4-5-FUZZY INFERENCE SYSTEMS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "4-5-FUZZY INFERENCE SYSTEMS"

Transkripsi

1 4-5-FUZZY INFERENCE SYSTEMS Shofwatul Uyun Mekanisme FIS Fuzzy Inference Systems (FIS) INPUT (CRISP) FUZZYFIKASI RULES AGREGASI DEFUZZY OUTPUT (CRISP) 2

2 Metode Inferensi Fuzzy Metode Tsukamoto Metode Mamdani Metode Sugeno 3 PENALARAN MONOTON Jika 2 daerah fuzzy direlasikan dengan implikasi sederhana sebagai berikut: IF x is A THEN y is B transfer fungsi: y = f((x,a),b) maka sistem fuzzy dapat berjalan tanpa harus melalui komposisi dan dekomposisi fuzzy. Nilai output dapat diestimasi secara langsung dari derajat keanggotaan yang berhubungan dengan antesedennya. 4 2

3 TINGGI [,75] m[x] Tinggi badan (cm) BERAT [,75] m[y] Berat badan (Kg) 5 Metode Tsukamoto setiap konsekuen pada aturan yang berbentuk IF- Then harus direpresentasikan dengan suatu himpunan fuzzy dengan fungsi keanggotaan yang monoton output hasil inferensi dari tiap-tiap aturan diberikan secara tegas (crisp) berdasarkan -predikat (fire strength). Hasil akhirnya diperoleh dengan menggunakan ratarata terbobot. 6 3

4 Misal ada 2 var input: var- (x), dan var-2 (y); serta var output: var-3 (z). Var- terbagi atas himp. A & A2; var-2 terbagi atas himp. B & B2; var-3 terbagi atas himp. C & C2. Ada 2 aturan: If (x is A) and (y is B2) Then (z is C) If (x is A2) and (y is B) Then (z is C2) 7 m[x] A m[y] B2 m[z] C Var- Var-2 z Var-3 m[x] A2 m[y] B m[z] C2 Var- Var-2 2 z 2 Var-3 Rata-rata terbobot z 2z z

5 CONTOH Suatu perusahaan makanan kaleng setiap harinya rata-rata menerima permintaan sekitar 55 kaleng, dan dalam 3 bulan terakhir permintaan tertinggi sebesar 75 kaleng. Makanan kaleng yang masih tersedia di gudang, setiap harinya rata-rata 7 kaleng, sedangkan kapasitas gudang maksimum hanya dapat menampung 3 kaleng. Apabila sistem produksinya menggunakan aturan fuzzy sebagai berikut: 9 [R] IF Permintaan TURUN And Persediaan BANYAK THEN Produksi Barang BERKURANG [R2] IF Permintaan NAIK And Persediaan SEDIKIT THEN Produksi Barang BERTAMBAH [R3] IF Permintaan NAIK And Persediaan BANYAK THEN Produksi Barang BERTAMBAH [R4] IF Permintaan TURUN And Persediaan SEDIKIT THEN Produksi Barang BERKURANG Tentukanlah berapa jumlah barang yang harus diproduksi hari ini, jika permintaan sebanyak 6 kaleng, dan persediaan yang masih ada di gudang sebanyak 8 kaleng. 5

6 . Membuat himpunan dan input fuzzy Ada 3 variabel fuzzy yang akan dimodelkan, yaitu: a. Permintaan; terdiri-atas 2 himpunan fuzzy, yaitu: NAIK dan TURUN. b. Persediaan; terdiri-atas 2 himpunan fuzzy, yaitu: BANYAK dan SEDIKIT. c. Produksi Barang; terdiri-atas 2 himpunan fuzzy, yaitu: BERKURANG dan BERTAMBAH. A. Variabel Permintaan TURUN NAIK m[x],5, permintaan per hari (x kaleng) 2 6

7 Jika permintaan 6 maka nilai keanggotaan fuzzy pada tiap-tiap himpunan adalah: Himpunan fuzzy TURUN, m PmsTurun [6] =,8. Himpunan fuzzy NAIK, m PmsNaik [6] =,5. diperoleh dari: = 2[(6-75)/(75-45)] 2 =,5 3 B. Variabel Persediaan SEDIKIT BANYAK m[x],5, persediaan (x kemasan per hari) 4 7

8 Jika persediaan sebanyak 8 kemasan per hari, maka nilai keanggotaan fuzzy pada tiap-tiap himpunan adalah: Himpunan fuzzy SEDIKIT, m PsdSedikit [8] =,25. diperoleh dari: = (-8)/(-2) =,25 Himpunan fuzzy BANYAK, m PsdBanyak [8] =,5. diperoleh dari: = (-5)/(-5) =,5 5 C. Variabel Produksi Barang BERKURANG BERTAMBAH m[z] permintaan per hari (x kaleng) 6 8

9 Nilai keanggotaan fuzzy pada tiap-tiap himpunan dirumuskan: Himpunan fuzzy BERKURANG: m PBBerkurang[z] ; (75 z) / 6; ; Himpunan fuzzy BERTAMBAH: z 5 5 z 75 z 75 m PBBertambah[z] ; (z 25) / 75; ; z z z 7 2. Aplikasi operator fuzzy A. Aturan ke-: [R] IF Permintaan TURUN And Persediaan BANYAK THEN Produksi Barang = BERKURANG Operator yang digunakan adalah AND, sehingga: = m PredikatR = min(m PmtTurun [6],m PsdBanyak [8]) = min(,8;,5) =,8 Cari nilai z, untuk =,8; lihat himpunan BERKURANG:,8 = (75 z )/6 z = 75-4,8 = 7,2 8 9

10 B. Aturan ke-2: [R2] IF Permintaan NAIK And Persediaan SEDIKIT THEN Produksi Barang BERTAMBAH Operator yang digunakan adalah AND, sehingga: 2 = m PredikatR2 = min(m PmtNaik [6],m PsdSedikit [8]) = min(,5;,25) =,25 Cari nilai z 2, untuk 2 =,25; lihat himpunan BERTAMBAH:,25 = (z 2 25)/75 z 2 = 8, = 43,75 9 C. Aturan ke-3: [R3] IF Permintaan NAIK And Persediaan BANYAK THEN Produksi Barang BERTAMBAH Operator yang digunakan adalah AND, sehingga: 3 = m PredikatR3 = min(m PmtNaik [6],m PsdBanyak [8]) = min(,5;,5) =,5 Cari nilai z 3, untuk 3 =,5; lihat himpunan BERTAMBAH:,5 = (z 3 25)/75 z 3 = 37, = 62,5 2

11 D. Aturan ke-4: [R4] IF permintaan TURUN And persediaan SEDIKIT THEN produksi barang BERKURANG Operator yang digunakan adalah AND, sehingga: 4 = m PredikatR4 = min(m PmtTurun [6],m PsdSedikit [8]) = min(,8;,25) =,8 Cari nilai z 4, untuk 4 =,8; lihat himpunan BERKURANG:,8 = (75 z 4 )/6 z 4 = 75 4,8 = 7, Penegasan (Defuzzy),8*7,2,25*43,75,5*62,5,8*7,2 z 58,73,8,25,5,8 Jadi produksi barang = 5873 kaleng 22

Matematika Diskrit Fuzzy Inference System Prodi T.Informatika

Matematika Diskrit Fuzzy Inference System Prodi T.Informatika Matematika Diskrit Fuzzy Inference System Prodi T.Informatika Mahasiswa dapat melakukan penalaran dengan hasil akhirnya diperoleh dengan menggunakan rata-rata terbobot. Mekanisme Fuzzy Iinference Systems

Lebih terperinci

KASUS PENERAPAN LOGIKA FUZZY. Fuzzy tsukamoto, mamdani, sugeno

KASUS PENERAPAN LOGIKA FUZZY. Fuzzy tsukamoto, mamdani, sugeno KASUS PENERAPAN LOGIKA FUZZY Fuzzy tsukamoto, mamdani, sugeno CARA KERJA LOGIKA FUZZY MELIPUTI BEBERAPA TAHAPAN BERIKUT : 1. Fuzzyfikasi 2. Pembentukan basis pengetahuan fuzzy (rule dalam bentuk if..then).

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy Sistem Inferensi Fuzzy METODE SUGENO 27 Sistem Inferensi Fuzzy Metode Tsukamoto Metode Sugeno! Diperkenalkan oleh Takagi-Sugeno-Kang, tahun 1985.! Bagian output (konsekuen) sistem tidak berupa himpunan

Lebih terperinci

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Berdasarkan Data Persediaan dan Jumlah Permintaan Ria Rahmadita Surbakti 1), Marlina Setia Sinaga 2) Jurusan Matematika FMIPA UNIMED riarahmadita@gmail.com

Lebih terperinci

ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti

ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti akan

Lebih terperinci

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha Menggunakan Fuzzy Logic 1. Pendahuluan Jual beli motor merupakan suatu kegiatan transaksi yang mungkin sering kita temukan di kehidupan sehari-hari. Untuk

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Kompetensi Pedagogik Menurut Mahmudin (2008) Kompetensi Guru merupakan seperangkat pengetahuan, keterampilan, dan perilaku yang harus dimiliki, dihayati, dikuasai, dan diaktualisasikan

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

REVIEW JURNAL LOGIKA FUZZY

REVIEW JURNAL LOGIKA FUZZY REVIEW JURNAL LOGIKA FUZZY Disusun oleh : Gita Adinda Permata 1341177004309 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG KATA PENGANTAR Assalamualaikum

Lebih terperinci

Logika Himpunan Fuzzy

Logika Himpunan Fuzzy Logika Himpunan Fuzzy 1 Fungsi Keanggotaan untuk crisp logic True False 1 0 80F Panas Temperature f temperature >= 25C, Panas (1 atau Benar); f temperature < 25C, tidak Panas (0 atau Salah). Fungsi keanggotaan

Lebih terperinci

BAB II KAJIAN PUSTAKA. mengikuti sertifikasi, baik pendidikan gelar (S-1, S-2, atau S-3) maupun nongelar (D-

BAB II KAJIAN PUSTAKA. mengikuti sertifikasi, baik pendidikan gelar (S-1, S-2, atau S-3) maupun nongelar (D- BAB II KAJIAN PUSTAKA A. Kualifikasi Akademik Ditjendikti - kemendiknas, (2010) menyatakan bahwa kualifikasi akademik adalah ijazah pendidikan tinggi yang dimiliki oleh guru pada saat yang bersangkutan

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ P.A Teknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus 3 UAD, Jl. Prof. Soepomo rochmahdyah@yahoo.com Abstrak Perkembangan teknologi

Lebih terperinci

Praktikum sistem Pakar Fuzzy Expert System

Praktikum sistem Pakar Fuzzy Expert System Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Metode Pengumpulan Data Dalam penelitian diagnosa penyakit asma dengan menggunakan metode fuzzy Tsukamoto, dibutuhkan data mengenai gejala penyakit dari seorang pakar atau

Lebih terperinci

Model Evaluasi Performa Mahasiswa Tahun Pertama Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto

Model Evaluasi Performa Mahasiswa Tahun Pertama Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto Model Evaluasi Performa Mahasiswa Tahun Pertama Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto Zaenal Abidin Program studi Sistem Informasi STMIK Teknokrat Bandar Lampung, Indonesia

Lebih terperinci

Tahap Sistem Pakar Berbasis Fuzzy

Tahap Sistem Pakar Berbasis Fuzzy Company LOGO Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2011 www.company.com

Lebih terperinci

KOTAK HITAM. Pemetaan input-output pada masalah produksi Diberikan data persediaan barang, berapa jumlah barang yang harus diproduksi?

KOTAK HITAM. Pemetaan input-output pada masalah produksi Diberikan data persediaan barang, berapa jumlah barang yang harus diproduksi? LOGIKA FUZZY 7 7. PENDAHULUAN Orang yang belum pernah mengenal logika fuzzy pasti akan mengira bahwa logika fuzzy adalah sesuatu yang amat rumit dan tidak menyenangkan. Namun, sekali seseorang mulai mengenalnya,

Lebih terperinci

BAB IV METODOLOGI. Gambar 4.1 Model keseimbangan air pada waduk (Sumber : Noor jannah,2004)

BAB IV METODOLOGI. Gambar 4.1 Model keseimbangan air pada waduk (Sumber : Noor jannah,2004) BAB IV METODOLOGI 4.1 Sistem Pengoperasian Waduk. Tujuan di bangun suatu sistem waduk sangat mempengaruhi strategi pengoperasian sistem waduk yang bersangkutan. Dalam mengembangkan model optimasi pengoperasian

Lebih terperinci

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011 Martinus N 1308012 Cendra Rossa 1308013 Rahmat Adhi 1308014 Chipty Zaimima 1308069 Sekolah Tinggi Manajemen Industri

Lebih terperinci

IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC

IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC IMPLEMENTASI METODE FUZZY TSUKAMOTO PADA PENENTUAN HARGA JUAL BARANG DALAM KONSEP FUZZY LOGIC Riky Amelia (1111981) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. LOGIKA FUZZY UTHIE Intro Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan

Lebih terperinci

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : ganjar.ramadhan05@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

Himpunan Tegas (Crisp)

Himpunan Tegas (Crisp) Logika Fuzzy Logika Fuzzy Suatu cara untuk merepresentasikan dan menangani masalah ketidakpastian (keraguan, ketidaktepatan, kekuranglengkapan informasi, dan kebenaran yang bersifat sebagian). Fuzzy System

Lebih terperinci

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Fuzzy Expert Sistem Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Ketentuan Praktikum Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

LOGIKA FUZZY (Lanjutan)

LOGIKA FUZZY (Lanjutan) Metode Mamdani Metode mamdani sering dikenal sebagai metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Menurut metode ini, ada empat tahap yang harus dilalui untuk mendapatkan

Lebih terperinci

Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto

Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto SKRIPSI Diajukan Untuk Memenuhi Salah Satu Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.) Pada Program Studi Sistem Informasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

Definisi LOGIKA FUZZY. Himpunan Fuzzy. Himpunan Fuzzy(contd) 3/13/2012. Budi Rudianto

Definisi LOGIKA FUZZY. Himpunan Fuzzy. Himpunan Fuzzy(contd) 3/13/2012. Budi Rudianto 3/3/22 Definisi LOGIKA FUY Budi Rudianto http://rizaldi.web.id/repo/fuzzy/logikafuzzy-.ppt Logika Fuzzy adalah peningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. Di mana logika

Lebih terperinci

Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan

Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan Scientific Journal of Informatics Vol., No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/inde.php/sji e-issn 2460-0040 Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan

Lebih terperinci

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung

Lebih terperinci

FUZZY INFERENCE SYSTEM DENGAN METODE TSUKAMOTO SEBAGAI PEMBERI SARAN PEMILIHAN KONSENTRASI (STUDI KASUS: JURUSAN TEKNIK INFORMATIKA UII)

FUZZY INFERENCE SYSTEM DENGAN METODE TSUKAMOTO SEBAGAI PEMBERI SARAN PEMILIHAN KONSENTRASI (STUDI KASUS: JURUSAN TEKNIK INFORMATIKA UII) FUZZY INFERENCE SYSTEM DENGAN METODE TSUKAMOTO SEBAGAI PEMBERI SARAN PEMILIHAN KONSENTRASI (STUDI KASUS: JURUSAN TEKNIK INFORMATIKA UII) Arkham Zahri Rakhman 1, Helmanatun Nisa Wulandari 2, Geralvin Maheswara

Lebih terperinci

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Penentuan Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Shenna Miranda #1, Minora Longgom Nasution *2, Muhammad Subhan #3 #1 Student of Mathematics department State University

Lebih terperinci

JURNAL SISTEM PREDIKSI INVENTORY BARANG MENGGUNAKAN METODE FUZZY TSUKAMOTO PREDICTION INVENTORY ITEMS USING FUZZY TSUKAMOTO

JURNAL SISTEM PREDIKSI INVENTORY BARANG MENGGUNAKAN METODE FUZZY TSUKAMOTO PREDICTION INVENTORY ITEMS USING FUZZY TSUKAMOTO JURNAL SISTEM PREDIKSI INVENTORY BARANG MENGGUNAKAN METODE FUZZY TSUKAMOTO PREDICTION INVENTORY ITEMS USING FUZZY TSUKAMOTO Oleh: Reza Hadi Subiantoro 12.1.03.02.0224 Dibimbing oleh : 1. Fatkur Rhohman,

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: rimalianagema@upiyptk.ac.id ABSTRAK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh:

Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Logika Fuzzy Teori Dasar Crisp Logic Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Rule: If the temperature is higher than 80F, it is hot; otherwise, it is not

Lebih terperinci

Ci Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh:

Ci Crisp Logic. Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Logika Fuzzy 1 Teori Dasar Ci Crisp Logic Crisp logic is concerned with absolutes-true or false, there is no in-between. Contoh: Rule: If the temperature is higher than 80F, it is hot; otherwise, it is

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,

Lebih terperinci

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI)

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) 1Venny Riana Agustin, 2 Wahyu H. Irawan 1 Jurusan Matematika, Universitas

Lebih terperinci

PENGEMBANGAN SISTEM PAKAR FUZZY

PENGEMBANGAN SISTEM PAKAR FUZZY FUZZY EXPERT SYSTEM FUZZY INFERENCE SYSTEM FUZZY REASONING Toto Haryanto MATA KULIAH SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR PENGEMBANGAN SISTEM PAKAR FUZZY Domain Masalah Fuzzifikasi

Lebih terperinci

Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy

Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy Asrianda 1 Teknik Informatika Kampus Bukit Indah Lhokseumawe email : asrianda@unimal.ac.id ABSTRAK Bertambahnya permintaan

Lebih terperinci

1.1. Latar Belakang Masalah

1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu aplikasi sistem cerdas yang paling sukses dan masih berkembang saat ini yaitu peramalan beban listrik. Peramalan beban listrik adalah suatu ilmu

Lebih terperinci

LOGIKA SAMAR (FUZZY LOGIC)

LOGIKA SAMAR (FUZZY LOGIC) LOGIKA SAMAR (FUZZY LOGIC) 2. Himpunan Samar 2.. Himpunan Klasik dan Himpunan Samar Himpunan klasik merupakan himpunan dengan batasan yang tegas (crisp) (Jang, Sun, dan Mizutani, 24). Sebagai contoh :

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya

Institut Teknologi Sepuluh Nopember Surabaya Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY 1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Inteligent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk algoritma yang

Lebih terperinci

BAB IV PEMBAHASAN. A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai. Pertimbangan Pengambilan Keputusan Pemberian Kredit

BAB IV PEMBAHASAN. A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai. Pertimbangan Pengambilan Keputusan Pemberian Kredit BAB IV PEMBAHASAN A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai Pertimbangan Pengambilan Keputusan Pemberian Kredit Aplikasi fuzzy logic untuk pengambilan keputusan pemberian kredit

Lebih terperinci

PENERAPAN METODE TSUKAMOTO DALAM PEMBERIAN KREDIT SEPEDA MOTOR BEKAS PADA PT TRI JAYA MOTOR (Studi Kasus PT TRI JAYA MOTOR MEDAN )

PENERAPAN METODE TSUKAMOTO DALAM PEMBERIAN KREDIT SEPEDA MOTOR BEKAS PADA PT TRI JAYA MOTOR (Studi Kasus PT TRI JAYA MOTOR MEDAN ) Marsono, ISSN : 1978-6603 Saiful Nur Arif, Iskandar Zulkarnain, Penerapan Metode Tsukamoto PENERAPAN METODE TSUKAMOTO DALAM PEMBERIAN KREDIT SEPEDA MOTOR BEKAS PADA PT TRI JAYA MOTOR (Studi Kasus PT TRI

Lebih terperinci

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma.

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma. 6 BAB II TINJAUAN PUSTAKA 2.1 Gambaran Tentang Mata Mata merupakan organ tubuh manusia yang paling sensitif apabila terkena benda asing misal asap dan debu. Debu akan membuat mata kita terasa perih atau

Lebih terperinci

Versi Online tersedia di : JURNAL TECH-E (Online)

Versi Online tersedia di :  JURNAL TECH-E (Online) JURNAL TECH-E - VOL. 1 NO. 1 (17) Versi Online tersedia di : http://bsti.ubd.ac.id/e-jurnal JURNAL TECH-E 2581-1916 (Online) Artikel Perancangan Aplikasi Penentu Jurusan IPA atau IPS Pada SMA Menggunakan

Lebih terperinci

ANALISIS PENDUKUNG KEPUTUSAN PENENTUAN PEMBELIAN BAHAN BAKU UNTUK PEMBUATAN MEUBEL JENIS KURSI LETER L MENGGUNAKAN FUZZY TSUKAMOTO

ANALISIS PENDUKUNG KEPUTUSAN PENENTUAN PEMBELIAN BAHAN BAKU UNTUK PEMBUATAN MEUBEL JENIS KURSI LETER L MENGGUNAKAN FUZZY TSUKAMOTO ANALISIS PENDUKUNG KEPUTUSAN PENENTUAN PEMBELIAN BAHAN BAKU UNTUK PEMBUATAN MEUBEL JENIS KURSI LETER L MENGGUNAKAN FUZZY TSUKAMOTO Sulistiyono 1), Wahyu Oktri Widyarto 2) 1 Information Technology Faculty

Lebih terperinci

PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan)

PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan) PERBANDINGAN METODE TSUKAMOTO, METODE MAMDANI DAN METODE SUGENO UNTUK MENENTUKAN PRODUKSI DUPA (Studi Kasus : CV. Dewi Bulan) Komang Wahyudi Suardika 1, G.K. Gandhiadi 2, Luh Putu Ida Harini 3 1 Program

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH KECERDASAN BUATAN SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH AMARILIS ARI SADELA (E1E1 10 086) SITI MUTHMAINNAH (E1E1 10 082) SAMSUL (E1E1 10 091) NUR IMRAN

Lebih terperinci

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN:

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN: PENERAPAN LOGIKA FUZZY UNTUK MENENTUKAN MAHASISWA BERPRESTASI DI STMIK CIKARANG MENGGUNAKAN JAVA NETBEANS DAN MYSQL Ema Dili Giyanti 1), Ali Mulyanto 2) 1) Program Studi Teknik Informatika, STMIK Cikarang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu

Lebih terperinci

IMPLEMENTASI FUZZY TSUKAMOTO DALAM PENENTUAN KESESUAIAN LAHAN UNTUK TANAMAN KARET DAN KELAPA SAWIT

IMPLEMENTASI FUZZY TSUKAMOTO DALAM PENENTUAN KESESUAIAN LAHAN UNTUK TANAMAN KARET DAN KELAPA SAWIT IMPLEMENTASI FUZZY TSUKAMOTO DALAM PENENTUAN KESESUAIAN LAHAN UNTUK TANAMAN KARET DAN KELAPA SAWIT Maya Yusida 1, Dwi Kartini 2, Andi Farmadi 3, Radityo Adi Nugroho 4, Muliadi 5 123Prodi Ilmu Komputer

Lebih terperinci

LOGIKA FUZZY FUNGSI KEANGGOTAAN

LOGIKA FUZZY FUNGSI KEANGGOTAAN LOGIKA FUZZY FUNGSI KEANGGOTAAN FUNGSI KEANGGOTAAN (Membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai/derajat keanggotaannya yang memiliki interval

Lebih terperinci

LOGIKA FUZZY DALAM SISTEM PENGAMBILAN KEPUTUSAN PENERIMAAN BEASISWA

LOGIKA FUZZY DALAM SISTEM PENGAMBILAN KEPUTUSAN PENERIMAAN BEASISWA LOGIKA FUZZY DALAM SISTEM PENGAMBILAN KEPUTUSAN PENERIMAAN BEASISWA Siti Komariyah 1), Riza M. Yunus, Sandi Fajar Rodiyansyah 2) Jurusan Teknik Informatika, Fakultas Teknik, Universitas Majalengka Email

Lebih terperinci

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK)

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) Andrian Juliansyah ( 1011287) Mahasiswa Program Studi Teknik

Lebih terperinci

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Saintia Matematika Vol. 1, No. 3 (2013), pp. 233 247. PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Zati Azmiana, Faigiziduhu Bu ulolo, dan Partano Siagian Abstrak.

Lebih terperinci

BAB II. KAJIAN PUSTAKA. Menurut Gorry dan Scott (1970) dalam Turban (2005) Sistem Pendukung

BAB II. KAJIAN PUSTAKA. Menurut Gorry dan Scott (1970) dalam Turban (2005) Sistem Pendukung BAB II. KAJIAN PUSTAKA A. Sistem Pendukung Keputusan Menurut Gorry dan Scott (1970) dalam Turban (2005) Sistem Pendukung Keputusan (DSS) merupakan sistem berbasis komputer interaktif, yang membantu para

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB 2 LANDASAN TEORI 2.1 Pengertiaan Persediaan Persediaan adalah bahan atau barang yang disimpan yang akan digunakan untuk digunakan memenuhi tujuan tertentu, misalnya untuk proses produksi atau perakitan,

Lebih terperinci

Penerapan Logika Fuzzy Metode Sugeno Untuk Memprediksi Jumlah Penumpang Di Terminal Ronggo Sukowati Pamekasan

Penerapan Logika Fuzzy Metode Sugeno Untuk Memprediksi Jumlah Penumpang Di Terminal Ronggo Sukowati Pamekasan Penerapan Logika Fuzzy Metode Sugeno Untuk Memprediksi Jumlah Penumpang Di Terminal Ronggo Sukowati Pamekasan Tony Yulianto 1, Sugiono 2, M. Fariz Fadillah Mardianto 3 1,2,3) Program Studi Matematika,

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY oleh: 1 I Putu Dody Lesmana, 2 Arfian Siswo Bintoro 1,2 Jurusan Teknologi Informasi, Politeknik

Lebih terperinci

Penerapan Logika Fuzzy

Penerapan Logika Fuzzy 1 Penerapan Logika Fuzzy M. Faisal Baehaki - 13506108 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 1 m_faisal_b@yahoo.com

Lebih terperinci

Bab IV. Hasil Pengujian dan Analisis

Bab IV. Hasil Pengujian dan Analisis Bab IV Hasil Pengujian dan Analisis Pada bab ini akan dibahas mengenai pengujian mengenai sistem yang sudah dirancang dan dibuat. Pengujian yang dilakukan adalah pengujian dengan memberikan inputan yang

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER OBAT MENGGUNAKAN METODE FUZZY TSUKAMOTO

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER OBAT MENGGUNAKAN METODE FUZZY TSUKAMOTO Hamdani, Deviana Selywita SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER OBAT MENGGUNAKAN METODE FUZZY TSUKAMOTO 1) Hamdani, 2) Deviana Selywita, Jurusan Ilmu Komputer, Fakultas MIPA, Universitas Mulawarman

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 6 (2) (2017) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm IMPLEMENTASI FUZZY INFERENCE SYSTEM METODE SUGENO PADA PENENTUAN JUMLAH PRODUKSI SARUNG (Studi Kasus: PT. Asaputex

Lebih terperinci

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH Reino Adi Septiawan Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang Email : a11.2009.04948@gmail.com

Lebih terperinci

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB JURNAL MATRIX VOL. 3, NO. 1, MARET 2013 39 SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB I Ketut Suwintana Jurusan Akuntansi Politeknik Negeri Bali Kampus Bukit Jimbaran Bali Telp. +62 361 701981 Abstrak:.Logika

Lebih terperinci

Muhammad Yudin Ritonga ( )

Muhammad Yudin Ritonga ( ) SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PRODUKSI MAKANAN MENGGUNAKAN LOGIKA FUZZY DENGAN METODE TSUKAMOTO (STUDI KASUS : PT. INDOFOOD CBP SUKSES MAKMUR MEDAN) Muhammad Yudin Ritonga (0911555) Mahasiswa Program

Lebih terperinci

ABSTRAK. Kata kunci: Logika Fuzzy, Metode Mamdani, Penentuan Jumlah Produksi, Pengambilan Keputusan

ABSTRAK. Kata kunci: Logika Fuzzy, Metode Mamdani, Penentuan Jumlah Produksi, Pengambilan Keputusan Kaunia Vol. XI No. 2, Oktober 25/436: 9 99 ISSN 829-5266 (print) ISSN 23-855 (online) APLIKASI LOGIKA FUZZY METODE MAMDANI DALAM PENGAMBILAN KEPUTUSAN PENENTUAN JUMLAH PRODUKSI Muchammad Abrori dan Amrul

Lebih terperinci

PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO

PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO PENENTUAN KUALITAS CABE MERAH VARIETAS HOT BEAUTY DENGAN FUZZY INFERENCE SYSTEM TSUKAMOTO oleh TAUFIQ HANIF TRI SUSELO M0107017 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan

Lebih terperinci

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh T - 42 Yudha Al Afis, Agus Maman Abadi Prodi Matematika,

Lebih terperinci

Sistem Pendukung Keputusan Menentukan Matakuliah Pilihan... Pilihan pada Kurikulum Berbasis KKNI Menggunakan Metode Fuzzy Sugeno. Muhammad Dedi Irawan

Sistem Pendukung Keputusan Menentukan Matakuliah Pilihan... Pilihan pada Kurikulum Berbasis KKNI Menggunakan Metode Fuzzy Sugeno. Muhammad Dedi Irawan 27 Sistem Pendukung Keputusan Menentukan Matakuliah Pilihan pada Kurikulum Berbasis KKNI Menggunakan Metode Fuzzy Sugeno Muhammad Dedi Irawan Dosen Teknik Informatika, Universitas Asahan Jl. Jend. Ahmad

Lebih terperinci

REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO

REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO Endra Pratama, Titin Sri Martini, Mania Roshwita Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM)

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) Junius_Effendi* Email : Cyberpga@ymail.com ABSTRAK Penelitian ini dilakukan untuk memperlajari

Lebih terperinci

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO Asrianda 1 asrianda@unimal.ac.id Abstrak Bertambahnya permintaan mahasiswa atas kebutuhan makan seharihari, berkembangnya usaha warung

Lebih terperinci

BAB VII LOGIKA FUZZY

BAB VII LOGIKA FUZZY BAB VII LOGIKA FUZZY Logika fuzzy adalah suatu cara untuk memetakan suatu ruang input ke dalam suatu ruang output. Skema logika fuzzy : Antara input dan output terdapat suatu kotak hitam yang harus memetakan

Lebih terperinci

PENGHITUNGAN WAKTU PENGERINGAN KAYU JATI METODE PROGRESIF DENGAN LOGIKA FUZZY (STUDI KASUS CV. DWI TUNGGAL BAWEN)

PENGHITUNGAN WAKTU PENGERINGAN KAYU JATI METODE PROGRESIF DENGAN LOGIKA FUZZY (STUDI KASUS CV. DWI TUNGGAL BAWEN) PENGHITUNGAN WAKTU PENGERINGAN KAYU JATI METODE PROGRESIF DENGAN LOGIKA FUZZY (STUDI KASUS CV. DWI TUNGGAL BAWEN) Zainal Fanani, Heru Prastawa, Suswianti Program Studi Teknik Industri UNDIP Email : rosyada@gmail.com

Lebih terperinci

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Seminar Nasional Sistem Informasi Indonesia, 6 November 2017 REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Anisa Citra Mutia, Aria Fajar Sundoro,

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PROGRAM STUDI DI UNIVERSITAS MULAWARMAN MENGGUNAKAN METODE TSUKAMOTO (Studi kasus : Fakultas MIPA)

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PROGRAM STUDI DI UNIVERSITAS MULAWARMAN MENGGUNAKAN METODE TSUKAMOTO (Studi kasus : Fakultas MIPA) Jurnal Informatika Mulawarman Vol. 10 No. 1 Februari 2015 32 SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PROGRAM STUDI DI UNIVERSITAS MULAWARMAN MENGGUNAKAN METODE TSUKAMOTO (Studi kasus : Fakultas MIPA) Hanis

Lebih terperinci

APLIKASI SISTEM INFERENSI FUZZY METODE TSUKAMOTO DALAM PENILAIAN MUTU BENIH PADI

APLIKASI SISTEM INFERENSI FUZZY METODE TSUKAMOTO DALAM PENILAIAN MUTU BENIH PADI JMP : Volume 7 Nomor Juni 05 hal. 9-9 APLIKASI SISTEM INFERENSI FUZZY METODE TSUKAMOTO DALAM PENILAIAN MUTU BENIH PADI Diasta Risi Esa Annisa Mutia Nur Estri diastarisi@ymail.com Universitas Jenderal Soedirman

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga

Lebih terperinci

ANALISIS FUZZY INFERENCE SYSTEM SUGENO DAN TSUKAMOTO DALAM MENENTUKAN JUMLAH PRODUKSI DENGAN APLIKASI WEB

ANALISIS FUZZY INFERENCE SYSTEM SUGENO DAN TSUKAMOTO DALAM MENENTUKAN JUMLAH PRODUKSI DENGAN APLIKASI WEB ANALISIS FUZZY INFERENCE SYSTEM SUGENO DAN TSUKAMOTO DALAM MENENTUKAN JUMLAH PRODUKSI DENGAN APLIKASI WEB Kevin Adiputra, Siti Komsiyah, Michael Yosep Universitas Bina Nusantara, Jalan KH. Syahdan No.

Lebih terperinci

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah

Lebih terperinci

Sistem Pendukung Keputusan Pemilihan Tenaga Kontrak Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto (Studi Kasus PT.

Sistem Pendukung Keputusan Pemilihan Tenaga Kontrak Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto (Studi Kasus PT. Sistem Pendukung Keputusan Pemilihan Tenaga Kontrak Melalui Pendekatan Fuzzy Inference System dengan Metode Tsukamoto (Studi Kasus PT. Solo Murni) Fadil Indra Sanjaya 1), Dadang Heksaputra 2) Magister

Lebih terperinci

JURNAL SISTEM PENENTUAN HARGA PERCETAKAN FOTO DIGITAL MENGGUNAKAN FUZZY TSUKAMOTO DI ALIEF COMPUTER KOTA KEDIRI

JURNAL SISTEM PENENTUAN HARGA PERCETAKAN FOTO DIGITAL MENGGUNAKAN FUZZY TSUKAMOTO DI ALIEF COMPUTER KOTA KEDIRI JURNAL SISTEM PENENTUAN HARGA PERCETAKAN FOTO DIGITAL MENGGUNAKAN FUZZY TSUKAMOTO DI ALIEF COMPUTER KOTA KEDIRI PRICING SYSTEM USING DIGITAL PHOTO PRINTING ON FUZZY TSUKAMOTO ALIEF COMPUTER KEDIRI Oleh:

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Objek Penelitian Objek penelitian dalam tugas akhir ini adalah BPR BKK Kendal yang beralamatkan di jalan Soekarno Hatta No 335 Kendal. Penelitian ini berlangsung dari bulan

Lebih terperinci