BAB 3 PERANCANGAN DAN PEMBUATAN. Rangkaian dan Pengujian Sistem Control Aliran Air dengan Mikrokontroler

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 PERANCANGAN DAN PEMBUATAN. Rangkaian dan Pengujian Sistem Control Aliran Air dengan Mikrokontroler"

Transkripsi

1 T : Waktu (s) BAB 3 PERANCANGAN DAN PEMBUATAN Rangkaian dan Pengujian Sistem Control Aliran Air dengan Mikrokontroler ATMega8535 Dan Pemrograman C ini memiliki beberapa rangkaian-rangkaian dan perancangannya serta sistem flowchartnya, diantaranya : 3.1. Diagram Blok Rangkaian Suplay Pompa air Sensor water Flow Display Tabung Air Tombol 1 Liter Mikrokontroler Driver Relay Tombol 2 Liter Tombol 3 Liter Tombol Reset Gambar 3.1.Diagram Blok Sistem Fungsi Tiap Blok 1. Blok mikrokontroller : Mengkonversi data dari sensor ke LCD. 2. Blok Sensor Water flow : Sebagai Sensor untuk memberikan pulsa ke 34

2 Mikrokontroler. 3. Blok Pompa air : Sebagai Pompa, untuk mengalirkan air ke Sensor. 4. Blok Display : Sebagai output tampilan dari Sensor. 5. Blok power supply : Sebagai penyedia tegangan ke sistem dan Sensor. 6. Blok Relay : Sebagai saklar untuk menghidupkan dan mematikan pompa apabila inputan = output kecepatan kendaraan melebihi batas. 7. Blok tombol set1 : Sebagai inputan 1 aliran yang akan di Pompa. 8. Blok tombol set2 :sebagai inputan 2 aliran yang akan di Pompa. 9. Blok tombol set3 :sebagai inputan 3 aliran yang akan di Pompa. 10. Blok Reset :untuk memberi nilai awal pada nilai liter Prinsip Kerja dari Rangkaian Air dipompa melewati sensor aliran maka sensor akan mengeluarkan pulsa dari aliran dan pulsa yang dihasilkan dari sensor water flow diproses oleh mikrokontroler dengan komunikasi counter dengan 514 counter = 1 liter. Setiap pulsa high memberikan 1 counter data dari sensor dikalibrasi dan ditampilkan pada LCD sesuai yang telah di set. 35

3 3.3. Rangkaian Power Supplay Adaptor ( PSA ) Rangkaian ini berfungsi untuk memberikan supply tegangan ke seluruh rangkaian yang ada. Rangkaian PSA yang dibuat terdiri dari dua keluaran, yaitu 5 volt dan 12 volt, keluaran 5 volt digunakan untuk mensupplay tegangan ke seluruh rangkaian, sedangkan keluaran 12 volt digunakan untuk mensuplay tegangan ke relay. Rangkaian power supplay ditunjukkan pada gambar 3.2 berikut ini : Gambar 3.2.Rangkaian Power Supplay Adaptor (PSA) Trafo CT merupakan trafo stepdown yang berfungsi untuk menurunkan tegangan dari 220 volt AC menjadi 12 volt AC. Kemudian 12 volt AC akan disearahkan dengan menggunakan dua buah dioda, selanjutnya 12 volt DC akan diratakan oleh kapasitor 2200 μf. Regulator tegangan 5 volt (LM7805CT) digunakan agar keluaran yang dihasilkan tetap 5 volt walaupun terjadi perubahan pada tegangan masukannya.led hanya sebagai indikator apabila PSA dinyalakan. Transistor PNP TIP 32 disini berfungsi untuk mensupplay arus apabila terjadi kekurangan arus pada rangkaian, sehingga regulator tegangan (LM7805CT) tidak 36

4 akan panas ketika rangkaian butuh arus yang cukup besar. Tegangan 12 volt DC langsung diambil dari keluaran 2 buah dioda penyearah Rangkaian Mikrokontroller ATMega8535 Rangkaian sistem minimum mikrokontroler ATMega8535 dapat dilihat pada gambar 3.3 di bawah ini : Gambar 3.3. Rangkaian sistem minimum mikrokontroler ATMega8535 Dari gambar 3.3, Rangkaian tersebut berfungsi sebagai pusat kendali dari seluruh sistem yang ada.komponen utama dari rangkaian ini adalah IC Mikrokontroler ATMega8535.Semua program diisikan pada memori dari IC ini sehingga rangkaian dapat berjalan sesuai dengan yang dikehendaki. Pin 12 dan 13 dihubungkan ke XTAL 8 MHz dan dua buah kapasitor 30 pf. XTAL ini akan mempengaruhi kecepatan mikrokontroler ATMega8535 dalam mengeksekusi setiap perintah dalam program. Pin 9 merupakan masukan reset 37

5 (aktif rendah). Pulsa transisi dari tinggi ke rendah akan me-reset mikrokontroler ini. Untuk men-download file heksadesimal ke mikrokontroler, Mosi, Miso, Sck, Reset, Vcc dan Gnd dari kaki mikrokontroler dihubungkan ke Jack 10 Pin header sebagai konektor yang akan dihubungkan ke ISP Programmer. Dari ISP Programmer inilah dihubungkan ke komputer melalui port paralel. Kaki Mosi, Miso, Sck, Reset, Vcc dan Gnd pada mikrokontroler terletak pada kaki 6, 7, 8, 9, 10 dan 11. Apabila terjadi keterbalikan pemasangan jalur ke ISP Programmer, maka pemograman mikrokontroler tidak dapat dilakukan karena mikrokontroler tidak akan bisa merespon Perancangan Rangkaian LCD (Liquid Crystal Display) Pada alat ini, display yang digunakan adalah LCD (Liquid Crystal Display) 16x2. Untuk blok ini tidak ada komponen tambahan karena mikrokontroler dapat memberi data langsung ke LCD, pada LCD Hitachi - M1632 sudah terdapat driver untuk mengubah data ASCII output mikrokontroler menjadi tampilan karakter. Pemasangan potensio sebesar 5 KΩ untuk mengatur kontras karakter yang tampil.gambar 3.4 berikut merupakan gambar rangkaian LCD yang dihubungkan ke mikrokontroler. 38

6 Gambar 3.4.Rangkaian LCD Dari gambar 3.4, rangkaian ini terhubung ke PC.0... PC.6, yang merupakan pin I/O dua arah dan pin fungsi khusus, yaitu sebagai komunikan two slave dan SPI mempunyai fungsi khusus sebagai pengiriman data secara serial. Sehingga nilai yang akan tampil pada LCD display akan dapat dikendalikan oleh Mikrokontroller ATMega Perancangan sensor Water Flow Gambar 3.5.Rangkaian sensor water flow 39

7 Pada rangkaian ini sensor terhubung ke PORTB.1, yaitu sebagai counter, sensor water flow akan menghasilakan pulsa apabila di aliri cairan, setiap pulsa yang masuk ke mikrokontroler akan dip proses dan di kalibrasi. Water flow sensor ini terdiri atas katup plastik, rotor air, dan sebuah sensor hall-effect.prinsip kerja sensor ini adalah dengan memanfaatkan fenomena efek Hall. Efek Hall ini didasarkan pada efek medan magnetik terhadap partikel bermuatan yang bergerak. Ketika ada arus listrik yang mengalir pada divais efek Hall yang ditempatkan dalam medan magnet yang arahnya tegak lurus arus listrik, pergerakan pembawa muatan akan berbelok ke salah satu sisi dan menghasilkan medan listrik. Medan listrik terus membesar hingga gaya Lorentz yang bekerja pada partikel menjadi nol. Perbedaan potensial antara kedua sisi divais tersebut disebut potensial Hall. Potensial Hall ini sebanding dengan medan magnet dan arus listrik yang melalui divais Perancangan Relay dan Pompa Gambar 3.6.Relay dan Pompa Komponen utama dari rangkaian ini adalah relay. Relay ini memisahkan tegangan rendah dari rangkaian dengan tegangan tinggi dari beban yang dihubungkan dengan sumber tegangan 12 volt DC 40

8 Relay merupakan salah satu komponen elektronik yang terdiri dari lempengan logam sebagai saklar dan kumparan yang berfungsi untuk menghasilkan medan magnet. Pada rangkaian ini digunakan relay 12 volt, ini berarti jika positif relay (kaki 1) dihubungkan ke sumber tegangan 12 volt dan negative relay (kaki 2) dihubungkan ke ground, maka kumparan akan menghasilkan medan magnet, dimana medan magnet ini akan menarik logam yang mengakibatkan saklar terhubung. Pada rangkaian ini untuk mengaktifkan atau menon-aktifkan relay digunakan transistor type PNP. Dari gambar dapat dilihat bahwa negative relay dihubungkan ke kolektor akan terhubung ke emitor dimana emitor langsung terrhubung ke ground yang menyebabkan tegangan di kolektor menjadi 0 volt, keadaan ini akan mwngakibatkan relay aktif. Sebaliknya jika transistor tidakaktif, maka kolektor tidak terhubung ke emitor, sehingga tegangan pada kolektor menjadi 9 volt, keadaan ini menyebabkan tidak aktifkumparan pada relay akan menghasilkam tegangan singkat yang besar ketika relay dinon-aktifkan dan ini dapat merusak transistor yang ada pada rangkaian ini. Untuk mencegah kerusakan pada transistor tersebut sebuah dioda harus dihubungkan ke relay tersebut.dioda dihubungkan secara terbalik sehingga secara normal dioda ini tidak menghantarkan. Penghantaran hanya terjadi ketika relay dinonaktifkan, pada saat ini arus akan terus mengalir melalui kumparan dan arus ini akan dialirkan ke dioda. Tanpa adanya dioda arus sesaat yang besar itu akan mengalir ke transistor, yang mengakibatkan kerusakan pada transistor. 41

9 3.8. Flowchart Sistem Start Inisialising Pilih tombol inputan liter Tampil LCD Pompa aktif Menerima aliran ke sensor Konversi Pulsa menjadi liter Hitung Pulsa ke liter tidak Apakah input = output? Pompa mati Selesai Gambar 3.7.Flowchartsystem 42

10 BAB 4 HASIL DAN PEMBAHASAN Berikut ada beberapa Pengujian Rangkaian serta Program Lengkap dari Rangkaian dan Pengujian Sistem Kontrol Aliran Air dengan Mikrokontroler ATMega8535 dan Pemograman C, diantaranya adalah : 4.1. Pengujian Rangkaian Power Supply Pengujian rangkaian power supply ini bertujuan untuk mengetahui tegangan yang dikeluarkan oleh rangkaian tersebut, dengan mengukur tegangan keluaran dari power supply menggunakan multimeter digital. Setelah dilakukan pengukuran maka diperoleh besarnya tegangan keluaran sebesar 5 volt.dengan begitu dapat dipastikan apakah terjadi kesalahan terhadap rangkaian atau tidak. Jika diukur, hasil dari keluaran tegangan tidak murni sebesar +9 Volt dan +12 Volt, tetapi +8.97Volt dan Volt. Hasil tersebut dikarenakan beberapa faktor, diantaranya kualitas dari tiap-tiap komponen yang digunakan nilainya tidak murni.selain itu, tegangan jala-jala listrik yang digunakan tidak stabil Pengujian Rangkaian Mikrokontroler ATMega8535 Karena pemrograman menggunakan mode ISP (In System Programming) mikrokontroler harus dapat diprogram langsung pada papan rangkaian dan rangkaian mikrokontroler harus dapat dikenali oleh program downloader. Pada pengujian ini berhasil dilakukan dengan dikenalinya jenis mikrokontroler oleh program downloader yaitu ATMega

11 Gambar 4.1.Informasi Signature Mikrokontroler ATMega menggunakan kristal dengan frekuensi 8 MHz, apabila Chip Signature sudah dikenali dengan baik dan dalam waktu singkat, bisa dikatakan rangkaian mikrokontroler bekerja dengan baik dengan mode ISP-nya Interfacing LCD 2x16 Bagian ini hanya terdiri dari sebuah LCD dot matriks 2 x 16 karakter yang berfungsi sebagai tampilan hasil pengukuran dan tampilan dari beberapa keterangan. LCD dihubungkan langsung ke Port D dari mikrokontroler yang berfungsi mengirimkan data hasil pengolahan untuk ditampilkan dalam bentuk alfabet dan numerik pada LCD.Display karakter pada LCD diatur oleh pin EN, RS dan RW: Jalur EN dinamakan Enable. Jalur ini digunakan untuk memberitahu LCD bahwa anda sedang mengirimkan sebuah data. Untuk mengirimkan data ke LCD, maka melalui program EN harus dibuat logika low 0 dan set ( high ) pada dua jalur kontrol yang lain RS dan RW. Jalur RW adalah jalur kontrol Read/ Write. Ketika RW berlogika low (0), maka informasi pada bus data 44

12 akandituliskan pada layar LCD. Ketika RW berlogika high 1, maka program akan melakukan pembacaan memori dari LCD. Sedangkan pada aplikasi umum pin RW selalu diberi logika low ( 0 ) Berdasarkan keterangan di atas maka kita sudah dapat membuat progam untuk menampilkan karaker pada display LCD. Adapun program yang diisikan ke mikrokontroller untuk menampilkan karakter pada display LCD adalah sebagai berikut: #include <mega8535.h> #include <stdio.h> #include <delay.h> #include <alcd.h> void main(void) { PORTA=0xff; DDRA=0x0F; PORTB = 0X03; DDRB = 0X8F; PORTD.7 = 1; DDRD.7 = 0; lcd_init(16); lcd_gotoxy(0,0); lcd_putsf("tes LCD"); } Program di atas akan menampilkan kata Tes LCD di baris pertama pada display LCD 2x16. Pada alat dalam penelitian ini, Saat keseluruhan rangkaian 45

13 diaktifkan, maka pada LCD akan menampilkan status sensor dan pemberitahuan apabila menerima sms Pengujian Rangkaian Sensor Water Flow Pengujian rangkaian water flow sensor ini yaitu sensor akan menghasilkan pulsa setiap aliran yang di lewati sensor. Setip pulsa akan di kalibrasi dengan dalam satuan liter, setelah diuji pada sensor saya ini untuk mendapatkan pulsa dalam 1 liter, yaitu sensor menghasilkan pulsa sebanyak 514 pulsa, untuk mengkalibrasi dalam satuan liter, setiap pulsa di bagi dengan 514, maka akan dapat satuan liter. Tabel 4.1. Tabel Pengujian Pulsa Water Flow Sensor No Pulsa Liter Water flow sensor ini terdiri atas katup plastik, rotor air, dan sebuah sensor halleffect. Ketika air mengalir melalui pipa dalam sensor ini, maka akan mengenai rotor, dan membuatnya berputar. Kecepatan putar rotor akan berubah ketika kecepatan aliran air berubah pula. Output dari sensor hall-effect akan sebanding dengan pulsa yang digenerate rotor. Pulsa ini akan di hubungkan ke counter pada 46

14 mikrokontroler dengan 514 counter = 1 liter. Untuk mendapatkan perliter, setiap counter di bagi dengan Grafik Pulsa vs Volume Air Pulsa Volume (liter) Gambar 4.2. Grafik Pulsa Sensor Terhadap Volume Air Dari grafik perbandingan antara pulsa terhadap volume air, dapat disimpulkan bahwa pulsa keluaran dari sensor berbanding lurus terhadap volume air. Dengan katalain semakin besar pulsa yang dihasilkan, semakin besar juga volume air yang dialirkan. Demikian juga terhadap volume airnya. Semakin banyak volume airnya, maka semakin besar juga pulsa yang dihasilkan oleh sensornya Pengujian Rangkaian Relay dan Pompa Air Pada pengujian rangkaian relay, yaitu dengan memberi tegangan pada basis transistor, yang di gunakan pada driver relay. Transistor pada rangkaian ini di gunakan sebagai swiching, artinya apabila basis di beri tegangan maka colektor akan terhubung ke emitter, dan relay aktif. Berikut adalah program untuk 47

15 pengujian relay. Yaitu memberikan tegangan pada basis transistor dengan mikrokontroler. #include <mega8535.h> #include <delay.h> void main(void) { DDRA=0x01; PORTA=0x01; DDRB=0x00; PORTB=0x00; DDRC=0x00; PORTC=0x00; DDRD=0x00; PORTD=0x00; while (1) { PORTB.0=1; delay_ms(1000); PORTB.0=0; delay_ms(1000); } } Setelah Program di atas di download ke mikrokontroler, secara otomatis relay akan mengalami kondisi terbuka dan tertutup selama 1 detik. 48

16 4.6 Program Lengkap Berikut adalah program yang bekerja dalam rangkaian yang dibuat. Apabila program dibawah di download ke mikrokontroler, maka rangkaian yang dibuat dapat bekerja dengan baik. /****************************************************** * This program was created by the CodeWizardAVR V3.12 Advanced Automatic Program Generator Copyright Pavel Haiduc, HP InfoTech s.r.l. Project : Version : Date : 05/07/2015 Author : Company : Comments: Chip type : ATmega8535 Program type : Application AVR Core Clock frequency: MHz Memory model : Small External RAM size : 0 Data Stack size : 128 ******************************************************* / #include <mega8535.h> #include <stdio.h> #include <delay.h> 49

17 #include <stdlib.h> #define reset PIND.7 #define t1 PIND.4 #define t2 PIND.5 #define t3 PIND.6 #define pump PORTD.3 // Alphanumeric LCD functions #include <alcd.h> unsigned char temp[8]; int data,set1=0, set2=0, set3=0, state=0, loop, waktu; float liter=0; char buff[8]; // Declare your global variables here void main(void) { // Declare your local variables here // Input/Output Ports initialization // Port A initialization // Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=Out Bit2=In Bit1=In Bit0=In DDRA=(0<<DDA7) (0<<DDA6) (0<<DDA5) (0<<DDA4) (1<<DDA3) (0<<DDA2) (0<<DDA1) (0<<DDA0); // State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=0 Bit2=P Bit1=P Bit0=P PORTA=(0<<PORTA7) (0<<PORTA6) (0<<PORTA5) (0<<PORTA4) (0<<PORTA3) (1<<PORTA2) (1<<PORTA1) (1<<PORTA0); // Port B initialization 50

18 // Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRB=(0<<DDB7) (0<<DDB6) (0<<DDB5) (0<<DDB4) (0<<DDB3) (0<<DDB2) (0<<DDB1) (0<<DDB0); // State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTB=(0<<PORTB7) (0<<PORTB6) (0<<PORTB5) (0<<PORTB4) (0<<PORTB3) (0<<PORTB2) (0<<PORTB1) (0<<PORTB0); // Port C initialization // Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRC=(0<<DDC7) (0<<DDC6) (0<<DDC5) (0<<DDC4) (1<<DDC3) (0<<DDC2) (0<<DDC1) (0<<DDC0); // State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTC=(1<<PORTC7) (1<<PORTC6) (1<<PORTC5) (1<<PORTC4) (0<<PORTC3) (0<<PORTC2) (0<<PORTC1) (0<<PORTC0); // Port D initialization // Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRD=(0<<DDD7) (0<<DDD6) (0<<DDD5) (0<<DDD4) (1<<DDD3) (0<<DDD2) (0<<DDD1) (0<<DDD0); // State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTD=(1<<PORTD7) (1<<PORTD6) (1<<PORTD5) (1<<PORTD4) (0<<PORTD3) (0<<PORTD2) (0<<PORTD1) (0<<PORTD0); // Timer/Counter 0 initialization 51

19 // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=0xff // OC0 output: Disconnected TCCR0=(0<<WGM00) (0<<COM01) (0<<COM00) (0<<WGM01) (0<<CS02) (0<<CS01) (0<<CS00); TCNT0=0x00; OCR0=0x00; // Timer/Counter 1 initialization // Clock source: T1 pin Falling Edge // Mode: Normal top=0xffff // OC1A output: Disconnected // OC1B output: Disconnected // Noise Canceler: Off // Input Capture on Falling Edge // Timer1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off TCCR1A=(0<<COM1A1) (0<<COM1A0) (0<<COM1B1) (0<<COM1B0) (0<<WGM11) (0<<WGM10); TCCR1B=(0<<ICNC1) (0<<ICES1) (0<<WGM13) (0<<WGM12) (1<<CS12) (1<<CS11) (0<<CS10); TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 2 initialization 52

20 // Clock source: System Clock // Clock value: Timer2 Stopped // Mode: Normal top=0xff // OC2 output: Disconnected ASSR=0<<AS2; TCCR2=(0<<WGM20) (0<<COM21) (0<<COM20) (0<<WGM21) (0<<CS22) (0<<CS21) (0<<CS20); TCNT2=0x00; OCR2=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=(0<<OCIE2) (0<<TOIE2) (0<<TICIE1) (0<<OCIE1A) (0<<OCIE1B) (0<<TOIE1) (0<<OCIE0) (0<<TOIE0); // External Interrupt(s) initialization // INT0: Off // INT1: Off // INT2: Off MCUCR=(0<<ISC11) (0<<ISC10) (0<<ISC01) (0<<ISC00); MCUCSR=(0<<ISC2); // USART initialization // USART disabled UCSRB=(0<<RXCIE) (0<<TXCIE) (0<<UDRIE) (0<<RXEN) (0<<TXEN) (0<<UCSZ2) (0<<RXB8) (0<<TXB8); // Analog Comparator initialization // Analog Comparator: Off // The Analog Comparator's positive input is // connected to the AIN0 pin // The Analog Comparator's negative input is 53

21 // connected to the AIN1 pin ACSR=(1<<ACD) (0<<ACBG) (0<<ACO) (0<<ACI) (0<<ACIE) (0<<ACIC) (0<<ACIS1) (0<<ACIS0); SFIOR=(0<<ACME); // ADC initialization // ADC disabled ADCSRA=(0<<ADEN) (0<<ADSC) (0<<ADATE) (0<<ADIF) (0<<ADIE) (0<<ADPS2) (0<<ADPS1) (0<<ADPS0); // SPI initialization // SPI disabled SPCR=(0<<SPIE) (0<<SPE) (0<<DORD) (0<<MSTR) (0<<CPOL) (0<<CPHA) (0<<SPR1) (0<<SPR0); // TWI initialization // TWI disabled TWCR=(0<<TWEA) (0<<TWSTA) (0<<TWSTO) (0<<TWEN) (0<<TWIE); // Alphanumeric LCD initialization // Connections are specified in the // Project Configure C Compiler Libraries Alphanumeric LCD menu: // RS - PORTC Bit 0 // RD - PORTC Bit 1 // EN - PORTC Bit 2 // D4 - PORTC Bit 3 // D5 - PORTC Bit 4 // D6 - PORTC Bit 5 // D7 - PORTC Bit 6 // Characters/line: 16 lcd_init(16); 54

22 while (1) { if (reset==0){pump=0;state=0;set1=0;data=0,liter=0; loop=0;} while (state==0) { lcd_gotoxy(0,0); lcd_putsf("pilih Pengisian"); delay_ms(50); if (t1==0){set1=1;state=1;} if (t2==0){set2=1;state=1;} if (t3==0){set3=1;state=1;} lcd_clear(); } while (set1==1) { data=tcnt1; liter=data* ;// =1/514; ftoa(liter,2,temp); if (liter>=1) { pump=0; liter=1; } else { pump=1; loop++; waktu=loop* *100; itoa(waktu,buff); 55

23 lcd_gotoxy(0,0); lcd_putsf("waktu :"); lcd_gotoxy(13,0); lcd_putsf("ms"); lcd_gotoxy(8,0); lcd_puts(buff); delay_ms(50); } ftoa(liter,2,temp); lcd_gotoxy(8,1); lcd_puts(temp); lcd_gotoxy(13,1); lcd_putsf("l"); lcd_gotoxy(0,1); lcd_putsf("volume:"); if (reset==0){pump=0;state=0;set1=0;data=0,liter=0;tcnt1=0 ; loop=0;} } while (set2==1) { data=tcnt1; liter=data* ;// =1/514; ftoa(liter,2,temp); if (liter>=2) { pump=0; liter=2; } else { pump=1; 56

24 loop++; waktu=loop* *100; itoa(waktu,buff); lcd_gotoxy(0,0); lcd_putsf("waktu :"); lcd_gotoxy(13,0); lcd_putsf("ms"); lcd_gotoxy(8,0); lcd_puts(buff); delay_ms(50); } ftoa(liter,2,temp); lcd_gotoxy(8,1); lcd_puts(temp); lcd_gotoxy(13,1); lcd_putsf("l"); lcd_gotoxy(0,1); lcd_putsf("volume:"); if (reset==0){pump=0;state=0;set2=0;data=0,liter=0;tcnt1=0 ;loop=0;} } while (set3==1) { data=tcnt1; liter=data* ;// =1/514; ftoa(liter,2,temp); if (liter>=3) { pump=0; liter=3; } 57

25 else { pump=1; loop++; waktu=loop* *100; itoa(waktu,buff); lcd_gotoxy(0,0); lcd_putsf("waktu :"); lcd_gotoxy(13,0); lcd_putsf("ms"); lcd_gotoxy(8,0); lcd_puts(buff); delay_ms(50); } ftoa(liter,3,temp); lcd_gotoxy(8,1); lcd_puts(temp); lcd_gotoxy(13,1); lcd_putsf("l"); lcd_gotoxy(0,1); lcd_putsf("volume:"); if (reset==0){pump=0;state=0;set3=0;data=0,liter=0;tcnt1=0 ;loop=0;} } } } 58

26 4.7. Pengujian Alat Pengujian ini dilakukan untuk mengukur unjuk kerja sistem dalam pengukuran laju aliran fluida. Pengujian dilakukan dengan mengalirkan air melalui water flow sensor YF-S201 dan selanjutnya ditampung dengan gelas ukur. Dengan asumsi bahwa laju aliran air oleh pompa dianggap konstan, maka referensi pengukuran laju aliran adalah volume air terukur pada gelas ukur dibagi dengan waktu yang diperlukan.ketidak-pastian pengukuran volumetrik dan pengukuran waktu dianggap tidak signifikan dibanding ketidak-pastian alat ukur yang dibuat sehingga dapat diabaikan. Kedua asumsi ini diambil karenaterkadang terjadi eror pada chip mikrokontroler, sehingga dalam pembacaan program yangdimasukkan terjadi kesalahan. Namun hingga Tugas Akhir ini diselesaikan, perangkat ini belum dapat diselesaikan dengan baik Analisis Data Pengukuran Laju Aliran Air (Debit) Debit air adalah kecepatan aliran zat cair per satuan waktu. Untuk dapat menemukan debit air maka kita harus mengetahui satuan ukuran volume dan satuan ukuran waktu terlebih dahulu, karena debit air berkaintan erat dengan satuan volume dan satuan waktu. Debit (v) = Volume (V) : Waktu (s)... (4.1) 59

27 Tabel 4.2. Pengukuran Waktu Aliran Air Volume (liter) Waktu (s) Debit (liter/waktu) 22 0, , , , , , , , ,050 Dari Table 4.2. dapat ditentukan debit dari tiap pengukuran dan debit rata-rata antara lain : 1. Untuk volume 1 liter Pengukuran Pertama v 1 = 1liter 22s = 0,045 l/ s Pengukuran Kedua v 2 = 1liter 21s = 0,047 l/ s Pengukuran Ketiga v 3 = 1liter 20s = 0,050 l/ s 60

28 waktu (sekon) 22, , , ,5 19 Grafik Pengukuran 1 Liter 0,045 0,047 0,050 Debit (l/s) Gambar 4.3. Grafik Pengukuran Debit Dalam 1 Liter 2. Untuk volume 2 liter Pengukuran Pertama 2liter v 4 = = 0,045 l/ s 44s Pengukuran Kedua 2liter v 5 = = 0,047 l/ s 42s Pengukuran Ketiga 2liter v 6 = = 0,050 l/ s 40s 61

29 Grafik Pengukuran 2 Liter Waktu (sekon) ,045 0,047 0,050 Debit (l/s) Gambar 4.4. Grafik Pengukuran Debit Dalam 2 Liter 3. Untuk volume 3 liter Pengukuran Pertama v 7 = 3liter 66s = 0,045 l/ s Pengukuran Kedua v 8 = 3liter 63s = 0,047 l/ s Pengukuran Ketiga v 9 = 3liter 60s = 0,050 l/ s 62

30 Waktu (sekon) Grafik Pengukuran 3 Liter 0,045 0,047 0,050 Debit (l/s) Gambar 4.5. Grafik Pengukuran Debit Dalam 3 Liter Debit rata rata dari pengukuran antara lain : Vrata rata = v + v2 + v3 + v4 + v5 + v6 + v7 + v v9 0, , , , , , , , ,050 = 9 = 0,0473 l / s 63

31 Tabel 4.3. Pengukuran Laju Air Volume (Liter) Waktu (s) Debit (Liter/Waktu) 22 0, , , , , , , , ,050 Debit Rata rata pengukuran = 0,0473 l / s 64

32 BAB 5 KESIMPULAN DAN SARAN 5.1. Kesimpulan Dari evaluasi hasil kerja alat dapat diambil beberapa kesimpulan dalam tugas proyek ini : 1. Water flow yang digunakan adalah tipe YF-S201 berfungsi sebagai sensor hall effectuntuk pengukuran aliran air. 2. Mikrokontroller ATMega8535 untuk memproses data dari Water Flow sensor YF-S201dan ditampilkan ke Display LCD. 3. Hasil sensor menghasilkan debit air rata-rata 0,0473 liter/detik 5.2. Saran Setelah melakukan penulisan ini diperoleh beberapa hal yang dapat dijadikan saran untuk dapat dilakukan perancangan lebih lanjut, yaitu : 1. Diperlukan rancangan yang lebih teliti lagi pada alat agar rangkaian ini dapat bekerja lebih sempurna. 2. Agar debit air lebih maksimum maka diperlukan untuk mengubah sistem deteksi pada water flow sensor. 65

Universitas Sumatera Utara

Universitas Sumatera Utara 1 2 Lampiran 1 : Skematik Rangkaian Seluruh Alat 3 Lampiran 2 : Listing Program /******************************************************* This program was created by the CodeWizardAVR V3.12 Advanced Automatic

Lebih terperinci

LAMPIRAN A. Gambar A. Layout alat tongkat tunanetra. Ubiversitas Sumatera Utara

LAMPIRAN A. Gambar A. Layout alat tongkat tunanetra. Ubiversitas Sumatera Utara LAMPIRAN A Pada gambar A. di bawah ini menjelaskan tentang layout atau susunan komponen yang mencakup semuanya alat tongkat tunanetra selanjutnya dapat di lihat pada gambar sebagai berikut : Gambar A.

Lebih terperinci

Gambar 4.1 Rangkaian keseluruhan

Gambar 4.1 Rangkaian keseluruhan 24 BAB IV IMPLEMENTASI DATA DAN ANALISIS 4.1 Pengujian Dalam bab ini akan dibahas mengenai pengujian dan analisa dari simulasi sistem perancangan program. Tujuan simulasi adalah untuk mengetahui kebenaran

Lebih terperinci

Langkah-langkah pemrograman: 1. Pilih File >> New:

Langkah-langkah pemrograman: 1. Pilih File >> New: Kondisi sistem: Mikrokontroler yang digunakan adalah ATmega8535, dalam hal ini untuk memudahkan digunakan DI-Smart AVR System. Tujuan pemrogram adalah untuk menampilkan tulisan Apa Kabar Dunia? SEMANGAT!

Lebih terperinci

Listing Program Aquaponik

Listing Program Aquaponik Listing Program Aquaponik /******************************************************* Chip type : ATmega16 Program type : Application AVR Core Clock frequency : 12,000000 MHz Memory model : Small External

Lebih terperinci

Tabel Data Pengujian 5x Perubahan Posisi. Kanan (V) Kiri (V)

Tabel Data Pengujian 5x Perubahan Posisi. Kanan (V) Kiri (V) LAMPIRAN Tabel Data Pengujian 5x Perubahan Posisi 1. Motor 2 tak Kawasaki Ninja 2011 Waktu (menit) Tengah Kanan Kiri Atas Bawah Ratarata 3 8,60 8,62 8,60 8,63 8,62 8,614 6 8,60 8,52 8,54 8,66 8,65 8,594

Lebih terperinci

Kajian Pustaka. Spesifikasi - Krisbow KW Fitur - Krisbow KW06-290

Kajian Pustaka. Spesifikasi - Krisbow KW Fitur - Krisbow KW06-290 LAMPIRAN Kajian Pustaka Fitur - Krisbow KW06-290 Dua modus memberikan 2.5dB 3.5dB atau akurasi A dan berat C pengukuran tinggi dan rendah berkisar: Rendah (35 sampai 100dB) tinggi (65 sampai 130dB) Resolusi

Lebih terperinci

Langkah-langkah pemrograman: 1. Pilih File >> New:

Langkah-langkah pemrograman: 1. Pilih File >> New: Kondisi sistem: Mikrokontroler yang digunakan adalah ATmega8535, dalam hal ini untuk memudahkan digunakan DI-Smart AVR System. Tujuan pemrogram adalah untuk menyalakan LED yang active-low dan terhubung

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN

BAB 3 PERANCANGAN DAN PEMBUATAN BAB 3 PERANCANGAN DAN PEMBUATAN 3.1. Diagram Blok Rangkaian Power Suplay infrared Photodioda LCD Mikrokontroller Keypad Solenoid Door lock Gambar 3.1. Diagram Blok Rangkaian 3.1.1 Fungsi Tiap Blok Blok

Lebih terperinci

RANGKAIAN LENGKAP. Rangkaian Output Suara Dan Rangkaian Op-Amp

RANGKAIAN LENGKAP. Rangkaian Output Suara Dan Rangkaian Op-Amp RANGKAIAN LENGKAP Rangkaian Output Suara Dan Rangkaian Op-Amp Rangkaian USB to TTL PROGRAM LENGKAP /****************************************************** This program was created by the CodeWizardAVR

Lebih terperinci

Standar Operasional Prosedur Alat

Standar Operasional Prosedur Alat LAMPIRAN Standar Operasional Prosedur Alat 1. Letakkan sampel/objek yang akan dibersihkan pada keranjang didalam chamber 2. Pastikan chamber telah terisi oleh air sebelum alat dihidupkan. Isi air secukupnya

Lebih terperinci

Penerima Remote SONY dengan ATmega32

Penerima Remote SONY dengan ATmega32 Pendahuluan Standar Remote Kontrol yang mudah untuk dimengerti dan diaplikasikan adalah standar SIRC atau lebih dikenal dengan standar SONY. Bagian terkecil dari sinyal pembacaan pada standar ini adalah

Lebih terperinci

LAMPIRAN. A. Pembuatan Minimun system dan Penanaman Program 1. Rangkaian Minimum System yang telah dilarutkan, di bor dan dipasang komponen

LAMPIRAN. A. Pembuatan Minimun system dan Penanaman Program 1. Rangkaian Minimum System yang telah dilarutkan, di bor dan dipasang komponen LAMPIRAN A. Pembuatan Minimun system dan Penanaman Program 1. Rangkaian Minimum System yang telah dilarutkan, di bor dan dipasang komponen 2. Rangkaian Driver relay dan sensor suhu yang telah dilarutkan

Lebih terperinci

BAB 3 PERANCANGAN ALAT. Sensor Utrasonik. Relay. Relay

BAB 3 PERANCANGAN ALAT. Sensor Utrasonik. Relay. Relay BAB 3 PERANCANGAN ALAT 3.1 Diagram Blok Berikut ini adalah diagram blok sistem rancang bangun alat pengontrol volume air dan aerator pada kolam budidaya udang menggunakan mikrokontroler. Sensor Utrasonik

Lebih terperinci

Listing Program. // Declare your global variables here

Listing Program. // Declare your global variables here Listing Program #include // standart input/output library #include // delay library #include // Alphanumeric LCD functions #include // adc mode avcc 10bit #define ADC_VREF_TYPE

Lebih terperinci

BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM PSA 5 V. Mikrokontroler ATMega8535

BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM PSA 5 V. Mikrokontroler ATMega8535 27 BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM 3.1 Perancangan Blok Diagram Sistem Adapun diagram blok dari system yang dirancang,seperti yang diperlihatkan pada gambar 3.1 di bawah ini: PSA 5 V DS18B20

Lebih terperinci

Project : Version : Date : 15/05/2013 Author : F4CG Company : F4CG Comments:

Project : Version : Date : 15/05/2013 Author : F4CG Company : F4CG Comments: 48 Program Keseluruhan ********************************************************************* This program was produced by the CodeWizardAVR V1.25.8 Standard Automatic Program Generator Copyright 1998-2007

Lebih terperinci

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535

RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 RANCANG BANGUN RAUTAN PENSIL PINTAR BERBASIS MIKROKONTROLER ATMEGA 8535 Laporan Ini Disusun Untuk Memenuhi Persyaratan Mata Kuliah Laporan Akhir Pada Jurusan / Program Studi Teknik Komputer Oleh : RAHMATIKA

Lebih terperinci

LAMPIRAN A PROGRAM CODE VISION AVR

LAMPIRAN A PROGRAM CODE VISION AVR LAMPIRAN A PROGRAM CODE VISION AVR A-1 /***************************************************** This program was produced by the CodeWizardAVR V2.05.0 Evaluation Automatic Program Generator Copyright 1998-2010

Lebih terperinci

DAFTAR PUSTAKA. Barry, Gwoollard Elektronika Praktis. PT. Praditya Paramitha, Jakarta.

DAFTAR PUSTAKA. Barry, Gwoollard Elektronika Praktis. PT. Praditya Paramitha, Jakarta. DAFTAR PUSTAKA Barry, Gwoollard. 1998. Elektronika Praktis. PT. Praditya Paramitha, Jakarta. Bejo, Agus. 2005. C & AVR Rahasia Kemudahan Bahasa C dalam Mikrokontroller AT-MEGA 8535. Penerbit Gaya Media,

Lebih terperinci

LAMPIRAN A SKEMATIK RANGKAIAN

LAMPIRAN A SKEMATIK RANGKAIAN LAMPIRAN A SKEMATIK RANGKAIAN LA-1 GAMBAR RANGKAIAN CONVERTER TEGANGAN UNTUK LED BERUKURAN 8X8 Vcc R4 R3 Q4 Vcc1 Q3 R6 R5 Q6 Vcc2 Q5 R7 R8 Q7 Vcc3 Q8 R9 R10 Q9 Vcc4 Q10 Output Input Scanning(1/0) R12 R11

Lebih terperinci

Ping))) Paralax Ultrasonic Range Finder By : Hendawan Soebhakti

Ping))) Paralax Ultrasonic Range Finder By : Hendawan Soebhakti Ping))) Paralax Ultrasonic Range Finder By : Hendawan Soebhakti 1. Karakteristik Ping))) Paralax Ultrasonik, sebutan untuk jenis suara diatas batas suara yang bisa didengar manusia. Seperti diketahui,

Lebih terperinci

LAMPIRAN A DATA SHEET

LAMPIRAN A DATA SHEET LAMPIRAN A DATA SHEET Data Sheet Modul ATMEGA16 A-1 Sensor PIR KC7783R A-2 Sensor PIR #555-28027 A-3 PIR 325 FL65 A-4 Spesifikasi TLP 434A Spesifikasi RLP 434A A-5 HT12E A-6 HT12D A-7 Rangkaian RLP.TLP

Lebih terperinci

LAMPIRAN A FOTO REALISASI ALAT

LAMPIRAN A FOTO REALISASI ALAT LAMPIRAN A FOTO REALISASI ALAT A-1 TAMPAK DEPAN TAMPAK BELAKANG A-2 TAMPAK SAMPING PEMBACAAN LCD A-3 PROSES PENGERINGAN PERBANDINGAN PEMBACAAN SENSOR TPA 81 DENGAN DIGITAL THERMOMETER CONSTANT 20T A-4

Lebih terperinci

A-1 LISTING PROGRAM MIKROKONTROLER

A-1 LISTING PROGRAM MIKROKONTROLER A-1 LISTING PROGRAM MIKROKONTROLER de #inclu #include #include #include #include // Alphanumeric LCD functions #include // Declare your global

Lebih terperinci

BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM 27 BAB 3 PERANCANGAN ALAT DAN PEMBUATAN SISTEM 3.1. Diagram Blok Sistem Diagram merupakan pernyataan hubungan yang berurutan dari satu atau lebih komponen yang memiliki satuam kerja tersendiri dan setiap

Lebih terperinci

LAMPIRAN A RANGKAIAN LENGKAP dan FOTO PENGUAT KELAS D

LAMPIRAN A RANGKAIAN LENGKAP dan FOTO PENGUAT KELAS D A RANGKAIAN LENGKAP dan FOTO PENGUAT KELAS D A1 LAMPIRAN A2 Rangkaian Low Pass Filter Butterworth dan Level Shifter Rangkaian Low Pass Filter Pasif A3 Rangkaian AT mega16 dan L293D B PROGRAM AT MEGA16

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN

BAB 3 PERANCANGAN DAN PEMBUATAN 29 BAB 3 PERANCANGAN DAN PEMBUATAN 3.1.Diagram Blok Sistem Power Supply LCD Sensor DHT22 Atmega8 Buzzer Gambar 3.1 Diagram Blok System 3.1.1.Fungsi-fungsi diagram blok 1. Blok Power Supply sebagai pemberi

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN

BAB III PERANCANGAN DAN PEMBUATAN BAB III PERANCANGAN DAN PEMBUATAN 3.1. Diagram Blok Sistem Suplly Display Card RF RFID Atmega328 Buzzer Driver motor Motor Gambar 3.1 Diagram blok system 3.1.1. Fungsi-fungsi diagram blok 1. Blok card

Lebih terperinci

DAFTAR PUSTAKA. Universitas Sumatera Utara

DAFTAR PUSTAKA. Universitas Sumatera Utara DAFTAR PUSTAKA Andrianto, Heri. 2008. Pemrograman Mikrokontroler AVR ATmega16 Menggunakan Bahasa C. Bandung: Penerbit Informatika. Bejo, Agus. 2007. C & AVR Rahasia Kemudahan Bahasa C Dalam Mikrokontroler

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. perangkat keras maupun perangkat lunak yang meliputi:

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. perangkat keras maupun perangkat lunak yang meliputi: 48 BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini akan membahas tentang cara perencanaan dan pembuatan perangkat keras maupun perangkat lunak yang meliputi: 3.1 Konstruksi Fisik Pendulum Terbalik

Lebih terperinci

RANCANG BANGUN OTOMATISASI PINTU GARASI DENGAN KOMUNIKASI BLUETOOTH BERBASIS MIKROKONTROLER

RANCANG BANGUN OTOMATISASI PINTU GARASI DENGAN KOMUNIKASI BLUETOOTH BERBASIS MIKROKONTROLER RANCANG BANGUN OTOMATISASI PINTU GARASI DENGAN KOMUNIKASI BLUETOOTH BERBASIS MIKROKONTROLER Laporan ini Disusun Untuk Memenuhi Persyaratan Menyelesaikan Pendidikan Diploma III Jurusan Teknik Komputer Politeknik

Lebih terperinci

METODA PENANGGULANGAN BANJIR DI LABORATORIUM OTOMASI

METODA PENANGGULANGAN BANJIR DI LABORATORIUM OTOMASI METODA PENANGGULANGAN BANJIR DI LABORATORIUM OTOMASI TUGAS AKHIR Diajukan Untuk Memenuhi Salah Satu Syarat Kelulusan Dalam Mengikuti Program Sarjana Strata-1 Disusun Oleh : DODI HIDAYAT 083030061 JURUSAN

Lebih terperinci

SKEMATIK RANGKAIAN A V R 12V. Out. Gnd. Kontak Motor. Accu 12V. Klakson ISP CONNECTOR PA0 PB0 PB1 PA2 PA4 MOSI MISO PA6. 10uF SCK RST. 10uF. 47uF.

SKEMATIK RANGKAIAN A V R 12V. Out. Gnd. Kontak Motor. Accu 12V. Klakson ISP CONNECTOR PA0 PB0 PB1 PA2 PA4 MOSI MISO PA6. 10uF SCK RST. 10uF. 47uF. SKEMATIK RANGKAIAN 5V 4 U L N 0 0 3 8 15 13 5V NOR CLOSED NOR OPEN 1V Klakson IGNITION COIL Accu ISP CONNECTOR 5 4 3 1 PB0 PB1 A V R PA0 PA D B 9 M A L E 3 7 4 5 1uF 16 1 1uF 3 4 1uF 5 7 8 14 M A X 3 15

Lebih terperinci

Timbangan Loadcell 5kg HX711

Timbangan Loadcell 5kg HX711 Timbangan Loadcell 5kg HX711 User Manual Indo-ware Elektronik Semarang, Jawa Tengah-Indonesia Email Customer: sales@indo-ware.com Email Technical: support@indo-ware.com Facebook: www.facebook.com/indoware

Lebih terperinci

BAB 3 PERANCANGAN ALAT. Rangkaian Catu daya (Power Supply Adaptor) ini terdiri dari satu keluaran, yaitu 5

BAB 3 PERANCANGAN ALAT. Rangkaian Catu daya (Power Supply Adaptor) ini terdiri dari satu keluaran, yaitu 5 BAB 3 PERANCANGAN ALAT 3.1. Perancangan Rangkaian Catu Daya Rangkaian ini berfungsi untuk mensupplay tegangan ke seluruh rangkaian yang ada. Rangkaian Catu daya (Power Supply Adaptor) ini terdiri dari

Lebih terperinci

MAX6675 K-Type Thermocouple Temperature Sensor

MAX6675 K-Type Thermocouple Temperature Sensor MAX6675 K-Type Thermocouple Temperature Sensor User Manual Indo-ware Electronic Easy & Fun Email Customer: sales@indo-ware.com Email Technical: support@indo-ware.com Facebook: www.facebook.com/indoware

Lebih terperinci

BAB III METODOLOGI PENELITIAN. yang sebelumnya telah dihaluskan dan melalui proses quality control

BAB III METODOLOGI PENELITIAN. yang sebelumnya telah dihaluskan dan melalui proses quality control 23 BAB III METODOLOGI PENELITIAN 3.1 Diagram Mekanis Sistem Sistem mekanis yang penulis buat menggunakan bahan plat logam yang sebelumnya telah dihaluskan dan melalui proses quality control sehingga diharapkan

Lebih terperinci

LAMPIRAN. #include <mega16.h> //menambahkan library atmega16 #include <delay.h> //menambahkan library delay #define ADC_VREF_TYPE 0x40

LAMPIRAN. #include <mega16.h> //menambahkan library atmega16 #include <delay.h> //menambahkan library delay #define ADC_VREF_TYPE 0x40 LAMPIRAN #include //menambahkan library atmega16 #include //menambahkan library delay #define ADC_VREF_TYPE 0x40 // Fungsi untuk mengaktifkan dan membaca nilai adc unsigned int read_adc(unsigned

Lebih terperinci

BAB IV HASIL KERJA PRAKTEK. sistem perancangan ini memiliki sensor untuk mengetahui seberapa intensitas cahaya

BAB IV HASIL KERJA PRAKTEK. sistem perancangan ini memiliki sensor untuk mengetahui seberapa intensitas cahaya BAB IV HASIL KERJA PRAKTEK 4.1 Gambaran besar perancangan sistem Dalam hal ini perlu diketahui bahwa perancangan sistem atap otomatis ini memiliki sejumlah komponen yang berfungsi sebagai penggerak dari

Lebih terperinci

SL1-1 SL1-2 SL1-3 SL1-4 SL1-5

SL1-1 SL1-2 SL1-3 SL1-4 SL1-5 Skema Rangkain Untuk Mejalankan Program 1 2 3 4 5 6 7 8 9 U$2 I1 o1 I2 o2 I3 o3 I4 o4 I5 o5 I6 o6 I7 o7 I8 o8 GND CD+ 18 17 16 15 14 13 12 11 10 13 10 15 94 16 61 13 10 15 94 16 61 8 73 14 2 12 11 5 13

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Masalah Dalam bab ini akan dibahas masalah-masalah yang muncul dalam perancangan alat dan aplikasi program, serta pemecahan-pemecahan dari masalah yang

Lebih terperinci

RANCANG BANGUN ALAT KENDALI VOLUME FLUIDA MENGGUNAKAN PEWAKTU BERBASIS MIKROKONTROLER ATMEGA8

RANCANG BANGUN ALAT KENDALI VOLUME FLUIDA MENGGUNAKAN PEWAKTU BERBASIS MIKROKONTROLER ATMEGA8 RANCANG BANGUN ALAT KENDALI VOLUME FLUIDA MENGGUNAKAN PEWAKTU BERBASIS MIKROKONTROLER ATMEGA8 SKRIPSI Untuk memenuhi sebagai persyaratan mencapai derajat Sarjana S-1 Program Studi Fisika Oleh: Risa Nur

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared).

BAB 3 PERANCANGAN SISTEM. Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). 30 BAB 3 PERANCANGAN SISTEM 3.1 Diagram Blok Rangkaian Di bawah ini adalah blok diagram dari perancangan alat sensor keamanan menggunakan PIR (Passive Infrared). Buzzer PIR (Passive Infra Red) Mikrokontroler

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi dari perangkat keras maupun perangkat lunak dari setiap modul yang dipakai pada skripsi ini. 3.1. Perancangan dan

Lebih terperinci

RANCANG BANGUN ALAT DETEKSI DEHIDRASI MENGGUNAKAN LED DAN FOTODIODA MELALUI WARNA URINE

RANCANG BANGUN ALAT DETEKSI DEHIDRASI MENGGUNAKAN LED DAN FOTODIODA MELALUI WARNA URINE RANCANG BANGUN ALAT DETEKSI DEHIDRASI MENGGUNAKAN LED DAN FOTODIODA MELALUI WARNA URINE SKRIPSI Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Fisika Oleh: ACHMAD ROKIM

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Gambar blok diagram dari sistem kerja alat dapat dilihat pada Gambar 3.1

BAB III METODOLOGI PENELITIAN. Gambar blok diagram dari sistem kerja alat dapat dilihat pada Gambar 3.1 BAB III METODOLOGI PENELITIAN 3.1 Diagram Blok Gambar blok diagram dari sistem kerja alat dapat dilihat pada Gambar 3.1 sebagai berikut. Sampel Air Sensor TDS Modul Sensor Program Mikrokontroller ATMega16

Lebih terperinci

MODUL V: Timer dan Counter

MODUL V: Timer dan Counter MODUL V: Timer dan Counter.1 DASAR TEORI Gambar.1 Prinsip Dasar Timer/Counter pada Mikrokontroler Ttimer = Tosc*(-TCNT0)*N ( bit = ) Ttimer = Tosc*(-TCNT1)*N (1 bit = ) Gambar. Diagram Blok Timer/Counter

Lebih terperinci

STIKOM SURABAYA BAB IV PEMBAHASAN. 4.1 Perangkat Keras. Informasi waktu yang akan ditunjukkan oleh jarum dan motor power

STIKOM SURABAYA BAB IV PEMBAHASAN. 4.1 Perangkat Keras. Informasi waktu yang akan ditunjukkan oleh jarum dan motor power BAB IV PEMBAHASAN 4.1 Perangkat Keras Informasi waktu yang akan ditunjukkan oleh jarum dan motor power window yang telah dimodifikasi menggunakan gear akan digunakan sebagai penggerak jarum jam. Informasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Metodologi penelitian yang digunakan dalam perancangan sistem ini antara lain studi kepustakaan, meninjau tempat pembuatan tahu untuk mendapatkan dan mengumpulkan sumber informasi

Lebih terperinci

BAB III DESKRIPSI MASALAH

BAB III DESKRIPSI MASALAH BAB III DESKRIPSI MASALAH 3.1 Perancangan Hardware Perancangan hardware ini meliputi keseluruhan perancangan, artinya dari masukan sampai keluaran dengan menghasilkan energi panas. Dibawah ini adalah diagram

Lebih terperinci

MIKROKONTROL ATMega8535 Teknik Elektronika Industri

MIKROKONTROL ATMega8535 Teknik Elektronika Industri MODUL PEREKAYASAAN SISTEM KONTROL MIKROKONTROL ATMega8535 Teknik Elektronika Industri Mardiyanto S.Pd. A. Topik : Program CodeVisionAVR B. Kompetensi Setelah praktikum peserta menguasai penggunaan program

Lebih terperinci

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut :

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut : BAB III PERANCANGAN SISTEM 3.1. Diagram Blok Secara garis besar rangkaian pengendali peralatan elektronik dengan menggunakan PC, memiliki 6 blok utama, yaitu personal komputer (PC), Mikrokontroler AT89S51,

Lebih terperinci

BAB V PENUTUP. otomatis yang dapat terjadwal.

BAB V PENUTUP. otomatis yang dapat terjadwal. BAB V PENUTUP A. Kesimpulan Setelah dilakukan pengujian dan analisa program, maka dapat diperoleh kesimpulan : 1. RTC (Real Time Clock) ditambahkan sebagai pengatur waktu otomatis yang dapat terjadwal.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Hasil dan pembahasan merupakan pemaparan dari spesifikasi alat, kinerja

BAB IV HASIL DAN PEMBAHASAN. Hasil dan pembahasan merupakan pemaparan dari spesifikasi alat, kinerja BAB IV HASIL DAN PEMBAHASAN Hasil dan pembahasan merupakan pemaparan dari spesifikasi alat, kinerja alat, serta analisa dari hasil pengukuran untuk mengetahui alat berfungsi dengan baik sesuai dengan yang

Lebih terperinci

UNIVERSITAS MEDAN AREA

UNIVERSITAS MEDAN AREA DAFTAR PUSTAKA Malvino, Elektronika Terpadu, Penerbit Air Langga Sutrisno, Dasar Elektronika, Penerbit Air Langga NN, Signal Conditioning PC-Based Data Acquisition Handbook, info@mccdaq.com Jacob, Handbook

Lebih terperinci

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat

BAB III PERANCANGAN SISTEM. perancangan mekanik alat dan modul elektronik sedangkan perancangan perangkat BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras (hardware) dan perangkat lunak ( Software). Pembahasan perangkat keras meliputi perancangan mekanik

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT III.1. Diagram Blok Secara garis besar, diagram blok rangkaian pendeteksi kebakaran dapat ditunjukkan pada Gambar III.1 di bawah ini : Alarm Sensor Asap Mikrokontroler ATmega8535

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Pada bab ini dijelaskan langkah-langkah yang digunakan dalam menyelesaikan perangkat keras (hardware) yang berupa komponen fisik sebagai penunjang seperti IC ATmega 16, selain

Lebih terperinci

BAB III PERANCANGAN DAN KERJA ALAT

BAB III PERANCANGAN DAN KERJA ALAT BAB III PERANCANGAN DAN KERJA ALAT 3.1 DIAGRAM BLOK sensor optocoupler lantai 1 POWER SUPPLY sensor optocoupler lantai 2 sensor optocoupler lantai 3 Tombol lantai 1 Tbl 1 Tbl 2 Tbl 3 DRIVER ATMEGA 8535

Lebih terperinci

BAB II KONSEP DASAR PERANCANGAN

BAB II KONSEP DASAR PERANCANGAN BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan Alat Pengaduk Adonan Kue ini, terdapat beberapa masalah yang harus dipecahkan. Permasalahan-permasalahan tersebut antara

Lebih terperinci

BAB III SISTEM KERJA RANGKAIAN

BAB III SISTEM KERJA RANGKAIAN BAB III SISTEM KERJA RANGKAIAN 3.1 Diagram Blok Secara garis besar, perancangan pengisian tangki air otomatis menggunakan sensor ultrasonik ini terdiri dari Bar Display, Mikrokontroler ATMega8535, Relay,

Lebih terperinci

Pulsa = Frekuensi * 60/20 ; atau Pulsa = frekuensi*30;

Pulsa = Frekuensi * 60/20 ; atau Pulsa = frekuensi*30; JUDUL : Penghitung Kecepatan Motor DC dengan Display LCD 16X2 Berbasis Mikrokontroler ATMega16 TUJUAN : - Menghitung nilai kecepatan motor dc dengan satuan rpm - Menampilkan nilai rpm ke tampilan LCD -

Lebih terperinci

Membuat Sendiri Robot Line Tracker

Membuat Sendiri Robot Line Tracker Membuat Sendiri Robot Line Tracker Application Note Robot Line Tracker Pada project kali ini kita akan membahas cara membuat robot line tracker yang dapat bergerak mengikuti track berupa garis hitam setebal

Lebih terperinci

BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS

BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS BAB III PERANCANGAN ALAT SIMULASI PEGENDALI LAMPU JARAK JAUH DAN DEKAT PADA KENDARAAN SECARA OTOMATIS Pada bab ini menjelaskan tentang perancangan dan pembuatan alat simulasi Sistem pengendali lampu jarak

Lebih terperinci

BAB IV HASIL KERJA PRAKTEK. MMC (Multi Media Card) merupakan alat untuk menyimpan data digital. Memory card

BAB IV HASIL KERJA PRAKTEK. MMC (Multi Media Card) merupakan alat untuk menyimpan data digital. Memory card BAB IV HASIL KERJA PRAKTEK 4.1 Akses MMC dengan Microcontroller MMC (Multi Media Card) merupakan alat untuk menyimpan data digital. Memory card biasanya mempunyai kapasitas ukuran berdasarkan bit digital,

Lebih terperinci

DAFTAR PUSTAKA.

DAFTAR PUSTAKA. DAFTAR PUSTAKA [1] Prabhu, J., P. Thanapal, and R. Vijay Anand. 2016. Home Intruder Detection System. www.ijptonline.com/wp-content/uploads/2016/10/15640-15650.pdf, diakses pada 5 September 2016. [2] Attia,

Lebih terperinci

Digital Compass CMPS03 By : Hendawan Soebhakti

Digital Compass CMPS03 By : Hendawan Soebhakti Digital Compass CMPS03 By : Hendawan Soebhakti 1. Karakteristik Digital Compass Mobile robot, adalah istilah yang sering digunakan untuk menyebut sebuah robot yang memiliki kemampuan menjelajah. Tidak

Lebih terperinci

Pengenalan CodeVisionAVR

Pengenalan CodeVisionAVR Pengenalan CodeVisionAVR Hendawan Soebhakti Oktober 2009 Sub Pokok Bahasan Pengenalan CodeVision Menampilkan Data Ke Port Output Membaca Data Dari Port Input 2 CodeVisionAVR C Compiler CodeVisionAVR C

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI ALAT

BAB III PERANCANGAN DAN REALISASI ALAT BAB III PERANCANGAN DAN REALISASI ALAT Pada bab ini akan dibahas mengenai perancangan sistem dan realisasi perangkat keras dan perangkat lunak dari setiap modul yang mendukung alat secara keseluruhan.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Perancangan Alat Dalam merealisasikan sebuah sistem elektronik diperlukan perancangan komponen secara tepat dan akurat. Tahap perancangan sangat penting dilakukan untuk mempermudah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Motor DC dan Motor Servo 2.1.1. Motor DC Motor DC berfungsi mengubah tenaga listrik menjadi tenaga gerak (mekanik). Berdasarkan hukum Lorenz bahwa jika suatu kawat listrik diberi

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA 37 BAB IV PENGUJIAN ALAT DAN ANALISA 4.1. Tujuan Setelah tahap perancangan hingga terciptanya sebuah alat maka tahap selanjutnya adalah pengukuran dan pengujian. Langkah ini ditempuh agar dapat diketahui

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Masalah Dalam perancangan alat pengisian tong air otomatis dengan SMS berbasis mikrokontroler ATMega8535 terdapat beberapa masalah yang harus dipecahkan.

Lebih terperinci

BAB IV HASIL DAN UJICOBA

BAB IV HASIL DAN UJICOBA BAB IV HASIL DAN UJICOBA IV.1. Instalasi Interface Instalasi rangkaian seluruhnya merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke mikrokontroller. Sebelum melakukan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan dan Implementasi Pemotong Rumput Lapangan Sepakbola Otomatis dengan Sensor Garis dan Dinding ini, terdapat beberapa masalah

Lebih terperinci

Modul SerLog - Easy Serial Logger

Modul SerLog - Easy Serial Logger Modul SerLog - Easy Serial Logger w w w. d e p o i n o v a s i. c o m Modul "SerLog" - Easy Serial Logger. Modul ini diaplikasikan dalam project "Data Logger". Anda dapat melakukan pencatatan dan pembacaan

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)

Lebih terperinci

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer

TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer disusun oleh : MERIZKY ALFAN ADHI HIDAYAT AZZA LAZUARDI JA FAR JUNAIDI 31780 31924

Lebih terperinci

BAB IV HASIL KERJA PRAKTEK

BAB IV HASIL KERJA PRAKTEK BAB IV HASIL KERJA PRAKTEK 4.1 Merancang Rangkaian Remote Control Sesuai namanya remote control adalah alat pengendali jarak jauh yang berfungsi untuk mengendalikan sebuah benda (biasanya memiliki komponen

Lebih terperinci

BAB IV HASIL DAN UJI COBA

BAB IV HASIL DAN UJI COBA BAB IV HASIL DAN UJI COBA IV.1. Instalasi Interface Instalasi rangkaian seluruhnya merupakan hal yang sangat penting karena merupakan proses penginputan data dari komputer ke mikrokontroller. Sebelum melakukan

Lebih terperinci

MICROCONTROLER AVR AT MEGA 8535

MICROCONTROLER AVR AT MEGA 8535 MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang

Lebih terperinci

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor

Sistem Minimum Mikrokontroler. TTH2D3 Mikroprosesor Sistem Minimum Mikrokontroler TTH2D3 Mikroprosesor MIKROKONTROLER AVR Mikrokontroler AVR merupakan salah satu jenis arsitektur mikrokontroler yang menjadi andalan Atmel. Arsitektur ini dirancang memiliki

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari alat akuisisi data termokopel 8 kanal. 3.1. Gambaran Sistem Alat yang direalisasikan

Lebih terperinci

BAB III PEMBUATAN ALAT. 1. Alat yang dibuat berupa pengedali motor DC berupa miniatur konveyor.

BAB III PEMBUATAN ALAT. 1. Alat yang dibuat berupa pengedali motor DC berupa miniatur konveyor. BAB III PEMBUATAN ALAT 3.1 Spesifikasi Alat 1. Alat yang dibuat berupa pengedali motor DC berupa miniatur konveyor. 2. karena berupa miniatur maka motor DC yand dipakai hanya menggunakan motor DC dengan

Lebih terperinci

BAB III DESAIN DAN PEMBUATAN

BAB III DESAIN DAN PEMBUATAN 23 BAB III DESAIN DAN PEMBUATAN 3. 1 Prinsip Kerja dan Perencanaan Perancangan dan pembuatan perangkat keras mencakup pembuatan rancangan layout, penempatan komponen elektronika didalam sirkuit PCB sampai

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT 35 BAB III PERANCANGAN ALAT 3.1 Diagram Blok Secara garis besar, rangkaian display papan skor LED dapat dibagi menjadi 6 blok utama, yaitu blok power supply, mikrokontroler, driver board, seven segmen,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Penjelasan mengenai sistem instrumen alat ukur kelembaban, dapat dilihat dalam bentuk Blok diagram berikut: Power Supply 5Vdc Sensor Kelembaban HCZ-H6 Non Inverting Amplifier

Lebih terperinci

BAB III PERANCANGAN PERANGKAT

BAB III PERANCANGAN PERANGKAT BAB III PERANCANGAN PERANGKAT 3.1 Proses Kerja Sistem Pada tahap perancangan, akan dirancang sebuah sistem berbasis mikrokontroler yang digunakan untuk menghitung jumlah orang yang masuk dan keluar suatu

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISEM 3.1. Perancangan Perangkat Keras Blok diagram yang dibuat pada perancangan tugas akhir ini secara keseluruhan dapat dilihat pada gambar 3.1. Keypad Sensor 1 Sensor 2 Sensor 3

Lebih terperinci

BAB 3 METODE PENELITIAN. Sikonek, rumah tinggal Sunggal, dan Perpustakaan Universitas Sumatera Utara.

BAB 3 METODE PENELITIAN. Sikonek, rumah tinggal Sunggal, dan Perpustakaan Universitas Sumatera Utara. BAB 3 METODE PENELITIAN 3.1 Waktu dan Tempat Perancangan ini telah dilakukan pada bulan Februari sampai April 2017 di Sikonek, rumah tinggal Sunggal, dan Perpustakaan. 3.2 Alat dan Bahan 3.2.1 Alat yang

Lebih terperinci

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL

BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL BAB III PERANCANGAN ALAT PENDETEKSI KERUSAKAN KABEL. Diagram Blok Diagram blok merupakan gambaran dasar membahas tentang perancangan dan pembuatan alat pendeteksi kerusakan kabel, dari rangkaian sistem

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 31 BAB III PERANCANGAN SISTEM 3.1 Diagram Blok Air ditampung pada wadah yang nantinya akan dialirkan dengan menggunakan pompa. Pompa akan menglirkan air melalui saluran penghubung yang dibuat sedemikian

Lebih terperinci

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana

BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O, dimana BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 1.1 Penelitian Terdahulu Sebagai bahan pertimbangan dalam penelitian ini akan dicantumkan beberapa hasil penelitian terdahulu : Penelitian yang dilakukan oleh Universitas Islam

Lebih terperinci

Mikrokontroler AVR. Hendawan Soebhakti 2009

Mikrokontroler AVR. Hendawan Soebhakti 2009 Mikrokontroler AVR Hendawan Soebhakti 2009 Tujuan Mampu menjelaskan arsitektur mikrokontroler ATMega 8535 Mampu membuat rangkaian minimum sistem ATMega 8535 Mampu membuat rangkaian downloader ATMega 8535

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam perancangan alat pendeteksi pelanggaran garis putih pada Traffict Light ini, terdapat beberapa masalah yang harus dipecahkan. Permasalahanpermasalahan

Lebih terperinci