Dengan demikian, heliks hibrid RNA-DNA harus berputar setiap kali terjadi penambahan nukleotida pada

13 RNA nasen (Warianto, 2011). Satu gen tunggal dapat ditranskripsi secara simultan oleh beberapa molekul RNA polimerase yang saling mengikuti seperti barisan truk dalam satu konvoi. Untai RNA yang sedang tumbuh memperlihatkan jejak dari setiap polimerase, dengan panjang setiap untai baru yang mencerminkan sejauh mana enzim itu telah berjalan dari titik awalnya. Transkripsi berlangsung sampai RNA polimerase menyalin urutan DNA yang disebut terminator. Terminator merupakan suatu urutan RNA yang berfungsi sebagai sinyal pengakhiran transkripsi. Pada sel prokariot, transkripsi biasanya berhenti tepat pada akhir sinyal terminasi. Ketika polimerase mencapai titik tersebut polimerase melepas RNA dan DNA. Sebaliknya pada sel eukariot transkripsi akan berhenti setelah polimerase melewati sinyal terminasi yaitu suatu urutan AAUAAA di dalam pra-mrna sejauh kira-kira nukleotida. Pra30 mrna ini akan dipotong hingga terlepas dari enzim tersebut. Tempat pemotongan pada RNA juga merupakan tempat untuk penambahan ekor-poli A (Yuwono, 2013). Terminasi menggunakan protein rho selain karena adanya struktur tusuk konde, terminasi transkripsi dapat juga terjadi dengan bantuan suatu protein khusus yang dinamakan protein rho (ρ). Rho merupakan protein heksamer yang akan menghidrolisis ATP dengan adanya RNA untai tunggal. Protein ini nampak terikat pada urutan sepanjang 72 basa pada RNA, yang diduga lebih disebabkan oleh pengenalan suatu struktur spesifik daripada karena adanya urutan konsensus. Rho bergerak di sepanjang RNA nasen menuju kompleks transkripsi. Pada kompleks transkripsi ini rho memungkinkan RNA polimerase untuk berhenti pada sinyal terminator tertentu. Sinyalsinyal terminator ini, seperti halnya sinyal terminator yang tidak bergantung kepada rho, lebih dikenali oleh RNA daripada oleh DNA cetakannya. Adakalanya terminator tersebut juga berupa struktur tusuk konde tetapi tidak dikuti oleh urutan poli U (Warianto, 2011) TRANSLASI Translasi adalah proses penerjemahan urutan nukleotida yang ada pada molekul mrna menjadi rangkaian asam-asam amino yang menyusun suatu polipeptida atau protein.

14 Perlu dipahami bahwa hanya molekul mrna yang ditranslasi, sedangkan rrna dan trna tidak ditranslasi. Molekul mrna merupakan transkrip (salinan) urutan DNA yang menyusun suatu gen dalam bentuk ORF (open reading frame), kerangka baca terbuka). Molekul rrna adalah salah satu molekul penyusun ribosom, yakni organel tempat berlangsungnya sintesis protein, sedangkan trna adalah pembawa asam-asam amino yang akan disambungkan menjadi rantai polipeptida. Suatu ORF dicirikan oleh: (1) kodon inisiasi translasi yaitu urutan ATG (pada DNA) atau AUG (pada mrna) (2) serangkaian urutan nukleotida yang menyusun banyak kodon dan (3) kodon terminasi translasi yaitu RAA (UAA pada mrna), TAG (UAG pada mrna) atau TGA (UGA pada mrna) perlu diingat bahwa pada RNA tidak ada basa thymine (T) melainkan dalam bentuk uracil (U) (Yuwono, 2013). Translasi berlangsung di dalam sitoplasma dan ribosom. Translasi merupakan proses penterjemaahan sutu kode genetik menjadi protein yang sesuai. Kode genetik tersebut berupa kodon di sepanjang molekul RNAd, sebagai penterjemaahnya RNAt. RNAt membawa asam amino dari stoplasma ke ribosom. Molekul RNAt membawa asam amino spesifik pada salah satu ujungnya yang sesuai dengan triplet nukleotida pada ujung RNAt lainnya yang disebut antikodon. Misalnya, perhatikan kodon RNAd UUU yang ditranslasi sebagai asam amino fenilalanin. RNAt pembawa fenilalanin mempunyai antikodon AAA yang komplemen dengan UUU agar terjadi reaksi penambahan fenilalanin pada rantai polipeptida sebelumnya. RNAt yang mengikat diri pada kodon RNAd harus membawa asam amino yang sesuai ke dalam ribosom. Melekatnya asam amino pada RNAt dibantu oleh enzim aminoasil-rnat sintetase (aminoacyl-trna synthetase). Ribosom memudahkan pelekatan antara antikodon RNAt dengan kodon RNAd selama sintesis protein. Ribososm tersususn atas subunit besar dan subunit kecil yang dibangun oleh protein-protein dan molekul-molekul RNAt (Kusnadi, 2010). Kita dapat membagi translasi menjadi 3 tahap yaitu insiasi, elongasi dan terminasi. Semua tahapan ini memerlukan faktor-faktor protein yang membantu mrna, trna dan ribosom selama proses translasi. Untuk inisiasi dan elongasi rantai dibutuhkan sejumlah energi yang disediakan oleh GTP (guanin triphospat) yaitu suatu

15 molekul yang mirip ATP. Tahap inisiasi dari translasi membawa bersama-sama mrna, sebuah trna yang memuat asam amino pertama dari polipeptida, dan dua subunit ribosom. Pertama subunit ribosom kecil mengikatkan diri pada mrna dan trna inisiator khusus. Pada tahap elongasi, asam-asam amino ditambahkan satu persatu pada asam amino pertama. Tiap penambahan melibatkan partisipasi beberapa protein yang disebut faktor elongasi dan terjadi dalam siklus tiga tahap yaitu: 1. Pengenalan kodon. Kodon mrna pada tempat A dari ribosom membentuk ikatan hidrogen dengan antikodon molekul trna yang baru masuk yang membawa asam amino yang tepat. Faktor elongasi membawa trna ke tempat A. Langkah ini juga membutuhkan hidrolisis GTP. 2. Pembentukan ikatan peptida. Molekul rrna dari subunit ribosom besar, berfungsi sebagai ribozim, mengkatalis pembentukan ikatan peptida yang menggabungkan polipeptida yang memanjang dari tempat P ke asam amino yang baru tiba di tempat A. Pada tahap ini, polipeptida memisahkan diri dari trna tempat pelekatannya semula, dan asam amino pada ujung karboksilnya berikatan dengan asam amino yang dibawa oleh trna di tempat A. 3. Translokasi. Molekul trna di tempat A, sekarang terikat pada polipeptida yang sedang tumbuh, ditranslokasikan ke tempat P. Saat RNA berpindah tempat, antikodonnya tetap berikatan dengan hidrogen pada kodon mrna; mrna bergerak bersama -sama dengan antikodon ini dan membawa kodon berikutnya untuk ditranslasi pada tempat A. Sementara t RNA yang tadinya berada pada tempat P bergerak ketempat E dan dari tempat ini keluar dari ribosom. Langkah translokasi membutuhkan energi yang disediakan oleh hidrolisis GTP. mrna bergerak melalui ribosom ke satu arah saja, mulai dari ujung 5' hal ini sama dengan ribosom yang bergerak 5' 3' pada mrna. Hal yang penting disini adalah ribosom dan mrna bergerak relatif satu sama lain, dengan arah yang sama, kodon demi kodon. Siklus Elongasi menghabiskan waktu kurang dari 1/10 detik dan terus diulang saat tiap asam amino ditambahkan pada rantai hingga polipeptidanya lengkap. Tabel. Kodon asam amino, kodon tanda mulai translasi dan kodon stop

16 Asam amino Alanin Arginin Asam aspartat Asam glutamat Asparagin Fenilalanin Glisin Histidin Isoleusin Leusin Lisin Metiosin Prolin Serin Sistein Tirosin Treonin Triptofan Valin Mulai (Start) Berhenti (Stop) Kodon RNA GCU GCC GCA GCG CGU CGC CGA CGG AGA AGG GAU GAC GAA GAG AAU AAC UUU UUC GGU GGC GGA GGG CAU CAC AUU AUC AUA CUU CUC CUA CUG UUA UUG AAA AAG AUG CCU CCC CCA CCG UCU UCC UCA UCG UGU UGC UAU UAC ACU ACC ACA ACG UGG GUU GUC GUA GUG AUG GUG UAA UAG UGA Translasi akan berakhir pada waktu salah satu dari ketiga kodon terminasi (UAA, UGA, UAG) yang ada pada mrna mencapai posisi A pada ribosom. Dalam keadaan normal tidak ada aminoasil-trna yang membawa asam amino sesuai dengan ketiga kodon tersebut. oleh karena itu, jika ribosom mencapai salah satu dari ketiga kodon terminasi tersebut, maka proses translasi berakhir. Pada E. coli ketiga sinyal penghentian proses translasi tersebut dikenali oleh suatu protein yang disebut release factors (RF)

17 misalnya RF1 yang mengenali kodon UAA atau UAG atau RF2 yang mengenali kodon UAA atau UGA. Sebaliknya pada eukaryot hanya ada satu release factor yaitu erf yang mengenali ketiga kodon terminasi tersebut (Yuwono, 2005). CODING dan NON CODING RNA Gena adalah unit heriditas suatu organisme hidup. Gen ini dikode dalam material genetik organisme, yang kita kenal sebagai molekul DNA, atau RNA pada beberapa virus, dan ekspresinya dipengaruhi oleh lingkungan internal atau eksternal seperti perkembangan fisik atau perilaku dari organisme itu. Gena tersusun atas daerah urutan basa nukleotida baik yang mengkode suatu informasi genetik (coding-gene region as exon) dan juga daerah yang tidak mengkode informasi genetik (non-coding-gene region as intron), hal ini penting untuk pembentukan suatu protein yang fungsinya diperlukan ditingkat sel, jaringan, organ atau organisme secara keseluruhan. Menurut penelitian Jacob dan Monod (1961). mengidentifikasi peranan molekul antara yang labil keberadaannya maka terbangun suatu hubungan konsepsional penterjemahan informasi dari urutan basa DNA ke dalam urutan asam amino protein atau struktur primer protein. Pada proses transkripsi menghasilkan tiga jenis RNA yaitu mrna (massengerrna), trna (transfer RNA), rrna (ribosomal RNA). dalam pembagian berdasarkan fungsinya terdapat 2 pembagian utama yaitu coding RNA dan non-coding RNA. Berikut adalah bagan dari pembagian total RNA :

18 Gambar 4. bagan RNA dalam sel Coding RNA terdiri dari transkripton dan hanya terdiri dari satu kelas molekul yaitu: Messenger RNA (mrnas), yang mentraskrip gen pengkode protein dan karenanya ditranslasi menjadi protein dalam tahapan selanjutnya pada ekspresi genom. mrna ini sendiri berfungsi sebagai cetakan dalam sintesis protein, dan hanya mrna yang akan diterjemahkan dalam protein, selain itu mrna juga memiliki umur yang sangat pendek yaitu akan segera terdegradasi setelah sintesis. Tipe yang kedua dari RNA adalah non-coding, ada dua tipe yaitu: 1. Transfer RNA (trna) yaitu molekul kecil yang terlibat dalam dalam sintesis protein.trna membawa asam amino dalam bentuk yang di aktifkan ke dalam ribosom untuk pembentukan ikatan peptida dalam suatu urutan yang ditentukan oleh mrna sebagai cetakan. 2. Ribosomal RNA (rrna) merupakan salah satu komponen utama Ribosom dan merupakan tipe RNA yang jumlahnya paling melimpah dalam sel serta menyusun sekitar 80% dari total RNA pada bakteri yang sedang aktif membelah. molekul ini merupakan struktur tempat berlangsungnya sintesis protein. Eukariot mempunyai tipe non-coding RNA lain yang distribusinya lebih terbatas, dan RNA non-codingnya pendek. tipe RNA non-coding ini biasanya di bagi dalam 3 kategori sesuai dengan lokasi utamanya di dalam sel yaitu :

19 Small nuclear RNA (snrna), disebut juga U-RNA karena kaya akan nukleotida uridin yang terlibat dalam pemrosesan mrna. Small nucleolar RNA (snorna), yang berperan penting dalam pemrosesan molekul rrna. Small cytoplasmic RNA (scrna), merupakan kelompok molekul yang sebagian fungsinya sudah diketahui dan sebagian lagi masih misteri. Perbedaan antara coding RNA dan non-coding RNA adalah : 1. Pada coding RNA terdiri dari transkripton dan hanya terdiri dari dari satu kelas molekul yaitu : Messenger RNA (mrnas) sedangkan pada non-coding RNA baik pada prokariot maupun eukariot terdapat dua tipe yaitu: Ribosomal RNA (rrna) dan Transfer RNA (trna). 2. mrna, trna maupun rrna sama-sama berperan dalam proses translasi tetapi hanya mrna yang diterjemahkan dalam protein. 3. mrna berfungsi sebagai cetakan sintesis protein, dan trna berfungsi sebagai pembawa asam amino ke ribosom untuk dirangakai dengan urutan yang sesuai dengan sekuens nukleotida pada mrna yang sedang di translasi, sedangkan rrna merupakan komponen penyusun ribosom yang merupakan struktur tempat berlangsungnya sintesis protein. 4. pada RNA non-coding yang lebih terbatas distribusinya di bagi menjadi 3 kategori sesuai dengan lokasi utamanya dalam sel yaitu: small nuclear RNA (snrna), small nukeolar RNA (snorna), small cytoplasmic RNA (scrna) (Brown, 2000).

20 BAB III PENUTUP 3.1 Kesimpulan Dari uraian diatas, dapat diambil kesimpulan sebagai berikut: 1. Sentral Dogma adalah proses penyimpanan dan pemindahan informasi genetik melalui 3 tahap yaitu replikasi, transkripsi dan translasi. 2. Replikasi adalah proses pengkopian rangkaian molekul bahan genetik (DNA atau RNA) sehingga dihasilkan molekul anakan yang sangat identik. 3. Tahapan proses replikasi diantaranya adalah denaturasi (pemisahan) untaian DNA induk, inisiasi (sintesis DNA), pemanjangan untaian DNA, ligasi fragmen-fragmen DNA dan terminasi (sintesis DNA) 4. Transkripsi adalah proses sintesis protein dimana DNA diterjemahkan menjadi kode-kode dalam bentuk basa nitrogen membentuk rantai RNA yang bersifat single strain. 5. Tahapan dalam proses transkripsi diantaranya adalah inisiasi, elongasi dan terminasi. 6. Translasi adalah proses penerjemahan urutan nukleotida yang ada pada molekul mrna menjadi rangkaian asam-asam amino yang menyusun suatu polipeptida atau protein. 7. Tahapan dalam proses translasi diantaranya adalah inisiasi, elongasi dan terminasi. 8. Dalam pembagian berdasarkan fungsinya terdapat 2 pembagian utama yaitu coding RNA dan non-coding RNA. Coding RNA terdiri dari transkripton dan hanya terdiri dari satu kelas molekul yaitu messenger RNA (mrnas), sedangkan non coding RNA terdiri dari trna dan rrna. 3.2 Saran Adapun saran untuk makalah ini adalah sebaiknya penjelasan mengenai Sentral Dogma lebih diperbanyak kembali dan uraian tahapan tahapan dalam sentral dogma yang lebih diperjelas.

21 DAFTAR PUSTAKA Bettelheim, F.A., & Landesberg, J Laboratory Experiments for General, Organic, & Biochemistry. (edisi keempat). John Wiley & Sons Inc. New Jersey. Brown, T. A Genomes. 2nd edition. Department of Biomolecular Sciences, UMIST. Manchester. UK Greenspan, F.S dan Baxter, J.D Basic and Clinical Endocrinology. Appleton and Lange. USA. Kusnaidi Substansi Genetika. Direktori FPMIPA UPI. Bandung. Lucinus, J Induksi Genetika Molekular Virus. JKM vol. 3 No. 1. UK. Maranatha. Bandung. Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell Biokimia Harper. Edisi 25. Buku Kedokteran. EGC. Jakarta. Soedigdo, P Tinjauan Ulang Mengenai Biokimia DNA Dan RNA Serta Biosintesa Protein. Proceedings ITB Vol. 7, No. 2. ITB. Bandung. Yuwono Bioinformatika: Sebuah Pengantar. Fakultas Kedokteran Universitas Sriwijaya. Palembang. Yuwono, Tribowo Biologi Molekular. Erlangga. Jakarta. Warianto, C Transkripsi pada Prokaryotik. Repository Unair. Surabaya.

Saya telah melihat cara membuat strand dna ini di internet dan akhirnya,,,, inilah hasilnya

Saya telah melihat cara membuat strand dna ini di internet dan akhirnya,,,, inilah hasilnya Untuk menghasilkan bahan 3D saya ini, bahan yang telah saya gunakan adalah kertas berwarna, dawai, double tape, gabus dan pelekat. Bahan-bahan ini merupakan bahan yang mudah untuk dicari dan semestinya

Lebih terperinci

V. GENETIKA MIKROORGANISME

V. GENETIKA MIKROORGANISME V. GENETIKA MIKROORGANISME Genetika merupakan suatu cabang ilmu yang membahas tentang sifat-sifat yang diturunkan oleh suatu organisme. Penelaahan genetika secara serius pertama kali dilakukan oleh Gregor

Lebih terperinci

Polimerase DNA : enzim yang berfungsi mempolimerisasi nukleotidanukleotida. Ligase DNA : enzim yang berperan menyambung DNA utas lagging

Polimerase DNA : enzim yang berfungsi mempolimerisasi nukleotidanukleotida. Ligase DNA : enzim yang berperan menyambung DNA utas lagging DNA membawa informasi genetik dan bagian DNA yang membawa ciri khas yang diturunkan disebut gen. Perubahan yang terjadi pada gen akan menyebabkan terjadinya perubahan pada produk gen tersebut. Gen sering

Lebih terperinci

KROMOSOM, GEN, DAN DNA

KROMOSOM, GEN, DAN DNA KROMOSOM, GEN, DAN DNA Kompetensi Dasar: Mahasiswa dapat menjelaskan hubungan antara kromosom, gen, dan DNA Menjelaskan proses replikasi, transkripsi, dan translasi Membuat peta pikiran tentang kromosom,

Lebih terperinci

Proses biologis dalam sel Prokariot (Replikasi) By Lina Elfita

Proses biologis dalam sel Prokariot (Replikasi) By Lina Elfita Proses biologis dalam sel Prokariot (Replikasi) By Lina Elfita 1. Replikasi 2. Transkripsi 3. Translasi TOPIK REPLIKASI Replikasi: Adalah proses perbanyakan bahan genetik. Replikasi bahan genetik dapat

Lebih terperinci

adalah proses DNA yang mengarahkan sintesis protein. ekspresi gen yang mengodekan protein mencakup dua tahap : transkripsi dan translasi.

adalah proses DNA yang mengarahkan sintesis protein. ekspresi gen yang mengodekan protein mencakup dua tahap : transkripsi dan translasi. bergerak sepanjang molekul DNA, mengurai dan meluruskan heliks. Dalam pemanjangan, nukleotida ditambahkan secara kovalen pada ujung 3 molekul RNA yang baru terbentuk. Misalnya nukleotida DNA cetakan A,

Lebih terperinci

BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI

BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI The Central Dogma of Molecular biology Replikasi DNA: adalah proses penggandaan pita DNA dengan menggunakan DNA tetua sebagai cetakan; Proses ini berlangsung

Lebih terperinci

19/10/2016. The Central Dogma

19/10/2016. The Central Dogma TRANSKRIPSI dr.syazili Mustofa M.Biomed DEPARTEMEN BIOKIMIA DAN BIOLOGI MOLEKULER FK UNILA The Central Dogma 1 The Central Dogma TRANSKRIPSI Transkripsi: Proses penyalinan kode-kode genetik yang ada pada

Lebih terperinci

PEMBAHASAN Replikasi DNA

PEMBAHASAN Replikasi DNA PEMBAHASAN A. Replikasi DNA Ketika sebuah sel menyalin satu molekul DNA, setiap untai berfungsi sebagai pola cetakan untuk menyusun nukleutida-nukleutida menjadi satu untaian komplementer yang baru. Nukleutida-nukleutida

Lebih terperinci

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc.

Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. BIO210 Mikrobiologi Dr. Dwi Suryanto Prof. Dr. Erman Munir Nunuk Priyani, M.Sc. Kuliah 10. GENETIKA MIKROBA Genetika Kajian tentang hereditas: 1. Pemindahan/pewarisan sifat dari orang tua ke anak. 2. Ekspresi

Lebih terperinci

Adalah asam nukleat yang mengandung informasi genetik yang terdapat dalam semua makluk hidup kecuali virus.

Adalah asam nukleat yang mengandung informasi genetik yang terdapat dalam semua makluk hidup kecuali virus. DNA DAN RNA Adalah asam nukleat yang mengandung informasi genetik yang terdapat dalam semua makluk hidup kecuali virus. ADN merupakan blue print yang berisi instruksi yang diperlukan untuk membangun komponen-komponen

Lebih terperinci

Ada 2 kelompok basa nitrogen yang berikatan pada DNA yaitu

Ada 2 kelompok basa nitrogen yang berikatan pada DNA yaitu DNA DNA adalah rantai doble heliks berpilin yang terdiri atas polinukleotida. Berfungsi sebagi pewaris sifat dan sintesis protein. Struktur DNA (deoxyribosenucleic acid) yaitu: 1. gula 5 karbon (deoksiribosa)

Lebih terperinci

EKSPRESI GEN. Dyah Ayu Widyastuti

EKSPRESI GEN. Dyah Ayu Widyastuti EKSPRESI GEN Dyah Ayu Widyastuti Ekspresi Gen Gen sekuen DNA dengan panjang minimum tertentu yang mengkode urutan lengkap asam amino suatu polipeptida, atau RNA (mrna, trna, rrna) Ekspresi Gen Enam tahapan

Lebih terperinci

Indikator 30. Urutan yang sesuai dengan sintesis protein adalah

Indikator 30. Urutan yang sesuai dengan sintesis protein adalah Indikator 30 1. Fase-fase sintesis protein: 1) RNAd meninggalkan inti menuju ribosom 2) RNAt mengikat asam amino yang sesuai 3) RNAd dibentuk di dalam inti oleh DNA 4) Asam amino berderet sesuai dengan

Lebih terperinci

SINTESIS PROTEIN. Yessy Andriani Siti Mawardah Tessa Devitya

SINTESIS PROTEIN. Yessy Andriani Siti Mawardah Tessa Devitya SINTESIS PROTEIN Yessy Andriani Siti Mawardah Tessa Devitya Sintesis Protein Proses dimana kode genetik yang dibawa oleh gen diterjemahkan menjadi urutan asam amino SINTESIS PROTEIN EKSPRESI GEN Asam nukleat

Lebih terperinci

REPLIKASI DNA. Febriana Dwi Wahyuni, M.Si.

REPLIKASI DNA. Febriana Dwi Wahyuni, M.Si. REPLIKASI DNA Febriana Dwi Wahyuni, M.Si. REPLIKASI REPLIKASI adalah perbanyakan diri menghasilkan produk baru yang sama dengan dirinya Pada tingkat molekul kimia hanya DNA yang dapat melakukan replikasi

Lebih terperinci

EKSPRESI GEN. Kuliah ke 5 Biologi molekuler Erlindha Gangga

EKSPRESI GEN. Kuliah ke 5 Biologi molekuler Erlindha Gangga EKSPRESI GEN Kuliah ke 5 Biologi molekuler Erlindha Gangga Mengalirnya informasi dari DNA menuju protein tidak dapat berjalan secara langsung. Pertama DNA akan digunakan sebagai model / cetakan dalam sintesis

Lebih terperinci

Kromosom, gen,dna, sinthesis protein dan regulasi

Kromosom, gen,dna, sinthesis protein dan regulasi Kromosom, gen,dna, sinthesis protein dan regulasi Oleh: Fatchiyah dan Estri Laras Arumingtyas Laboratorium Biologi Molekuler dan Seluler Universitas Brawijaya Malang 2006 2.1.Pendahuluan Era penemuan materi

Lebih terperinci

BIOTEKNOLOGI. Perubahan Genetik, Replikasi DNA, dan Ekspresi Gen

BIOTEKNOLOGI. Perubahan Genetik, Replikasi DNA, dan Ekspresi Gen BIOTEKNOLOGI Perubahan Genetik, Replikasi DNA, dan Ekspresi Gen Sekilas tentang Gen dan Kromosom 1882, Walther Flemming menemukan kromosom adalah bagian dari sel yang ditemukan oleh Mendel 1887, Edouard-Joseph-Louis-Marie

Lebih terperinci

STRUKTUR KIMIAWI MATERI GENETIK

STRUKTUR KIMIAWI MATERI GENETIK STRUKTUR KIMIAWI MATERI GENETIK Mendel; belum terfikirkan ttg struktur, lokus, sifat kimiawi serta cara kerja gen. Sesudah Mendel barulah dipelajari ttg komposisi biokimiawi dari kromosom. Materi genetik

Lebih terperinci

STRUKTUR DNA DAN RNA

STRUKTUR DNA DAN RNA STRUKTUR DNA DAN RNA MATERIAL GENETIKA Informasi genetika dari organisme dibawa dalam bentuk molekul DNA yang pada beberapa makhluk / organisme dalam bentuk RNA yang kemudian akan dipindahkan dalam bentuk

Lebih terperinci

replikasi akan bergerak melebar dari ori menuju dua arah yang berlawanan hingga tercapai suatu ujung (terminus).

replikasi akan bergerak melebar dari ori menuju dua arah yang berlawanan hingga tercapai suatu ujung (terminus). Secara sederhana: Mula-mula, heliks ganda DNA (merah) dibuka menjadi dua untai tunggal oleh enzim helikase (9) dengan bantuan topoisomerase (11) yang mengurangi tegangan untai DNA. Untaian DNA tunggal

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kodon (kode genetik) adalah deret nukleotida pada mrna yang terdiri atas kombinasi tiga nukleotida berurutan yang menyandi suatu asam amino tertentu sehingga sering

Lebih terperinci

T25 Oktober 2013 Kelas Reguler Sore Prodi Agroteknologi UMBY Dosen : Tyastuti Purwani

T25 Oktober 2013 Kelas Reguler Sore Prodi Agroteknologi UMBY Dosen : Tyastuti Purwani T25 Oktober 2013 Kelas Reguler Sore Prodi Agroteknologi UMBY Dosen : Tyastuti Purwani DASAR-DASAR GENETIKA OLEH: SUHERMAN, Ph.D Perkembangbiakan Makhluk Hidup Aseksual ; keturunannya berkembang menjadi

Lebih terperinci

ketebalan yang berbeda-beda dan kadang sangat sulit ditemukan dengan mikroskop. Namun, ada bukti secara kimiawi bahwa lamina inti benar-benar ada di

ketebalan yang berbeda-beda dan kadang sangat sulit ditemukan dengan mikroskop. Namun, ada bukti secara kimiawi bahwa lamina inti benar-benar ada di Membran Inti Inti sel atau nukleus sel adalah organel yang ditemukan pada sel eukariotik. Organel ini mengandung sebagian besar materi genetik sel dengan bentuk molekul DNA linear panjang yang membentuk

Lebih terperinci

DNA, RNA, DAN SINTESIS PROTEIN

DNA, RNA, DAN SINTESIS PROTEIN DNA, RNA, DAN SINTESIS PROTEIN Mata Kuliah Biomedik Oleh : Arma Adi Prasetya 1106053735 Nur Aini Hidayah 1106004241 Putri Aprilia Regita 1106054196 Sofya Umi Labiba 1106016084 Tresnani Suci Nurani 1106008656

Lebih terperinci

II. BAHAN GENETIK DAN EKSPRESI GEN

II. BAHAN GENETIK DAN EKSPRESI GEN A. Latar Belakang A.1. Bahan Genetik II. BAHAN GENETIK DAN EKSPRESI GEN DNA: Deoxyribo Nucleic Acid, merupakan bahan dasar genetik yang terbentuk dari tiga komponen yaitu: 1. Basa, yang merupakan bahan

Lebih terperinci

bagian yang disebut suppressor yang menekan intensitas, dan ada yang disebut enhancer yang memperkuatnya.

bagian yang disebut suppressor yang menekan intensitas, dan ada yang disebut enhancer yang memperkuatnya. TRANSKRIPSI Transkripsi (dari bahasa Inggris: transcription) dalam genetika adalah pembuatan RNA dengan menyalin sebagian berkas DNA. Transkripsi adalah bagian dari rangkaian ekspresi genetik. Pengertian

Lebih terperinci

Organisasi DNA dan kode genetik

Organisasi DNA dan kode genetik Organisasi DNA dan kode genetik Dr. Syazili Mustofa, M.Biomed Lektor mata kuliah ilmu biomedik Departemen Biokimia, Biologi Molekuler, dan Fisiologi Fakultas Kedokteran Unila DNA terdiri dari dua untai

Lebih terperinci

MAKALAH BIOLOGI PERBEDAAN ANTARA DNA dengan RNA

MAKALAH BIOLOGI PERBEDAAN ANTARA DNA dengan RNA MAKALAH BIOLOGI PERBEDAAN ANTARA DNA dengan RNA Disusun Untuk Memenuhi Tugas Mata Kuliah Biologi Oleh: Aria Fransisca Bashori Sukma 141810401023 Dosen Pembimbing Eva Tyas Utami, S.Si, M.Si NIP. 197306012000032001

Lebih terperinci

REPLIKASI DNA 1. Pengertian Replikasi 2. Komponen Penting dalam Replikasi DNA cetakan Molekul deoksiribonukleotida Enzim DNA polimerase

REPLIKASI DNA 1. Pengertian Replikasi 2. Komponen Penting dalam Replikasi DNA cetakan Molekul deoksiribonukleotida Enzim DNA polimerase REPLIKASI DNA REPLIKASI DNA 1. Pengertian Replikasi Replikasi merupakan peristiwa sintesis DNA (autokatalisis) karena DNA mampu mensisntesis diri sendiri. Replikasi DNA dapat terjadi dengan adanya sintesis

Lebih terperinci

Pokok Bahasan: Ekspresi gen

Pokok Bahasan: Ekspresi gen Pokok Bahasan: Ekspresi gen Sub Pokok Bahasan : 3.1. Regulasi Ekspresi 3.2. Sintesis Protein 3.1. Regulasi ekspresi Pengaruh suatu gen dapat diamati secara visual misalnya pada anggur dengan warna buah

Lebih terperinci

Ada ORI dan helikase yang membuka pilinan terus sampai terbentuk replication bubble.

Ada ORI dan helikase yang membuka pilinan terus sampai terbentuk replication bubble. Catatan Wane (Berbagi Informasi) Berisi tentang materi-materi yang mungkin bisa bermanfaat buat yang membutuhkan Meliputi tentang kesehatan, penelitian, wisata, budaya, sejarah, bisnis, humor, dan catatan

Lebih terperinci

BAB III. SUBSTANSI GENETIK

BAB III. SUBSTANSI GENETIK BAB III. SUBSTANSI ETIK Kromosom merupakan struktur padat yg tersusun dr komponen molekul berupa protein histon dan DNA (kumpulan dr kromatin) Kromosom akan tampak lebih jelas pada tahap metafase pembelahan

Lebih terperinci

Bimbingan Olimpiade SMA. Paramita Cahyaningrum Kuswandi ( FMIPA UNY 2012

Bimbingan Olimpiade SMA. Paramita Cahyaningrum Kuswandi (  FMIPA UNY 2012 Bimbingan Olimpiade SMA Paramita Cahyaningrum Kuswandi (email : paramita@uny.ac.id) FMIPA UNY 2012 Genetika : ilmu yang memperlajari tentang pewarisan sifat (hereditas = heredity) Ilmu genetika mulai berkembang

Lebih terperinci

Definisi Sintesis Protein

Definisi Sintesis Protein Definisi Sintesis Protein Manusia, hewan, dan tumbuhan sangat memerlukan protein sebagai unsur utama penyusun tubuhnya. Protein pada manusia dan hewan terdapat paling banyak pada membran sel, sitoplasma,

Lebih terperinci

INTISARI MATERI GENETIK

INTISARI MATERI GENETIK INTISARI MATERI GENETIK PETA KONSEP MATERI GENETIKA KROMOSOM GEN Unit dasar kromosom Buntuk kromosom berdasarkan letak sentromer Alel Protein Histon DNA Metasentrik, submetasentrik, akrosentrk, dan teosentik

Lebih terperinci

BAB II KLASIFIKASI MAKHLUK HIDUP DAN POHON FILOGENETIK

BAB II KLASIFIKASI MAKHLUK HIDUP DAN POHON FILOGENETIK BAB II KLASIFIKASI MAKHLUK HIDUP DAN POHON FILOGENETIK 2.1 Klasifikasi Makhluk Hidup Sistem klasifikasi organisme memiliki dua pandangan besar yaitu sistem klasifikasi Fenetik dan Filogeni. Sistem klasifikasi

Lebih terperinci

BIOTEKNOLOGI. Struktur dan Komponen Sel

BIOTEKNOLOGI. Struktur dan Komponen Sel BIOTEKNOLOGI Struktur dan Gambar Apakah Ini dan Apakah Perbedaannya? Perbedaan dari gambar diatas organisme Hidup ular organisme Hidup Non ular Memiliki satuan (unit) dasar berupa sel Contoh : bakteri,

Lebih terperinci

AKTIVITAS GEN DAN PENGATURANNYA: SINTESIS PROTEIN. dr. Arfianti, M.Biomed, M.Sc

AKTIVITAS GEN DAN PENGATURANNYA: SINTESIS PROTEIN. dr. Arfianti, M.Biomed, M.Sc AKTIVITAS GEN DAN PENGATURANNYA: SINTESIS PROTEIN dr. Arfianti, M.Biomed, M.Sc Protein Working molecules of the cells Action and properties of cells Encoded by genes Gene: Unit of DNA that contain information

Lebih terperinci

TUGAS BIOLOGI MOLEKULER

TUGAS BIOLOGI MOLEKULER TUGAS BIOLOGI MOLEKULER Dosen Pengampu : Dr. Siswa Setyahadi, Msc, PhD Disusun oleh : EKO MUGIYANTO SSI., APT NIM 5414220021 Angkatan XXIII KONSENTRASI OBAT BAHAN ALAM PROGRAM MAGISTER ILMU KEFARMASIAN

Lebih terperinci

BAB I PENDAHULUAN. B. Rumusan Masalah. C. Tujuan Penulisan

BAB I PENDAHULUAN. B. Rumusan Masalah. C. Tujuan Penulisan BAB I PENDAHULUAN A. Latar Belakang Ribosom adalah komponen sel yang membuat protein dari semua asam amino. Salah satu prinsip utama biologi, sering disebut sebagai dogma sentral, adalah DNA yang digunakan

Lebih terperinci

Aulia Dwita Pangestika A2A Fakultas Kesehatan Masyarakat. DNA dan RNA

Aulia Dwita Pangestika A2A Fakultas Kesehatan Masyarakat. DNA dan RNA Aulia Dwita Pangestika A2A014018 Fakultas Kesehatan Masyarakat DNA dan RNA DNA sebagai senyawa penting yang hanya ada di mahkluk hidup. Di mahkluk hidup senyawa ini sebagai master kehidupan untuk penentuan

Lebih terperinci

Sintesa protein (ekspresi gen)

Sintesa protein (ekspresi gen) 1. SINTESA PROTEIN Sintesa protein (ekspresi gen) Merupakan proses dimana DNA mengekspresikan gen nya Secara umum melibatkan dua tahap yaitu TRANSKRIPSI dan TRANSLASI Pada eukaryot, pengendalian ekspresi

Lebih terperinci

Home -- Reproduksi Sel -- Hereditas -- Struktur & Ekspresi Gen. Regulasi Ekspresi Gen Teknologi DNA Rekombinan -- Genom Manusia GLOSSARY

Home -- Reproduksi Sel -- Hereditas -- Struktur & Ekspresi Gen. Regulasi Ekspresi Gen Teknologi DNA Rekombinan -- Genom Manusia GLOSSARY Home -- Reproduksi Sel -- Hereditas -- Struktur & Ekspresi Gen Regulasi Ekspresi Gen Teknologi DNA Rekombinan -- Genom Manusia GLOSSARY Adenin: salah satu jenis basa purin yang terdapat pada DNA dan RNA

Lebih terperinci

BAB VI RIBOSOM DAN SINTESIS PROTEIN

BAB VI RIBOSOM DAN SINTESIS PROTEIN BAB VI RIBOSOM DAN SINTESIS PROTEIN I. PENDAHULUAN Bab ini menjelaskan tentang ribosom sebagai salah satu organela dalam sel, karakterisasi fisik dan kimianya serta fungsinya secara umum dalam proses sintesis

Lebih terperinci

Bab. Materi Genetik. Peta Konsep. Pengertian gen dan alel. Gen dan alel. Fungsi gen dan alel DNA. DNA dan RNA RNA. Penggolongan kromosom

Bab. Materi Genetik. Peta Konsep. Pengertian gen dan alel. Gen dan alel. Fungsi gen dan alel DNA. DNA dan RNA RNA. Penggolongan kromosom Bab 3 Materi Genetik Bab 3 Materi Genetik Peta Konsep Gen dan alel Pengertian gen dan alel Fungsi gen dan alel DNA dan RNA DNA RNA Materi genetik Kromosom Penggolongan kromosom Jumlah kromosom Sintesis

Lebih terperinci

SINTESIS PROTEIN. Delayota Science Club Januari 2011

SINTESIS PROTEIN. Delayota Science Club Januari 2011 SINTESIS PROTEIN Delayota Science Club Januari 2011 Dogma Sentral Aliran informasi genetik dari DNA ke Protein Informasi (kode genetik) pada DNA akan diekspresikan dalam bentuk protein Kode genetik Marshall

Lebih terperinci

Substansi Genetik. By Ms. Evy Anggraeny. SMA Regina Pacis Jakarta. Sept

Substansi Genetik. By Ms. Evy Anggraeny. SMA Regina Pacis Jakarta. Sept Substansi Genetik SMA Regina Pacis Jakarta By Ms. Evy Anggraeny Sept 2013 1 DNA/ADN Terdiri dari gula pentosa, basa nitrogen dan phosphat DNA Sept 2013 2 Macam Basa Dua macam basa Purin Adenine = A pada

Lebih terperinci

Paramita Cahyaningrum Kuswandi ( FMIPA UNY 2013

Paramita Cahyaningrum Kuswandi (  FMIPA UNY 2013 Paramita Cahyaningrum Kuswandi (email : paramita@uny.ac.id) FMIPA UNY 2013 Why study DNA replication? Materi genetis : perlu diketahui untuk melihat pewarisan sifat Replikasi materi genetis : perlu diketahui

Lebih terperinci

M A T E R I G E N E T I K

M A T E R I G E N E T I K M A T E R I G E N E T I K Tujuan Pembelajaran: Mendiskripsikan struktur heliks ganda DNA, sifat dan fungsinya. Mendiskripsikan struktur, sifat dan fungsi RNA. Mendiskripsikan hubungan antara DNA, gen dan

Lebih terperinci

STRUKTUR BAHAN GENETIK, MEKANISME DAN REGULASI EKSPRESI GENETIK PADA ARAS MOLEKULAR

STRUKTUR BAHAN GENETIK, MEKANISME DAN REGULASI EKSPRESI GENETIK PADA ARAS MOLEKULAR TUGAS TERSTRUKTUR MATA KULIAH BIOLOGI MOLEKULER DAN REKAYASA GENETIKA STRUKTUR BAHAN GENETIK, MEKANISME DAN REGULASI EKSPRESI GENETIK PADA ARAS MOLEKULAR YONNY KOENTJORO NIM : T651408012 DOSEN PENGAMPU

Lebih terperinci

Replikasi Gen Ekspresi genetik

Replikasi Gen Ekspresi genetik SEJARAH PENEMUAN BAHAN GENETIK Replikasi Gen Ekspresi genetik Pertemuan ke 4 1882, Walther Flemming menemukan kromosom adalah bagian dari sel yang ditemukan Mendel 1887, Edouard-Joseph-Louis-Marie van

Lebih terperinci

REPLIKASI DNA. Paramita Cahyaningrum Kuswandi ( FMIPA UNY 2014

REPLIKASI DNA. Paramita Cahyaningrum Kuswandi (  FMIPA UNY 2014 REPLIKASI DNA Kuswandi (email : paramita@uny.ac.id) FMIPA UNY 2014 Why study DNA replication? Materi genetis : perlu diketahui untuk melihat pewarisan sifat Replikasi materi genetis : perlu diketahui untuk

Lebih terperinci

BAB I PENDAHULUAN. Semua aktivitas sel dikendalikan oleh aktivitas nukleus. Cara

BAB I PENDAHULUAN. Semua aktivitas sel dikendalikan oleh aktivitas nukleus. Cara BAB I PENDAHULUAN A. Latar Belakang Semua aktivitas sel dikendalikan oleh aktivitas nukleus. Cara pengendalian ini berkaitan dengan aktivitas nukleus memproduksi protein, dimana protein ini merupakan penyusun

Lebih terperinci

XI. Expresi Gen (From Gene to Protein) Diambil dari Campbell et al (2009), Biology 8th

XI. Expresi Gen (From Gene to Protein) Diambil dari Campbell et al (2009), Biology 8th 14/17 November 2011 Tatap Muka 8: Heredity III XI. Expresi Gen (From Gene to Protein) Diambil dari Campbell et al (2009), Biology 8th Pada bab sebelumnya telah dijelaskan bahwa sifat (trait) yang diturunkan

Lebih terperinci

Modul Pembelajaran Biologi XII IPA 2012

Modul Pembelajaran Biologi XII IPA 2012 DFR ISI HLMN JUDUL 1 DFR ISI 2 DFR GMBR 3 DFR BEL 4 BGIN ISI I. Standar Kompetensi dan Kompetensi Dasar 5 II. persepsi 5 III. Pemahaman Konsep 5 a. DN 6 b. Struktur DN 6 c. RN 7 d. Sintesa Protein 8 e.

Lebih terperinci

BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI

BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI BIOTEKNOLOGI PERTANIAN TEORI DASAR BIOTEKNOLOGI BAHAN GENETIK DNA RNA DEFINISI Genom Ekspresi gen Transkripsi Translasi Kromosom eukaryot Protein Histon dan Protamin Kromosom prokaryot DNA plasmid Asam

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i DAFTAR ISI... ii I. Pendahuluan...1 II. Tinjauan Pustaka...4 III. Kesimpulan...10 DAFTAR PUSTAKA...

DAFTAR ISI. KATA PENGANTAR... i DAFTAR ISI... ii I. Pendahuluan...1 II. Tinjauan Pustaka...4 III. Kesimpulan...10 DAFTAR PUSTAKA... DAFTAR ISI KATA PENGANTAR... i DAFTAR ISI... ii I. Pendahuluan...1 II. Tinjauan Pustaka...4 III. Kesimpulan...10 DAFTAR PUSTAKA...11 I. PENDAHULUAN Latar Belakang Munculnya uniseluler dan multi seluler

Lebih terperinci

BIO306. Prinsip Bioteknologi

BIO306. Prinsip Bioteknologi BIO306 Prinsip Bioteknologi KULIAH 2. BAHAN DAN KODE GENETIK Bahan Genetik Deoxyribonucleic acid (DNA) ditemukan tahun 1869. Pada saat itu fungsi belum diketahui. Selanjutnya diisolasi dari nukleus berbagai

Lebih terperinci

MUTASI GEN. Perubahan Struktur dan Ekspresi Gen

MUTASI GEN. Perubahan Struktur dan Ekspresi Gen MUTASI GEN Perubahan Struktur dan Ekspresi Gen Mutasi : Mutasi >< Perubahan Fisiologi Perubahan pada bahan genetik yang menyebabkan perubahan ekspresinya Terjadi perubahan pada tingkat metabolisme Perubahan

Lebih terperinci

Topik 6 Replikasi DNA

Topik 6 Replikasi DNA Topik 6 Replikasi DNA Telah dimakiumi bahwa suatu material genetik hams memenuhi syarat a.l. menyandi,sintesis protein, self-replicate dan berlokasi di dalam kromosom/intil sel. Pada topik kali ini akan

Lebih terperinci

Rangkaian Ekspresi Gen

Rangkaian Ekspresi Gen TRANSKRIPSI Ekspresi Gen Gen berekspresi dengan cara mengendalikan. sifat organisme Pengendalian dilakukan melalui pembentukan enzim/protein yang berperan dalam proses metabolisme Pengendalian pembentukan

Lebih terperinci

MAKALAH BIOLOGI PERBEDAAN DNA DAN RNA

MAKALAH BIOLOGI PERBEDAAN DNA DAN RNA MAKALAH BIOLOGI PERBEDAAN DNA DAN RNA Oleh: Nama : Nur Amalina Fauziyah NIM : 141810401041 JURUSAN BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 PEMBAHASAN Asam nukleat

Lebih terperinci

BIOLOGI SESI 03 SUBSTANSI GENETIK DAN LATIHAN SBMPTN TOP LEVEL - XII SMA

BIOLOGI SESI 03 SUBSTANSI GENETIK DAN LATIHAN SBMPTN TOP LEVEL - XII SMA 03 MATERI AN LATIHAN SBMTN TO LEVEL - XII SMA BIOLOGI SESI 03 SUBSTANSI GENETIK Komponen terkecil penyusun makhluk hidup disebut sel. Setiap sel eukariotik memiliki nukleus yang mengandung kromosom. Setiap

Lebih terperinci

Lampiran 2. Rubrik Penilaian Jawaban Esai Genetika. 1. Hubungan antara DNA, gen, dan kromosom:

Lampiran 2. Rubrik Penilaian Jawaban Esai Genetika. 1. Hubungan antara DNA, gen, dan kromosom: 100 Lampiran 2. Rubrik Penilaian Jawaban Esai Genetika 1. Hubungan antara DNA, gen, dan kromosom: DNA polimer nukleotida (deoksiribosa+fosfat+basa nitrogen) gen (sekuens/dna yang mengkode suatu polipeptida/protein/sifat

Lebih terperinci

Sintesis Protein. 1. Aspek sintesis protein 2. Mekanisme sintesis protein (prokariot) 3. Mekanisme Sintesis Protein (Eukkariot)

Sintesis Protein. 1. Aspek sintesis protein 2. Mekanisme sintesis protein (prokariot) 3. Mekanisme Sintesis Protein (Eukkariot) SINTESIS PROTEIN Sintesis Protein 1. Aspek sintesis protein 2. Mekanisme sintesis protein (prokariot) 3. Mekanisme Sintesis Protein (Eukkariot) 1. Aspek-Aspek Sintesis protein Interaksi Codon-anticodon

Lebih terperinci

Bagian-bagian kromosom

Bagian-bagian kromosom BAB3: SUBSTANSI GENETIKA KROMOSOM Bagian-bagian kromosom 1. kromatid. 2. senrtomer. 3. lengan pendek. 4. lengan panjang. SUBSTANSI GENETIKA Seluruh peristiwa kimia (metabolisme) diatur oleh suatu master

Lebih terperinci

BIOLOGI SEL Chapter XI ORGANEL SEL RIBOSOM DAN SINTESIS PROTEIN. Husni Mubarok, S.Pd., M.Si.

BIOLOGI SEL Chapter XI ORGANEL SEL RIBOSOM DAN SINTESIS PROTEIN. Husni Mubarok, S.Pd., M.Si. BIOLOGI SEL Chapter XI ORGAEL SEL RIBOSOM DA SITESIS PROTEI Husni Mubarok, S.Pd., M.Si. mra dikode di Ribosom Translasi DA mra protein Trankripsi Purin & Pirimidin Asam ukleat adl polimer dari ukleotida

Lebih terperinci

Kawalatur Expresi Gen Gene Expression and Regulation

Kawalatur Expresi Gen Gene Expression and Regulation Kawalatur Expresi Gen Gene Expression and Regulation A. Sintesis Protein a) Kod Genetik * Maklumat dalam gen dibawa dalam bentuk kod= kod genetik. * jujukan asid nukleik pada mrna dibaca mengikut kodon=

Lebih terperinci

DNA DNA (deoxyribonucleic acid) atau asam deoksiribosa nukleat (ADN) merupakan tempat penyimpanan informasi genetik.

DNA DNA (deoxyribonucleic acid) atau asam deoksiribosa nukleat (ADN) merupakan tempat penyimpanan informasi genetik. DNA DNA (deoxyribonucleic acid) atau asam deoksiribosa nukleat (ADN) merupakan tempat penyimpanan informasi genetik. Struktur DNA Pada tahun 1953, Frances Crick dan James Watson menemukan model molekul

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang deoxyribonukleic acid, DNA 1.2 Tujuan

BAB I PENDAHULUAN 1.1 Latar Belakang deoxyribonukleic acid, DNA 1.2 Tujuan BAB I PENDAHULUAN 1.1 Latar Belakang Era penemuan materi genetik telah dibuka oleh F. Meischer dengan menggunakan mikroskop sederhana, dia telah menetapkan bahwa bahan aktif yang ada di dalam nucleus disebut

Lebih terperinci

SUBSTANSIGENETIK 1. KROMOSOM 2. GEN - DNA

SUBSTANSIGENETIK 1. KROMOSOM 2. GEN - DNA SUBSTANSIGENETIK 1. KROMOSOM 2. GEN - DNA http://www.nlm.nih.gov/medlineplu S/ency/images/ency/fullsize/19095.jpg Menentukan sifat tubuh, dan diturunkan ke generasi berikutnya TUJUAN Menjelaskan struktur

Lebih terperinci

RINGKASAN. Gambar 1. Ribosom binding site translasi bakteri. Sumber: Figure (Brown, 2002)

RINGKASAN. Gambar 1. Ribosom binding site translasi bakteri. Sumber: Figure (Brown, 2002) KELOMPOK: DINI M. PUTRI B1J006014 HENDRY WIJAYANTI B1J006016 IKE LISTIANI A B1J006020 KODE : K38-SPP-05 RINGKASAN DESKRIPSI POSES TRANSLASI PADA BAKTERI DAN EUKARIOT, DENGAN TEKANAN PADA PERANAN BERMACAM

Lebih terperinci

Mutasi Nonsense Gen Tirosin Menjadi Penyebab Albino Pada Manusia

Mutasi Nonsense Gen Tirosin Menjadi Penyebab Albino Pada Manusia Mutasi Nonsense Gen Tirosin Menjadi Penyebab Albino Pada Manusia Khandar Yosua khandaryosua@gmail.com Fakultas Kedokteran Universitas Kristen Krida Wacana, Jakarta, Indonesia Pendahuluan Seseorang yang

Lebih terperinci

REKAYASA GENETIKA. By: Ace Baehaki, S.Pi, M.Si

REKAYASA GENETIKA. By: Ace Baehaki, S.Pi, M.Si REKAYASA GENETIKA By: Ace Baehaki, S.Pi, M.Si Dalam rekayasa genetika DNA dan RNA DNA (deoxyribonucleic Acid) : penyimpan informasi genetika Informasi melambangkan suatu keteraturan kebalikan dari entropi

Lebih terperinci

Komponen penting dalam kehidupan. Makromolekul. 90% (termasuk air) Karbohidrat Lipid Protein Asam Nukleat

Komponen penting dalam kehidupan. Makromolekul. 90% (termasuk air) Karbohidrat Lipid Protein Asam Nukleat ASAM NUKLEAT Makromolekul Komponen penting dalam kehidupan Sel 90% (termasuk air) Karbohidrat Lipid Protein Asam Nukleat ASAM NUKLEAT Friedrich Miescher (Swiss, 1844-1895) Suatu polimer nukleotida yg berperanan

Lebih terperinci

Kasus Penderita Diabetes

Kasus Penderita Diabetes Kasus Penderita Diabetes Recombinant Human Insulin Marlia Singgih Wibowo School of Pharmacy ITB Sejak Banting & Best menemukan hormon Insulin pada tahun 1921, pasien diabetes yang mengalami peningkatan

Lebih terperinci

MATERI GENETIK. Oleh : TITTA NOVIANTI, S.Si., M. Biomed.

MATERI GENETIK. Oleh : TITTA NOVIANTI, S.Si., M. Biomed. MATERI GENETIK Oleh : TITTA NOVIANTI, S.Si., M. Biomed. PENDAHULUAN Berbagai macam sifat fisik makhluk hidup merupakan hasil dari manifestasi sifat genetik yang dapat diturunkan pada keturunannya Sifat

Lebih terperinci

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Seperti yang telah dikemukakan bahwa, beberapa organisme prokaryot, tidak memiliki DNA, hanya memiliki RNA, sehingga RNA-lah yang berfungsi sebagai molekul genetik dan bertanggung

Lebih terperinci

REPLIKASI DAN POLYMERASE CHAIN REACTION (PCR)

REPLIKASI DAN POLYMERASE CHAIN REACTION (PCR) REPLIKASI DAN POLYMERASE CHAIN REACTION (PCR) Debbie S. Retnoningrum Sekolah Farmasi, ITB Pustaka: 1. Glick, BR and JJ Pasternak, 2003, hal. 27-28; 110-120 2. Groves MJ, 2006, hal. 40 44 3. Brown TA, 2006,

Lebih terperinci

Metabolisme asam nukleat II

Metabolisme asam nukleat II Metabolisme asam nukleat II Merupakan proses metabolisme informasi, yang berbeda dgn metabolisme-metabolisme yang telah dipelajari sebelumnya: metabolisme intermediate ensim berperanan dlm setiap reaksi

Lebih terperinci

MATERI GENETIK. Eva Tyas Utami

MATERI GENETIK. Eva Tyas Utami MATERI GENETIK Eva Tyas Utami Capaian Pembelajaran: Mahasiswa memahami materi genetik dan dogma sentral biologi G C A T T A 1 nm C G G C 3.4 nm A T C G T A T A A T A T A G T C 0.34 nm (a) Key features

Lebih terperinci

ASAM NUKLEAT (NUCLEIC ACID)

ASAM NUKLEAT (NUCLEIC ACID) ASAM NUKLEAT (NUCLEIC ACID) Terdapat pada semua sel hidup Merupakan makromolekul dengan monomer Mononukleotida Fungsi : 1. Menyimpan, mereplikasi dan mentranskripsi informasi genetika 2. Turut dalam metabolisme

Lebih terperinci

Struktur. Ingat: basa nitrogen, gula pentosa, gugus fosfat

Struktur. Ingat: basa nitrogen, gula pentosa, gugus fosfat ASAM NUKLEAT ASAM NUKLEAT Asam nukleat (bahasa Inggris: nucleic acid) adalah makromolekul biokimia yang kompleks, berbobot molekul tinggi, dan tersusun atas rantai nukleotida yang mengandung informasi

Lebih terperinci

Replikasi DNA atau duplikasi DNA atau disebut juga sintesa DNA. Replikasi DNA artinya satu untai (single strand) DNA mencetak satu untai pasangannya.

Replikasi DNA atau duplikasi DNA atau disebut juga sintesa DNA. Replikasi DNA artinya satu untai (single strand) DNA mencetak satu untai pasangannya. 2. Replikasi DNA Replikasi DNA Sebelum terjadi pembelahan sel, DNA melakukan replikasi terlebih dahulu sehingga informasi genetik yang diterima oleh sel anak akan sama dengan yang terkandung di dalam sel

Lebih terperinci

PENGATURAN EKSPRESI GEN

PENGATURAN EKSPRESI GEN PENGATURAN EKSPRESI GEN Dr. MUTIARA INDAH SARI NIP: 132 296 973 2007 DAFTAR ISI I. PENDAHULUAN........... 1 II. STRUKTUR DNA.................. 2 III. EKSPREI GEN.......... 3 IV. PENGATURAN EKSPRESI GEN

Lebih terperinci

REVERSE TRANSKRIPSI. RESUME UNTUK MEMENUHI TUGAS MATAKULIAH Genetika I Yang dibina oleh Prof. Dr. A. Duran Corebima, M.Pd. Oleh

REVERSE TRANSKRIPSI. RESUME UNTUK MEMENUHI TUGAS MATAKULIAH Genetika I Yang dibina oleh Prof. Dr. A. Duran Corebima, M.Pd. Oleh REVERSE TRANSKRIPSI RESUME UNTUK MEMENUHI TUGAS MATAKULIAH Genetika I Yang dibina oleh Prof. Dr. A. Duran Corebima, M.Pd Oleh UNIVERSITAS NEGERI MALANG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN

Lebih terperinci

TINJAUAN MIKROBIOLOGI DAN BIOKIMIA

TINJAUAN MIKROBIOLOGI DAN BIOKIMIA Bab 2 TINJAUAN MIKROBIOLOGI DAN BIOKIMIA 2.1 Mikrobiologi 2.1.1 Sel Sel adalah struktur biologi terendah yang mampu melakukan semua aktivitas kehidupan. Sel sangat mendasar bagi ilmu biologi karena setiap

Lebih terperinci

PERBEDAAN DNA DAN RNA MATA KULIAH KIMIA ORGANIK II

PERBEDAAN DNA DAN RNA MATA KULIAH KIMIA ORGANIK II PERBEDAAN DNA DAN RNA MATA KULIAH KIMIA ORGANIK II OLEH: Nadiya Pratiwi (066114217) Kelas G PROGRAM STUDI FARMASI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PAKUAN BOGOR 2015 KATA PENGANTAR

Lebih terperinci

Oleh : dr.syazili Mustofa, M.Biomed

Oleh : dr.syazili Mustofa, M.Biomed Translasi Oleh : dr.syazili Mustofa, M.Biomed DEPARTEMEN BIOKIMIA DAN BIOLOGI MOLEKULER FK UNILA The Central Dogma of Life. replication 1 Translasi 3 tahap Inisiasi Elongasi Terminasi AUG (start codon

Lebih terperinci

REPLIKASI adalah perbanyakan diri menghasilkan produk baru yang menghasilkan dirinya

REPLIKASI adalah perbanyakan diri menghasilkan produk baru yang menghasilkan dirinya REPLIKASI DNA REPLIKASI adalah perbanyakan diri menghasilkan produk baru yang menghasilkan dirinya Pada tingkat molekul kimia hanya DNA yang dapat melakukan replikasi (dengan pengecualian RNA genom virus)

Lebih terperinci

BIOSINTESIS MAKROMOLEKUL DAN REGULASI

BIOSINTESIS MAKROMOLEKUL DAN REGULASI BIOSINTESIS MAKROMOLEKUL DAN REGULASI Tujuan Tnstruksional dan kompetensi: Memberi pengetahuan dasar tentang arti penting reaksi biokimia yang terlibat di dalam biosintesis makromolekul dan bagaimana pengaturannya

Lebih terperinci

REMEDIAL BIOLOGI UJIAN SEMESTER GANJIL TAHUN PEMBELAJARAN

REMEDIAL BIOLOGI UJIAN SEMESTER GANJIL TAHUN PEMBELAJARAN REMEDIAL BIOLOGI UJIAN SEMESTER GANJIL TAHUN PEMBELAJARAN 2009-2010 1. Remedial adalah Kegiatan Pengulangan Ujian Semester bagi Peserta Didik yang tidak mencapai angka KKM pada kegiatan Ujian Semester

Lebih terperinci

MATERI GENETIK A. KROMOSOM

MATERI GENETIK A. KROMOSOM MATERI GENETIK A. KROMOSOM Kromosom pertama kali ditemukan pada kelompok makhluk hidup eukariot. Namun, di lain pihak dewasa ini kromosom tidak hanya dimiliki oleh klompok makhluk hidup eukariot tetapi

Lebih terperinci

URAIAN MATERI 1. Pengertian dan prinsip kloning DNA Dalam genom sel eukariotik, gen hanya menempati sebagian kecil DNA kromosom, selain itu merupakan

URAIAN MATERI 1. Pengertian dan prinsip kloning DNA Dalam genom sel eukariotik, gen hanya menempati sebagian kecil DNA kromosom, selain itu merupakan URAIAN MATERI 1. Pengertian dan prinsip kloning DNA Dalam genom sel eukariotik, gen hanya menempati sebagian kecil DNA kromosom, selain itu merupakan sekuen non kode (sekuen yang tidak mengalami sintesis

Lebih terperinci

KODE GENETIK DAN MUTASI

KODE GENETIK DAN MUTASI KODE GENETIK DAN MUTASI Sjarif Hidajat Effendi Ridha K. T. Juli 2012 BAGIAN ILMU KESEHATAN ANAK FAKULTAS KEDOKTERAN UNIVERSITAS PADJADJARAN RUMAH SAKIT UMUM PUSAT HASAN SADIKIN BANDUNG DAFTAR ISI Halaman

Lebih terperinci

RESUME JURNAL The Structural Basis Of Large Ribosomal Subunit Function oleh Widayu Mutiya Ramadhani ( )

RESUME JURNAL The Structural Basis Of Large Ribosomal Subunit Function oleh Widayu Mutiya Ramadhani ( ) RESUME JURNAL The Structural Basis Of Large Ribosomal Subunit Function oleh Widayu Mutiya Ramadhani (24020115140122) Jurnal ini berjudul Kegunaan Struktur Dasar dari Sub-Unit Besar Ribosom. Jurnal ini

Lebih terperinci

ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017

ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017 ULANGAN HARIAN BERSAMA TENGAH SEMESTER GASAL TAHUN 2016/2017 Mata Pelajaran : Biologi Hari / Tanggal : Selasa, 25 Oktober 2016 Kelas / Peminatan : XII / IPA Waktu : 09.30 11.00 WIB ooooo Pilihlah salah

Lebih terperinci

II. TINJAUAN PUSTAKA. Bakteri Asam laktat (BAL) yaitu kelompok bakteri gram positif, katalase

II. TINJAUAN PUSTAKA. Bakteri Asam laktat (BAL) yaitu kelompok bakteri gram positif, katalase 5 II. TINJAUAN PUSTAKA A. Bakteri Asam Laktat Bakteri Asam laktat (BAL) yaitu kelompok bakteri gram positif, katalase negatif yang dapat memproduksi asam laktat dengan cara memfermentasi karbohidrat, selnya

Lebih terperinci