BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 2.1 TEORI KEGAGALAN ISOLASI BAB II TINJAUAN PUSTAKA Suatu peralatan listrik jika mengalami kegagalan pengisolasian maka akan mengakibatkan percikan (sparkover) atau lompatan listrik (flashover) yang sudah menandakan terjadinya tembus listrik. Terjadinya tembus listrik berhubungan dengan peristiwa ionisasi, deionisasi dan emisi. Berikut ini akan dijelaskan secara singkat tentang peristiwa ketiga tersebut Proses Ionisasi Ionisasi adalah proses munculnya ion disekitar elektroda karena meningkatnya tegangan yang diterapkan. Tegangan yang menyebabkan elektron keluar untuk pertama kalinya disebut tegangan insepsi. Udara ideal adalah gas yang hanya terdiri dari molekulmolekul netral, sehingga tidak dapat mengalirkan arus listrik. Tetapi dalam kenyataannya, udara yang sesungguhnya tidak hanya terdiri dari molekul-molekul netral saja tetapi ada sebagian kecil dari padanya berupa ion-ion dan elektron-elektron bebas, yang akan mengakibatkan udara dan gas mengalirkan arus walaupun terbatas. Kegagalan listrik yang terjadi di udara atau gas pertama-tama tergantung dari jumlah elektron bebas yang ada di udara atau gas tersebut. Konsentrasi elektron bebas ini dalam keadaan normal sangat kecil dan ditentukan oleh pengaruh radioaktif dari luar. Pengaruh ini dapat berupa radiasi ultra violet dari sinar matahari, radiasi radioaktif dari bumi, radiasi sinar kosmis dari angkasa luar dan sebagainya, yang kesemuanya dapat menyebabkan udara terionisasi. Jika diantara elektroda diterapkan suatu tegangan V, maka akan timbul suatu medan listrik E yang mempunyai besar dan arah tertentu. Di dalam medan listrik, elektron-elektron bebas akan mendapat energi yang cukup kuat, sehingga dapat merangsang timbulnya proses ionisasi

2 a. Suatu Elektron Bebas Membentur Elektron Terikat b. Elektron Terikat Keluar Dari Lintasannya Menjadi Elektron Bebas Gambar 2.1. (a dan b) Proses Ionisasi Dari gambar (a) pada Gambar 2.1 memperlihatkan suatu elektron bebas membentur elektron terikat pada muatan netral di udara, sehingga elektron yang terikat kuat tadi keluar dari lintasannya menjadi elektron bebas, seperti yang diperlihatkan gambar (b) pada Gambar 2.1. Kegagalan listrik yang terjadi di udara tergantung dari jumlah elektron bebas yang ada di udara. Penyebab tembus antara lain tekanan, temperatur, kelembaban, konfigurasi medan, tegangan yang diterapkan, material elektroda, kondisi permukaan elektroda. Ada beberapa cara pembangkitan ion antara lain : a. Ionisasi benturan (collision) elektron, b. ionisasi thermal, c. fotoionisasi dan d. Ionisasi Radiasi Sinar Kosmis

3 a. Ionisasi Benturan (collision) elektron Elektron bebas yang tidak berada dalam medan listrik tinggi, akan diikat oleh suatu molekul netral dan membentuk ion negatif. Bila elektron bebas berada di antara dua plat sejajar yang diberi tegangan searah sehingga timbul medan listrik E di antara kedua plat maka elektron akan mengalami gaya dan bergerak menuju anoda seperti yang ditunjukkan pada Gambar 2.2 Gambar 2.2 Ionisasi Benturan (collision) Elektron b. Ionisasi thermal Ketika gas dipanaskan hingga mencapai temperatur tinggi, molekul-molekul gas akan mendapatkan energi kinetik yang besar sehingga molekul tersebut bersirkulasi dengan kecepatan tinggi dan menyebabkan terjadinya benturan antar molekul. Bila energi kinetik pada molekul tersebut cukup besar, maka dapat membuat terlepasnya elektron dari ikatan atomnya. Elektron yang terlepas dan molekul lain yang memiliki energi kinetik cukup besar akan saling berbenturan dan melepaskan lebih banyak elektron bebas. c. Fotoionisasi Ionisasi ini akibat radiasi atau foton mempengaruhi interaksi radiasi dalam partikel. Fotoionisasi terjadi bila energi radiasi yang diserap oleh molekul melebihi energi ionisasinya dan dapat dituliskan sebagai berikut: A + hv A + + e (2.1)

4 Di mana : A : Atom atau mokelul netral dalam gas hv : Energi foton e : Elektron yang terlepas d. Ionisasi Radiasi Sinar Kosmis Sinar kosmik adalah radiasi dari partikel bermuatan berenergi tinggi yang berasal dari luar atmosfer bumi. Sinar kosmik dapat berupa elektron, proton dan bahkan inti atom seperti besi atau yang lebih berat lagi. Partikel-partikel ini secara terus menerus membombardir bumi. Karena memiliki energi yang besar, benturan partikel ini dengan molekul netral dapat menyebabkan terlepasnya elektron dari molekul netralnya De ionisasi Jika suatu elektron bebas bergabung dengan suatu ion positif, akan dihasilkan suatu molekul netral. Peristiwa penggabungan ini disebut deionisasi. Proses de-ionisasi adalah kebalikan dari proses ionisasi. Proses ini terdiri dari kehilangan elektron dengan cara rekombinasi, penggabungan (attachment) elektron dan difusi. Deionisasi akan mengurangi pertikel bermuatan dalam suatu gas. Jika pada suatu gas terjadi aktivitas deionisasi yang lebih besar dari pada aktivitas ionisasi, maka muatan muatan bebas didalam gas itu akan berkurang Emisi Emisi adalah peristiwa pelepasan elektron dari permukaan suatu logam menjadi elektron bebas didalam gas. Dalam keadaan normal, elektron tidak dapat terlepas dari permukaan logam karena adanya gaya elektrostatik antara elektron dengan ion dalam kisi logam. Supaya elektron ini dapat keluar dari permukaan logam, diperlukan sejumlah energi luar. Besarnya energi ini didefinisikan sebagai fungsi kerja (work function) dengan satuan elektron volt (ev) yang berbeda untuk setiap jenis logam.

5 Gambar 2.3 Proses Terjadinya Emisi Seperti pada Gambar 2.3 memperlihatkan bahwa suatu elektron bebas terlepas dari permukaan suatu logam yang diakibatkan proses emisi yang terjadi pada logam tersebut. Ada empat proses yang menyebabkan terjadinya emisi, yaitu: a. Emisi fotoelektrik b. Emisi benturan ion positif c. Emisi medan tinggi d. Emisi Thermis a. Emisi Fotoelektrik Cahaya yang menghasilkan energi foton akan membentur logam yang memiliki banyak elektron karena logam termasuk bahan yang konduktif. Ketika energi foton lebih besar dari energi ikat elektron maka elektron akan terlepas dari permukaan logam. Untuk lebih jelasnya lihat Gambar 2.4 sebagai berikut :

6 Gambar 2.4 Emisi Fotoelektrik b. Emisi Benturan Ion Positif Massa ion positif lebih besar daripada masa elektron bebas dan ion positif membentur ion negatif pada logam. Karena energi kinetis ion positif lebih besar dari energi ikat elektron logam maka elektron akan terlepas dari permukaan logam. Untuk lebih jelasnya dapat kita lihat pada Gambar 2.5 sebagai berikut : Gambar 2.5 Emisi Benturan Ion Positif

7 c. Emisi Medan Tinggi Permukaan suatu logam tidak semuanya mulus, tetapi selalu ada titik-titik yang runcing. Jika logam tersebut dikenai medan elektrik seperti yang ditunjukkan pada Gambar 2.6 berikut ini: Gambar 2.6 Emisi Medan Tinggi Maka elektron yang terdapat permukaan logam katoda (K) akan mengalami gaya yang arahnya menuju anoda (A). Elektron pada ujung runcing akan mengalami gaya yang lebih besar karena intensitas medan elektrik di titik tersebut relatif lebih besar dibandingkan dengan intensitas medan elektrik di bagian yang datar. Jika intensitas medan elektrik cukup besar, maka dari titik runcing tersebut akan dilepaskan elektron bebas. Pelepasan elektron ini yang disebut emisi bintik katoda. d. Emisi Thermis Emisi ini terjadi karena logam dipanaskan. Energi panas yang diterima oleh logam menyebabkan elektron bebas di dalam logam memiliki energi kinetik lebih besar. Bila energi kinetik elektron lebih besar dari gaya elektrostatik logam, maka elektron tersebut keluar dari permukaannya dan menjadi elektron bebas pada udara di sekitar permukaan logam tersebut. Untuk lebih jelasnya dapat kita lihat pada Gambar 2.7 berikut :

8 Gambar 2.7 Emisi Thermis 2.2 MEKANISME TEGANGAN TEMBUS UDARA Mekanisme kegagalan dalam gas yang disebut dengan percikan. Sifat mendasar dari kegagalan percikan ini adalah tegangan pada sela antar elektroda akan turun karena adanya proses yang menghasilkan konduktivitas tinggi antara anoda dan katoda. Ada 2 jenis mekanisme dasar yang berperan : Mekanisme primer, yang memungkinkan terjadinya banjiran (avalanche) elektron Mekanisme sekunder, yang memungkinkan terjadinya peningkatan banjiran elektron. Pada mekanisme primer, proses yang terpenting adalah proses katoda. Dalam hal ini katoda akan melepaskan (discharge) elektron yang akan mengawali terjadinya suatu spark breakdown. Adapun fungsi katoda adalah : Menyediakan elektron awal yang harus dilepaskan Mempertahankan discharge Menyelesaikan discharge

9 Pada proses katoda, elekron awal akan dibebaskan sebagian dengan perantara pengionan luar yang akan memulai terjadinya banjiran elektron dari permukaan katoda. Elektron elektron itu kemudian akan dipercepat oleh medan listrik menuju anoda. Di didalam medan listrik yang cukup kuat, dalam pergerakannya menuju anoda elektron elektron tersebut akan membentur molekul molekul gas dan menghasilkan elektron. Sedangkan ion positif akan bergerak ke katoda, tetapi karena mempunyai masa yang lebih besar dari massa elektron, maka pergerakannya lebih lambat daripada elektron. Pada mekanisme sekunder, proses yang terpenting adalah emisi elektron karena benturan ion positif. Jika ion positif ditembakkan ke permukaan katoda, maka akan dibebaskan elektron ke luar permukaan katoda. Kemungkinan bahwa benturan ion positif pada permukaan katoda akan membebaskan elektroda tergantung dari jenis bahan katoda dan energi ion positif yang menumbuk katoda. Ada 2 teori mekanisme tembus listrik pada udara, yaitu mekanisme Townsend dan mekanisme Streamer. Mekanisme Townsend hanya berlaku pada medan listrik seragam/homogen, sedangkan mekanisme Streamer berlaku pada medan listrik homogen maupun tidak homogen. Pada tugas akhir ini akan dibahas mekanisme townsend dan streamer, karena kedua mekanisme tersebut berlaku dalam penelitian ini Mekanisme Townsend Metoda ini digunakan untuk di daerah yang mempunyai tekanan rendah dan jarak sela antara kedua plat sejajar yang sempit, seperti yang diperlihatkan pada Gambar Oleh karena itu, akan diuraikan mekanisme tembus listrik townsend yaitu sebagai berikut :

10 Gambar 2.8 Elektron Elektron Bebas di Udara Dari Gambar 2.8 dapat dijelaskan bahwa didalam Udara terdapat elektron bebas yang disebabkan karena peristiwa ionisasi foton radiasi sinar ultraviolet dan juga terdapat molekul-molekul netral. Apabila kedua elektroda dihubungkan dengan sumber tegangan, maka timbul medan listrik (E) yang arahnya dari anoda ke katoda. Akibat adanya medan listrik, maka e a (elektron bebas) akan mengalami gaya (F) yang arahnya berlawanan dengan arah medan listrik (E). Karena adanya gaya (F) maka e a bergerak dari katoda ke anoda. Dalam perjalanan menuju anoda, elektron bebas membentur atom netral. Jika Energi kinetis elektron awal lebih besar dari energi ikat elektron molekul netral maka akan terjadi ionisasi. Ionisasi benturan menghasilkan satu elektron bebas baru (e b ) dan satu ion positif. Jadi, e a dan e b terus bergerak menuju anoda. Dalam perjalanannya menuju anoda e a dan e b membentur lagi atom netral sehingga terjadi lagi ionisasi sehingga jumlah elektron bebas dan ion positif semakin banyak. Ion positif bergerak menuju katoda dan terjadilah benturan ion positif dengan dinding katoda sehingga timbul emisi benturan ion positif. Dari permukaan katoda muncul elektron-elektron baru hasil emisi ion positif membentur lagi atom netral sehingga terjadi lagi ionisasi sehingga jumlah elektron bebas dan ion positif semakin banyak. Selama medan listrik masih ada maka proses ionisasi benturan dan emisi ion positif akan terus berlangsung sehingga terjadilah banjiran elektron dan ion positif. Ion positif yang membentur katoda semakin banyak sehingga elektron hasil emisi ion positif semakin banyak yang menyebabkan banjiran muatan. Muatan yang berpindah dari katoda ke anoda semakin besar yang dimana perpindahan muatan sebanding dengan arus dan dalam selang waktu tertentu perpindahan muatan akan terus bertambah yang menyebabkan banjir muatan dan arus

11 pun semakin besar yang kemudian terjadilah tembus listrik. Dan dapat kita lihat pada Gambar 2.9. Gambar 2.9 Banjiran Elektron yang Menyebabkan Tembus Listrik Mekanisme Streamer Mekanisme Streamer berlaku pada medan listrik homogen maupun tidak homogen. Udara yang berada di antara dua plat sejajar yang diberi tegangan, akan mengalami terpaan medan listrik sebesar E 0 yang homogen, seperti yang terlihat pada Gambar Elektron bebas di udara yang dihasilkan dari proses ionisasi radiasi sinar kosmis atau fotoionisasi akan mengalami gaya yang arahnya menuju anoda. Dalam perjalanannya, elektron ini akan menyebabkan proses ionisasi benturan sehingga terbentuk suatu muatan ruang. Karena adanya muatan ruang pada celah, maka medan listrik pada celah kedua plat berbeda pada setiap bagian pada celah, seperti yang dapat dilihat pada Gambar 2.10.

12 Gambar 2.10 Medan pada Celah Karena Adanya Muatan Ruang [4] Ada dua jenis streamer : a. Positif, atau streamer yang mengarah ke katoda b. Negatif, atau streamer yang menuju ke anoda a. Streamer Positif Karena massa elektron yang lebih ringan daripada ion positif, maka pergerakan elektron lebih cepat daripada ion positif. Saat elektron bebas sudah mencapai anoda dan masuk ke dalam anoda, ion positif dapat dianggap masih dalam posisi semulanya. Ion positif yang tertinggal ini membentuk muatan ruang seperti kerucut dengan muatan yang terkonsentrasi pada bagian depan kerucut (kawasan P dan Q) dekat anoda sehingga medan listrik di sekitarnya lebih besar dibandingkan dengan bagian runcing kerucut, seperti yang dapat dilihat pada Gambar 2.11.

13 Gambar 2.11 Ion Positif Masih Berada pada Posisinya Saat Elektron Telah Masuk ke Dalam Anoda [11] Kemudian elektron bebas baru terbentuk dari proses fotoionisasi dan bergerak ke daerah P dan Q. Selama perjalanan, elektron ini akan membentur molekul netral dan membentuk suatu banjiran muatan sekunder, seperti yang dapat dilihat pada Gambar Gambar 2.12 Terbentuk Banjiran Muatan Sekunder dari Elektron Bebas Baru [11] Banjiran elektron pada banjiran muatan ini akan bergerak menuju bagian depan kerucut dan membentuk plasma. Plasma adalah gas terionisasi, yaitu gas yang memiliki banyak elektron bebas dan ion positif. Karena plasma memiliki elektron

14 bebas dan ion positif, medan listrik pada plasma lebih rendah daripada medan listrik E 0. Bagian depan kerucut memendek karena terbentuknya plasma tersebut, tetapi medan listrik di sekitarnya masih tinggi. Proses pembentukan banjiran muatan sekunder terjadi lagi di sekitar bagian depan kerucut dan banjiran elektronnya bergerak menuju bagian depan kerucut lagi dan membentuk plasma sehingga plasma memanjang, seperti yang dapat dilihat pada Gambar Gambar 2.13 Ion Positif dan Elektron Membentuk Plasma dan Banjiran Muatan Sekunder Lain Terbentuk [11] Proses ini akan terus berlangsung sampai plasma mencapai katoda. Saat plasma ini menghubungkan anoda dan katoda, peristiwa lewat denyar terjadi. Mekanisme ini disebut mekanisme Streamer positif karena plasma memanjang dari anoda ke katoda. b. Streamer Negatif Pada mekanisme Streamer negatif ini, plasma berawal dari katoda dan memanjang sampai anoda. Saat elektron bebas awal berada dekat dengan katoda dan banjiran muatan terjadi dekat dengan katoda. Banjiran elektron ini menyebabkan medan listrik E1 di daerah R menjadi lebih besar daripada medan listrik E0 ditunjukkan pada Gambar 2.14.

15 Gambar 2.14 Medan Listrik pada Daerah R Berubah Karena Muatan pada Celah [11] Kemudian elektron bebas dari proses fotoionisasi yang berada pada daerah tersebut akan bergerak lebih cepat dan membentuk suatu banjiran muatan sekunder, ditunjukkan dalam Gambar Gambar 2.15 Terbentuknya Banjiran Muatan Sekunder pada Daerah R [11] Banjiran ion positif sekunder akan bergerak menuju banjiran elektron awal dan membentuk plasma ditunjukkan dalam Gambar Proses ini akan berlangsung terus sampai plasma mencapai anoda.

16 Gambar 2.16 Terbentuknya Plasma dan Proses Plasma Memanjang [11] 2.3 FAKTOR YANG MEMPENGARUHI TEGANGAN TEMBUS UDARA Sifat listrik udara dipengaruhi oleh lingkungan sekitar, sehingga nilai tegangan tembus udara juga akan berubah sesuai kondisi lingkungan sekitar udara. Berikut ini faktor faktor yang mempengaruhi tegangan tembus udara : a. Temperatur udara Pada media dielektrik udara peningkatan temperatur udara akan mempengaruhi pertambahan energi yang dapat mempercepat pergerakan elektron-elektron di udara, selain itu temperatur yang tinggi akan meningkatkan jumlah proses ionisasi thermis dan emisi thermis yang akan berakibat pada penurunan kekuatan dielektrik udara. b. Tekanan udara Bila tekanan udara besar, jumlah molekul di dalam udara semakin banyak yang berarti proses ionisasi dapat terjadi lebih banyak. Tetapi bila tekanan terlalu tinggi, gerakan muatan dari proses ionisasi akan terhambat sehingga proses ionisasi berikutnya akan berkurang. Bila tekanan udara terlalu rendah, jumlah molekul yang sedikit akan menyebabkan proses ionisasi sangat sedikit.

17 c. Kelembaban udara [11][12] Kelembaban didefinisikan sebagai besarnya kandungan uap air dalam udara. Rasio kelembaban (ω) adalah berat atau massa air yang terkandung dalam setiap kilogram udara kering. ω = 0,622 (2.2) Dimana : ω = rasio kelembaban (kg uap air /kg udara kering) Pt = tekanan atmosfer (kpa) Ps = tekanan parsial uap air dalam keadaan jenuh (kpa) Bila kelembaban tinggi, kandungan air dalam udara meningkat sehingga mudah terjadi ionisasi karena air memiliki energi ikat yang lebih rendah dari kandungan lain dalam udara. Energi ikat air sekitar 13,6 ev, nitrogen (N 2 ) sekitar 17,1 ev, CO 2 sekitar 14,6 ev, H 2 sekitar 15,6 ev, dan oksigen (O 2 ) sekitar 12,08 ev. Elektronvolt (ev) merupakan satuan dari energi suatu partikel yang besarnya 1,6 x joule. Bila kandungan air semakin banyak maka udara akan lebih mudah terionisasi dan menyebabkan kekuatan dielektrik udara turun. Kekuatan dielektrik merupakan kuat medan listrik yang mampu dipikul oleh suatu bahan dielektrik tanpa mengakibatkan bahan tersebut tembus listrik. Semakin banyak kandungan air dalam udara menyebabkan udara semakin mudah terionisasi. Hal ini menyebabkan turunnya tegangan yang diperlukan untuk membuat udara tersebut tembus listrik. 2.4 Efek Kondisi Udara Hasil pengujian dielektrik udara tergantung pada kondisi udara. Karena itu, hasil pengujian ketika udara dalam keadaan standar perlu dinyatakan, yaitu pada suhu udara 20 0 C, tekanan udara 760 mmhg dan kelembaban udara 11g/m 3. Hasil pengujian pada keadaan standar adalah :

18 V s =(k h /k d ) V b. (2.3) Dengan V s = hasil pengujian pada keadaan standar, k h = faktor koreksi kelembaban udara, k d = faktor koreksi kerapatan udara, dan V b = hasil pengujian pada sembarang keadaan udara. Faktor koreksi kerapatan udara dihitung dengan persamaan K d = ( m x ( n.....(2.4) Dengan k d = faktor koreksi kerapatan udara, p = tekanan udara (mmhg), T = temperatur udara ( o C) m,n = 1,0 untuk pengujian dengan tegangan tinggi dc dan impuls petir, dan = 1,0 untuk semua objek uji yang ditempatkan pada sela elektroda bola bola = untuk elektroda jarum jarum dan jarum piring untuk jarak sela 1m adalah 1,0, sementara untuk jarak sela 1m lihat Gambar m,n,w 1,0 0,5 0,0 5,0 10,0 d (m) Gambar 2.17 Nilai m, n dan w untuk berbagai jarak percikan [7]

19 Dalam penelitian ini percobaan akan dilakukan pada jarak sela 1m untuk semua elektroda, maka di asumsikan nilai m dan n adalah 1,0. Sehingga, Persamaan 2.5 dapat juga ditulis : K d = ( (2.5) Karena : δ = k d, maka Persamaan 2.3 dapat juga ditulis : V s = V b / δ (2.6) Dimana Vb = Hasil pengujian pada sembarang keadaan udara δ = factor koreksi temperatur dan tekanan udara Oleh karena sifatnya yang empiris, maka factor koreksi terhadap kelembaban udara k h tidak dapat dianggap tepat dan tidak selalu dapat dipakai. Oleh sebab itu, hanya Persamaan (2.5) yang dipergunakan. 2.5 PENGERTIAN HUJAN DAN MEKANISME SIKLUS HIDROLOGI Pengertian Hujan Hujan adalah jatuhnya hydrometeor yang berupa partikel-partikel air dengan diameter 0.5 mm atau lebih. Jika jatuhnya sampai ketanah maka disebut hujan, akan tetapi apabila jatuhannya tidak dapat mencapai tanah karena menguap lagi maka jatuhan tersebut disebut Virga. Hujan juga dapat didefinisikan dengan uap yang mengkondensasi dan jatuh ketanah dalam rangkaian proses hidrologi (Yeni Agustiarni, 2008). Hujan merupakan salah satu bentuk presipitasi uap air yang berasal dari awan yang terdapat di atmosfer. Bentuk presipitasi lainnya adalah salju dan es. Untuk dapat terjadinya hujan diperlukan titik-titik kondensasi, amoniak, debu dan asam belerang. Titik-titik kondensasi ini mempunyai sifat dapat mengambil uap air dari udara. Satuan curah hujan selalu dinyatakan dalam satuan millimeter atau inchi namun untuk di Indonesia satuan curah hujan yang digunakan adalah dalam satuan millimeter (mm). Curah hujan merupakan ketinggian air hujan yang terkumpul dalam tempat yang datar, tidak menguap, tidak meresap, dan tidak mengalir. Curah hujan 1 (satu) milimeter

20 artinya dalam luasan satu meter persegi pada tempat yang datar tertampung air setinggi satu milimeter atau tertampung air sebanyak satu liter. Intensitas hujan adalah banyaknya curah hujan persatuan jangka waktu tertentu. Intensitas hujan berdasarkan besarnya curah hujan dapat di kelompokkan kedalam 3 kategori, yaitu : Hujan gerimis/rintik-rintik (kurang dari 2,5 mm/jam), Hujan sedang (2,6-7,5 mm/jam), dan Hujan deras/lebat (lebih dari 7,5 mm/jam). Apabila dikatakan intensitasnya besar berarti hujan lebat dan kondisi ini sangat berbahaya karena berdampak dapat menimbulkan banjir, longsor dan efek negatif terhadap tanaman dan lingkungan Mekanisme Siklus Hidrologi Dibumi terdapat kira-kira 1,3-1,4 milyar km 3 air: 97,5% adalah air laut, 1,75% berbentuk es dan 0,73% berada di daratan sebagai air sungai, air danau, air tanah dan sebagainya. Hanya 0,001% berbentuk uap di udara. Air di bumi ini mengulangi terus menerus sirkulasi, penguapan (evaporation), hujan (presipitasi) dan pengaliran keluar (outflow). Air menguap dari permukaan tanah dan laut, berubah menjadi awan sesudah melalui beberapa proses dan kemudian jatuh sebagai hujan atau salju ke permukaan bumi sebagian langsung menguap ke udara dan sebagian tiba di permukaan bumi. Tidak semua bagian hujan yang jatuh ke permukaan bumi mencapai permukaan tanah. Sebagian akan tertahan oleh tumbuh-tumbuhan dimana sebagian akan menguap dan sebagian lagi akan jatuh atau mengalir melalui dahan-dahan kepermukaan tanah (Sosrodarsono,2003) Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfir melalui penguapan dari air laut, danau, dan

21 sungai (evaporasi) maupun penguapan dari tanaman atau tumbuh tumbuhan (transpirasi), kemudian naik ke udara dan selanjutnya mengalami pengembunan (kondensasi) yaitu berubah menjadi titik titik air yang mengumpul dan membentuk awan. Titik titik air itu memiliki kohesi (gaya tarik antar molekul yang sama) sehingga titik titik air menjadi besar dan dipengaruhi oleh gravitasi bumi sehingga jatuh yang disebut hujan (presipitasi). Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut. Dengan kata lain, akan terjadi hujan apabila berlangsung tiga kejadian sebagai berikut: 1) Kenaikan massa uap air ke tempat yang lebih tinggi sampai saatnya atmosfer menjadi jenuh. 2) Terjadinya kondensasi atas pertikel partikel uap di atmosfer. 3) Pertikel partikel uap air tersebut bertambah besar sejalan dengan waktu untuk kemudian jatuh ke bumi dan permukaan laut (sebagai hujan) karena gaya gravitasi. Seperti yang telah diterangkan diatas, siklus hidrologi yang kontinu antara air laut dan air daratan dapat dilihat pada Gambar 2.18.

22 Gambar 2.18 Siklus Hidrologi (Sumber Suripin, 2001) [1] 2.6 PEMBENTUKAN BUTIRAN AIR HUJAN (Koalensi) Koalesensi terjadi ketika butir air bergabung membentuk butir air yang lebih besar, atau ketika butir air membeku menjadi kristal es yang dikenal sebagai proses Bergeron. Resistensi udara mengakibatkan butiran air mengambang di awan. Ketika turbulensi udara terjadi, butiran air bertabrakan dan menghasilkan butiran yang lebih besar. Butiran air besar ini turun dan koalesensi terus berlanjut, sehingga butiran menjadi cukup berat untuk melawan resistensi udara dan jatuh sebagai hujan. Berdasarkan suhu lingkungan fisik atmosfer dimana awan tersebut berkembang, awan dibedakan atas awan dingin (cold cloud) dan awan hangat (warm cloud). Terminologi awan dingin diberikan untuk awan yang semua bagiannya berada pada lingkungan atmosfer dengan suhu di bawah titik beku atau yang disebut awan bawah titik beku (< 0 0 C), sedangkan awan hangat adalah awan yang semua bagiannya berada diatas titik beku atau yang disebut juga awan atas titik beku ( > 0 0 C). Koalesensi umumnya sering terjadi di awan atas titik beku dan dikenal sebagai proses hujan hangat. Di awan bawah titik beku, kristal es mulai jatuh ketika memiliki

23 massa yang cukup. Umumnya, kristal membutuhkan massa yang lebih besar daripada koalesensi yang terjadi antara kristal dan butiran air sekitarnya. Proses ini bergantung kepada suhu, karena suhu paling rendah butiran air dingin hanya ada di awan bawah titik beku. Selain itu, karena perbedaan suhu yang besar antara awan dan permukaan, kristalkristal es ini bisa mencair ketika jatuh dan menjadi hujan. Butiran hujan memiliki beragam ukuran mulai dari diameter rata-rata 0,1 millimeter hingga 9 millimeter, di atas itu butiran akan terpisah-pisah. Air hujan sering digambarkan sebagai berbentuk "lonjong", lebar di bawah dan menciut di atas, tetapi ini tidaklah tepat. Air hujan kecil hampir bulat. Air hujan yang besar menjadi semakin lebar, seperti roti hamburger, air hujan yang lebih besar berbentuk payung terjun. Berbeda dengan kepercayaan masyarakat, bentuk butir hujan yang asli justru tidak mirip air mata. Air hujan yang besar jatuh lebih cepat berbanding air hujan yang lebih kecil. Butiran hujan terbesar di Bumi tercatat di Brasil dan Kepulauan Marshall pada tahun 2004 beberapa di antaranya sebesar 10 millimeter. Ukuran besar ini disebabkan oleh pengembunan partikel asap besar atau tabrakan antara sekelompok kecil butiran dengan air tawar yang banyak. Berlawanan dengan pemahaman umum, butir air hujan tidaklah turun dalam bentuk menyerupai tetesan air mata atau bentuk mirip buah salak. Nyatanya, tetesan air hujan berbentuk bulat saat baru saja jatuh meninggalkan awan. Untuk butiran air hujan berukuran kecil, bentuk bulat ini bertahan. Namun, untuk butiran lebih besar, semakin jatuh ke bawah, bentuknya berubah dan lebih menyerupai setengah bola pipih. Dalam bahasa Inggris penampakan ini biasa disebut hamburger-bun shape atau bentuk roti burger, rata di permukaan bawahnya dan melingkar di permukaan atasnya. Perubahan bentuk ini akibat gaya tekan udara pada permukaan bagian bawah tetesan air hujan yang sedang jatuh ke bumi. Gaya tekan yang berlawanan dengan arah turunnya hujan menyebabkan ratanya permukaan bawah tetesan air hujan, seperti yang diperlihatkan pada Gambar 2.19.

24 Gambar 2.19 Bentuk Butiran Air Hujan Menyerupai Bentuk Roti Hamburger Butir hujan jatuh pada kecepatan terminalnya, lebih besar untuk butiran besar karena massanya yang lebih besar. Di permukaan laut tanpa angin, gerimis 0,5 millimeter jatuh dengan kecepatan 2 meter per detik, sementara butiran besar 5 millimeter jatuh pada kecepatan 9 meter per detik. 2.7 KECEPATAN JATUH TETESAN BUTIRAN HUJAN Ukuran butir-butir hujan adalah berjenis-jenis. Nama dari butir hujan tergantung dari ukurannya. Dalam meteorologi, butir hujan dengan diameter lebih dari 0,5 mm di sebut hujan dan diameter antara 0,50-0,1 mm disebut gerimis (drizzle). Makin besar ukuran butir hujan itu, makin besar kecepatan jatuhnya. Kecepatan yang maximum adalah kira-kira 9,2m/detik. Tabel 2.1 menunjukkan intensitas curah hujan, ukuranukuran butir hujan, massa dan kecepatan jatuh butir hujan.

25 Tabel 2.1. Ukuran, Massa dan Kecepatan Jatuh Butir Hujan (Sosrodarsono,2003) Kecepatan jatuhnya suatu tetesan hujan melalui udara yang tenang tergantung pada ukurannya (Seyhan, 1977). Mula mula kecepatannya naik, tetapi selanjutnya mencapai suatu kecepatan yang konstan, yang disebut kecepatan akhir atau kecepatan terminal. Lenard (1904) dan Laws (1941) melakukan percobaan percobaan yang lama untuk menentukan kecepatan jatuh tetesan hujan. Kecepatan jatuh tetesan hujan dapat ditentukan dengan beberapa metode. Diantaranya adalah : 1. Menggunakan kurva dan tabel yang ada (Lenard, 1904; Laws, 1941). Seperti yang terlihat pada tabel 2.2, kurva 2.21 dan kurva Kecepatan jatuh hujan dapat diestimasi dengan rumus empiris Gunn and Kinzer: v(d) = 3,86 D 0,67..(2.6) Keterangan v(d) adalah kecepatan jatuh butiran hujan, dan D adalah diameter butiran hujan pada kisaran antara 0.8 dan 4.0 mm. 3. Menggunakan kamera berkecepatan tinggi.

26 Tabel 2.2 Kecepatan Tetesan Air Hujan Menurut Lenard dan Laws (Seyhan,1977) Diameter Tetesan Kecepatan Akhir (Kaki/Detik) (mm) Dalam Lenard Dalam Laws 0,5 11,5-1,0 14,4-1,5 18,7 18,1 2,0 19,4 21,6 3,0 22,6 26,4 4,0 25,3 29,1 5,0 26,2 30,3 5,5 26,2 30,5 6,0 25,9 30,5 6,5 25,6 - Gambar 2.20 menunjukkan grafik kecepatan tetesan hujan terhadap massa dan ketinggian jatuh hujan menurut percobaan yang dilakukan Hall, pada tahun 1910.

27 Gambar 2.20 Grafik Kecepatan Tetesan Hujan Terhadap Massa dan Ketinggian Jatuh Hujan [8] Gambar 2.21 Grafik Hubungan Antara Diameter Tetesan Terhadap Kecepatan dan Ketinggian Jatuh Air Hujan [8]

28 Gambar tabel dan grafik diatas menunjukkan kecepatan tetesan hujan di alam mungkin terletak di sekitar angka angka ini. Untuk tetesan hujan yang mempunyai diameter lebih dari 5,5 mm, kecepatan akhir tidaklah meningkat. Hal ini disebabkan oleh perubahan bentuk dan pecahnya tetesan sebagai akibat meningkatnya tahanan udara. Dalam percobaan tugas akhir ini, penulis akan merujuk pada Gambar 2.21 sebagai referensi untuk menentukan kecepatan tetesan air hujan yang akan di uji. Karena dalam grafik tersebut disajikan hubungan antara diameter tetesan terhadap kecepatan dan ketinggian jatuh air hujan yang lebih lengkap dan sesuai pengujian yang hendak dilakukan. 2.8 PENGARUH AIR HUJAN TERHADAP PERUBAHAN TEGANGAN TEMBUS UDARA Udara adalah suatu bahan dielektrik yang baik. Dielektrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau bahkan hampir tidak ada. Pada bahan dielektrik tidak terdapat elektron-elektron konduksi yang bebas bergerak di seluruh bahan oleh pengaruh medan listrik. Dalam bahan dielektrik, semua elektron-elektron terikat dengan kuat pada intinya sehingga terbentuk suatu struktur regangan (lattices) benda padat, atau dalam hal cairan atau gas, bagian-bagian positif dan negatifnya terikat bersama-sama sehingga tiap aliran massa tidak merupakan perpindahan dari muatan. Karena itu, jika suatu dielektrik diberi muatan listrik, muatan ini akan tinggal terlokalisir di daerah di mana muatan tadi ditempatkan. Konstanta dielektrik atau permitivitas listrik relatif, adalah sebuah konstanta dalam ilmu fisika. Konstanta ini melambangkan rapatnya fluks elektrostatik dalam suatu bahan bila diberi potensial listrik. Konstanta dielektrik merupakan perbandingan energi listrik yang tersimpan pada bahan tersebut jika diberi sebuah potensial, relatif terhadap vakum (ruang hampa). Secara matematis konstanta dielektrik suatu bahan didefinisikan sebagai,.(2.7) Dimana ε s = Permitivitas statis dari bahan tersebut, dan ε 0 = Permitivitas vakum

29 Tabel 2.3. Berisi daftar konstanta dielektrik beberapa bahan pada suhu kamar. BAHAN KONSTANTA DIELEKTRIK Vakum 1 Udara 1,00054 Karet 7 Silikon 11,68 Metanol 3 Beton 4,5 Air (20 C) 80,10 Barium titanat 1200 Kaca pyrex 4,7 Kertas 3,5 Udara di alam yang secara umum terdiri dari 78 % nitrogen, 21 % oksigen dan 1 % uap air, karbondioksida, dan gas-gas lainnya. Gas ideal adalah gas yang hanya terdiri dari molekul-molekul netral, sehingga tidak dapat mengalirkan arus listrik. Berikut ini sifat sifat listrik dari udara pada keadaan standar pada suhu 20 0 C : Resistivity (ρ) : (Ω.m) Conductivity (σ) : 3 x x 10-7 μ.siemens/cm Kekuatan dielektrik : 31,7 kv/cm Mekanisme kegagalan isolasi pada peralatan tegangan tinggi pada saat digunakan disebabkan banyak hal. Salah satu kegagalan di antaranya adalah pada isolasi gas yang mengalami kerusakan karena pengaruh lingkungan berupa hujan. Adanya hujan membuat perubahan konduktivitas yang juga akan merubah medan listrik (E) di udara.

30 Ada 2 hal yang terjadi akibat perubahan konduktivitas diudara : c. Konduktivitas tinggi, akan mengakibatkan medan listrik (E) di udara berubah, yang juga akan menurunkan kekuatan dielektrik udara sehingga akan mempercepat udara semakin konduktif. Oleh karena itu, tegangan tembus udara juga akan semakin kecil. d. Konduktivitas rendah, medan listrik (E) di udara juga akan berubah, tetapi akan bersifat isolasi, dimana kekuatan dielektrik udara akan semakin besar, dimana seolah olah terjadi isolasi berlapis. Oleh karena itu, tegangan tembus udara pun akan semakin besar juga. Karakteristik Air Hujan Menurut hasil penelitian yang dilakukan oleh Zulkarnain (1999) yang merupakan mahasiswa pascasarjana IPB pada tesisnya, parameter fisik, kimia, dan logam berat air hujan, karakteristik air hujan meliputi: Konduktivitas listrik berkisar dari 6-11 μsiemens/cm, derajat keasaman, (ph) antara 4-7, sedangkan konsentrasi sulfat, nitrat, nitrit, magnesium, amonia, klorida, kalsium, tembaga, timbal, dan flourida yang rendah, seperti yang terlihat pada Tabel 2.3 berikut. Tabel 2.4. Karakteriktik Air Hujan [1]

31 Hujan adalah suatu fenomena alam dimana air hujan tersebut dapat mengakibatkan tegangan tembus karena air hujan akan dapat menghantarkan arus. Dalam kenyataan tetesan air hujan dapat menyebabkan breakdown. Sebab hujan merupakan salah satu polutan yang dapat mengubah konduktivitas suatu bahan dielektrik. Adanya kondisi hujan akan mempengaruhi kekuatan dielektrik dalam mencegah terjadinya tembus antar dua peralatan tegangan tinggi yang diisolasi. Apabila terjadi hujan, dimana hujan yang memiliki konduktivitas lebih tinggi dibandingkan udara, akan dapat mengubah konduktivitas udara. Sehingga konduktivitas udara saat terjadinya hujan juga akan naik. Tingkat kenaikan konduktivitas udara tergantung seberapa besar curah hujan yang membasahi udara tersebut. Semakin besar curah hujan yang membasahi udara, maka akan semakin besar juga tingkat kenaikan konduktivitas udara oleh pengaruh campuran konduktivitas hujan tersebut. Besarnya curah hujan ini berhubungan dengan besarnya ukuran butiran air hujan. Semakin besar curah hujan maka semakin besar juga ukuran butiran air hujan yang jatuh membasahi udara. Secara teori hal ini dapat dianalisa sebagai berikut apabila konduktivitas semakin tinggi, maka kekuatan dielektrik suatu bahan akan juga semakin kecil, sehingga tegangan tembus juga akan semakin kecil, karena dibutuhkan kuat medan listrik yang semakin kecil untuk dapat melepaskan elektron dari ikatannya yang pada gilirannya membuat nilai tegangan tembus juga semakin kecil. Hal ini dikarenakan konduktivitas berbanding lurus terhadap rapat arus dan berbanding terbalik terhadap kuat medan listrik. Ini sesuai dengan rumus : J = σ E (2.8) Konduktivitas dinyatakan dengan σ dan didefinisikan sebagai perbandingan antara rapat arus (J) terhadap kuat medan listrik (E).

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dielektrik Dielektrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau bahkan hampir tidak ada.bahan dielektrik dapat berwujud padat, cair dan gas. Pada

Lebih terperinci

PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA

PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA Join Wan Chanlyn S, Hendra Zulkarnaen Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera

Lebih terperinci

PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA SKRIPSI OLEH : JOIN WAN CHANLYN S NIM :

PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA SKRIPSI OLEH : JOIN WAN CHANLYN S NIM : PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA SKRIPSI OLEH : JOIN WAN CHANLYN S NIM : 090402090 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 PENGARUH

Lebih terperinci

Karakteristik Air. Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017

Karakteristik Air. Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017 Karakteristik Air Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017 Fakta Tentang Air Air menutupi sekitar 70% permukaan bumi dengan volume sekitar 1.368 juta km

Lebih terperinci

BAB II BUSUR API LISTRIK

BAB II BUSUR API LISTRIK BAB II BUSUR API LISTRIK II.1 Definisi Busur Api Listrik Bahan isolasi atau dielekrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau hampir tidak ada. Bila bahan isolasi tersebut

Lebih terperinci

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA 3.1. Pendahuluan Setiap bahan isolasi mempunyai kemampuan menahan tegangan yang terbatas. Keterbatasan kemampuan tegangan ini karena bahan isolasi bukanlah

Lebih terperinci

Daur Siklus Dan Tahapan Proses Siklus Hidrologi

Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Hidrologi Siklus hidrologi adalah perputaran air dengan perubahan berbagai bentuk dan kembali pada bentuk awal. Hal ini menunjukkan bahwa volume

Lebih terperinci

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan BAB II TEGANGAN TINGGI 2.1 Umum Pengukuran tegangan tinggi berbeda dengan pengukuran tegangan rendah, sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan tinggi yang akan

Lebih terperinci

Teknik Elektro Universitas Diponegoro Semarang

Teknik Elektro Universitas Diponegoro Semarang UJI TEGANGANTEMBUS UDARA PADA TEKANAN DAN TEMPERATUR YANG BERVARIASI MENGGUNAKAN ELEKTRODA BOLA Arif Wibowo 1, Abdul Syakur, ST.MT. 2, Ir. Agung Nugroho 3 Teknik Elektro Universitas Diponegoro Semarang

Lebih terperinci

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG Zainal Abidin Teknik Elektro Politeknik Bengkalis Jl. Bathin Alam, Sei-Alam, Bengkalis Riau zainal@polbeng.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Hujan / Presipitasi Hujan merupakan satu bentuk presipitasi, atau turunan cairan dari angkasa, seperti salju, hujan es, embun dan kabut. Hujan terbentuk

Lebih terperinci

BAB II SIFAT-SIFAT LISTRIK DIELEKTRIK. yang akan dialami bahan isolasi tersebut, dan disamping itu perlu

BAB II SIFAT-SIFAT LISTRIK DIELEKTRIK. yang akan dialami bahan isolasi tersebut, dan disamping itu perlu BAB II SIFATSIFAT LISTRIK DIELEKTRIK II.1 UMUM Dalam menentukan dimensi suatu sistem isolasi dibutuhkan pengetahuan yang pasti mengenai jenis, besaran, dan durasi tekanan dielektrik yang akan dialami bahan

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

II. TINJAUAN PUSTAKA. Hujan merupakan unsur iklim yang paling penting di Indonesia karena

II. TINJAUAN PUSTAKA. Hujan merupakan unsur iklim yang paling penting di Indonesia karena II. TINJAUAN PUSTAKA A. Defenisi Hujan Asam Hujan merupakan unsur iklim yang paling penting di Indonesia karena keragamannya sangat tinggi baik menurut waktu dan tempat. Hujan adalah salah satu bentuk

Lebih terperinci

PENGARUH HUJAN TERHADAP TEGANGAN LEWAT DENYAR ISOLATOR PIRING TERPOLUSI

PENGARUH HUJAN TERHADAP TEGANGAN LEWAT DENYAR ISOLATOR PIRING TERPOLUSI PENGARUH HUJAN TERHADAP TEGANGAN LEWAT DENYAR ISOLATOR PIRING TERPOLUSI Alfonso Manogari Siregar, Syahrawardi Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera

Lebih terperinci

PERCOBAAN - I PEMBANGKITAN DAN PENGUKURAN TEGANGAN TINGGI BOLAK-BALIK

PERCOBAAN - I PEMBANGKITAN DAN PENGUKURAN TEGANGAN TINGGI BOLAK-BALIK PERCOBAAN - I PEMBANGKITAN DAN PENGUKURAN TEGANGAN TINGGI BOLAK-BALIK 1.1 DASAR TEORI Tegangan tinggi bolak-balik banyak dipergunakan untuk pengujian peralatan listrik yang memiliki kapasitansi besar seperti

Lebih terperinci

Sifat fisika air. Air O. Rumus molekul kg/m 3, liquid 917 kg/m 3, solid. Kerapatan pada fasa. 100 C ( K) (212ºF) 0 0 C pada 1 atm

Sifat fisika air. Air O. Rumus molekul kg/m 3, liquid 917 kg/m 3, solid. Kerapatan pada fasa. 100 C ( K) (212ºF) 0 0 C pada 1 atm Sifat fisika air Rumus molekul Massa molar Volume molar Kerapatan pada fasa Titik Leleh Titik didih Titik Beku Titik triple Kalor jenis Air H 2 O 18.02 g/mol 55,5 mol/ L 1000 kg/m 3, liquid 917 kg/m 3,

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER)

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) 1. Pengertian Atmosfer Planet bumi dapat dibagi menjadi 4 bagian : (lithosfer) Bagian padat

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN

STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN Riza Aryanto. 1, Moch. Dhofir, Drs., Ir., MT. 2, Hadi Suyono, S.T., M.T., Ph.D. 3 ¹Mahasiswa Jurusan Teknik Elektro, ² ³Dosen

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur.

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur. KALOR Tujuan Pembelajaran: 1. Menjelaskan wujud-wujud zat 2. Menjelaskan susunan partikel pada masing-masing wujud zat 3. Menjelaskan sifat fisika dan sifat kimia zat 4. Mengklasifikasikan benda-benda

Lebih terperinci

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut.

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Rentang hasil pengkuran diameter di atas yang memungkinkan adalah. A. 5,3 cm sampai dengan 5,35 cm

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Umum merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan

Lebih terperinci

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal

Horizontal. Kedalaman. Laut. Lintang. Permukaan. Suhu. Temperatur. Vertikal Temperatur Air Laut Dalam oseanografi dikenal dua istilah untuk menentukan temperatur air laut yaitu temperatur insitu (selanjutnya disebut sebagai temperatur saja) dan temperatur potensial. Temperatur

Lebih terperinci

SELAMAT DATANG SEMINAR. Laporan TUGAS AKHIR

SELAMAT DATANG SEMINAR. Laporan TUGAS AKHIR SELAMAT DATANG DI SEMINAR Laporan TUGAS AKHIR UJI TEGANGAN TEMBUS UDARA PADA TEKANAN DAN TEMPERATUR YANG BERVARIASI MENGGUNAKAN ELEKTRODA BOLA ARIF WIBOWO L2F 303426 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

LUQMAN KUMARA Dosen Pembimbing :

LUQMAN KUMARA Dosen Pembimbing : Efek Polaritas dan Fenomena Stres Tegangan Sebelum Kegagalan Isolasi pada Sela Udara Jarum-Plat LUQMAN KUMARA 2205 100 129 Dosen Pembimbing : Dr.Eng I Made Yulistya Negara, ST,M.Sc IG Ngurah Satriyadi

Lebih terperinci

UN SMA IPA 2008 Fisika

UN SMA IPA 2008 Fisika UN SMA IPA 008 Fisika Kode Soal P67 Doc. Version : 0-06 halaman 0. Tebal pelat logam diukur dengan mikrometer skrup seperti gambar Tebal pelat logam adalah... (A) 4,8 mm (B) 4,90 mm (C) 4,96 mm (D) 4,98

Lebih terperinci

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton (bermuatan positif) dan neutron

Lebih terperinci

Teknik Elektro Universitas Diponegoro Semarang

Teknik Elektro Universitas Diponegoro Semarang ANALISIS PERBANDINGAN NILAI TEGANGAN TEMBUS DIELEKTRIK UDARA PADA KONDISI BASAH DENGAN PEMODELAN CAIRAN YANG DOMINAN ASAM, BASA, GARAM, SERTA AIR HUJAN PEGUNUNGAN DENGAN MENGGUNAKAN ELEKTRODA BOLA-BOLA

Lebih terperinci

SMP kelas 7 - FISIKA BAB 4. Kalor dan PerpindahannyaLatihan Soal 4.3

SMP kelas 7 - FISIKA BAB 4. Kalor dan PerpindahannyaLatihan Soal 4.3 SMP kelas 7 - FISIKA BAB 4. Kalor dan PerpindahannyaLatihan Soal 4.3 1. Perhatikan peristiwa berikut! 1) Kapur barus pewangi pakaian didalam lemari makin lama makin kecil. 2) Timbulnya butir-butir air

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

Mata Pelajaran : FISIKA

Mata Pelajaran : FISIKA Mata Pelajaran : FISIKA Kelas/ Program : XII IPA Waktu : 90 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! 1. Hasil pengukuran tebal meja menggunakan

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini.

PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. PREDIKSI 8 1. Tebal keping logam yang diukur dengan mikrometer sekrup diperlihatkan seperti gambar di bawah ini. Dari gambar dapat disimpulkan bahwa tebal keping adalah... A. 4,30 mm B. 4,50 mm C. 4,70

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter minimum dari pengukuran benda di atas A. 5,685 cm B. 5,690 cm C. 5,695 cm D. 5,699 cm E. 5,700 cm 2. Sebuah partikel

Lebih terperinci

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.1. argon. oksigen. nitrogen. hidrogen

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.1. argon. oksigen. nitrogen. hidrogen 1. Komposisi gas terbesar di atmosfer adalah gas. SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.1 argon oksigen nitrogen hidrogen karbon dioksida Komposisi gas-gas di udara

Lebih terperinci

STUDI PENGARUH KORONA PADA KUBIKEL MODEL TERHADAP DISTORSI HARMONISA ARUS DAN TEGANGAN SUMBER LISTRIK AC SKRIPSI

STUDI PENGARUH KORONA PADA KUBIKEL MODEL TERHADAP DISTORSI HARMONISA ARUS DAN TEGANGAN SUMBER LISTRIK AC SKRIPSI UNIVERSITAS INDONESIA STUDI PENGARUH KORONA PADA KUBIKEL MODEL TERHADAP DISTORSI HARMONISA ARUS DAN TEGANGAN SUMBER LISTRIK AC SKRIPSI FAIZ HUSNAYAIN 06 06 07 3902 FAKULTAS TEKNIK UNIVERSITAS INDONESIA

Lebih terperinci

Dioda Semikonduktor dan Rangkaiannya

Dioda Semikonduktor dan Rangkaiannya - 2 Dioda Semikonduktor dan Rangkaiannya Missa Lamsani Hal 1 SAP Semikonduktor tipe P dan tipe N, pembawa mayoritas dan pembawa minoritas pada kedua jenis bahan tersebut. Sambungan P-N, daerah deplesi

Lebih terperinci

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A PREDIKSI 7 1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A B C D E 2. Pak Pos mengendarai sepeda motor ke utara dengan jarak 8 km, kemudian

Lebih terperinci

UN SMA IPA 2008 Fisika

UN SMA IPA 2008 Fisika UN SMA IPA 2008 Fisika Kode Soal P67 Doc. Name: UNSMAIPA2008FISP67 Doc. Version : 2011-06 halaman 1 01. Tebal pelat logam diukur dengan mikrometer skrup seperti gambar Tebal pelat logam adalah... (A) 4,85

Lebih terperinci

BAB II TEGANGAN LEBIH SURYA PETIR. dibangkitkan dalam bagian awan petir yang disebut cells. Pelepasan muatan ini

BAB II TEGANGAN LEBIH SURYA PETIR. dibangkitkan dalam bagian awan petir yang disebut cells. Pelepasan muatan ini BAB II TEGANGAN LEBIH SURYA PETIR 2.1. UMUM Petir merupakan peristiwa pelepasan muatan listrik statik di udara yang dibangkitkan dalam bagian awan petir yang disebut cells. Pelepasan muatan ini dapat terjadi

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Fisika : SMA/MA : IPA Hari/Tanggal : Kamis, 3 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

drimbajoe.wordpress.com

drimbajoe.wordpress.com 1. Suatu bidang berbentuk segi empat setelah diukur dengan menggunakan alat ukur yang berbeda, diperoleh panjang 5,45 cm, lebar 6,2 cm, maka luas pelat tersebut menurut aturan penulisan angka penting adalah...

Lebih terperinci

ATMOSFER I. A. Pengertian, Kandungan Gas, Fungsi, dan Manfaat Penyelidikan Atmosfer 1. Pengertian Atmosfer. Tabel Kandungan Gas dalam Atmosfer

ATMOSFER I. A. Pengertian, Kandungan Gas, Fungsi, dan Manfaat Penyelidikan Atmosfer 1. Pengertian Atmosfer. Tabel Kandungan Gas dalam Atmosfer KTSP & K-13 Kelas X Geografi ATMOSFER I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami pengertian dan kandungan gas atmosfer. 2. Memahami fungsi

Lebih terperinci

FISIKA 2015 TIPE C. gambar. Ukuran setiap skala menyatakan 10 newton. horisontal dan y: arah vertikal) karena pengaruh gravitasi bumi (g = 10 m/s 2 )

FISIKA 2015 TIPE C. gambar. Ukuran setiap skala menyatakan 10 newton. horisontal dan y: arah vertikal) karena pengaruh gravitasi bumi (g = 10 m/s 2 ) No FISIKA 2015 TIPE C SOAL 1 Sebuah benda titik dipengaruhi empat vektor gaya yang setitik tangkap seperti pada gambar. Ukuran setiap skala menyatakan 10 newton. Besar resultan gayanya adalah. A. 60 N

Lebih terperinci

BAHAN BAKAR KIMIA. Ramadoni Syahputra

BAHAN BAKAR KIMIA. Ramadoni Syahputra BAHAN BAKAR KIMIA Ramadoni Syahputra 6.1 HIDROGEN 6.1.1 Pendahuluan Pada pembakaran hidrokarbon, maka unsur zat arang (Carbon, C) bersenyawa dengan unsur zat asam (Oksigen, O) membentuk karbondioksida

Lebih terperinci

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air.

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. BAB I SIKLUS HIDROLOGI A. Pendahuluan Ceritakan proses terjadinya hujan! Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. Tujuan yang ingin dicapai

Lebih terperinci

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay A. PILIHAN GANDA Petunjuk: Pilih satu jawaban yang paling benar. 1. Grafik

Lebih terperinci

Listrik yang tidak mengalir dan perpindahan arusnya terbatas, fenomena kelistrikan dimana muatan listriknya tidak bergerak.

Listrik yang tidak mengalir dan perpindahan arusnya terbatas, fenomena kelistrikan dimana muatan listriknya tidak bergerak. LISTRIK STATIS Kata listrik berasal dari kata Yunani elektron yang berarti ambar. Ambar adalah suatu damar pohon yang telah membatu, dan jika digosok dengan kain wol akan diperoleh sifat yang dapat menarik

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

BAB II ISOLATOR PENDUKUNG HANTARAN UDARA

BAB II ISOLATOR PENDUKUNG HANTARAN UDARA BAB II ISOLATOR PENDUKUNG HANTARAN UDARA Isolator memegang peranan penting dalam penyaluran daya listrik dari gardu induk ke gardu distribusi. Isolator merupakan suatu peralatan listrik yang berfungsi

Lebih terperinci

Unsur gas yang dominan di atmosfer: Nitrogen : 78,08% Oksigen : 20,95% Argon : 0,95% Karbon dioksida : 0,034%

Unsur gas yang dominan di atmosfer: Nitrogen : 78,08% Oksigen : 20,95% Argon : 0,95% Karbon dioksida : 0,034% Unsur gas yang dominan di atmosfer: Nitrogen : 78,08% Oksigen : 20,95% Argon : 0,95% Karbon dioksida : 0,034% Ozon (O 3 ) mempunyai fungsi melindungi bumi dari radiasi sinar Ultraviolet Ozon sekarang ini

Lebih terperinci

BAB I PENDAHULUAN. fenomena partial discharge tersebut. Namun baru sedikit penelitian tentang

BAB I PENDAHULUAN. fenomena partial discharge tersebut. Namun baru sedikit penelitian tentang BAB I PENDAHULUAN 1.1. Latar Belakang Fenomena Partial Discharge (PD) pada bahan isolasi yang diakibatkan penerapan tegangan gelombang AC sinusoidal pada listrik bertegangan tinggi sekarang ini telah banyak

Lebih terperinci

UN SMA IPA 2011 Fisika

UN SMA IPA 2011 Fisika UN SMA IPA 2011 Fisika Kode Soal Doc. Name: UNSMAIPA2011FIS999 Doc. Version : 2012-12 halaman 1 1. Sebuah benda bergerak dengan lintasan seperti grafik berikut : Perpindahan yang dialami benda sebesar.

Lebih terperinci

2 A (C) - (D) - (E) -

2 A (C) - (D) - (E) - 01. Gaya F sebesar 12 N bekerja pada sebuah benda yang masanya m 1 menyebabkan percepatan sebesar 8 ms -2. Jika F bekerja pada benda yang bermassa m 2 maka percepatannya adalah 2m/s -2. Jika F bekerja

Lebih terperinci

STRUKTUR BUMI. Bumi, Tata Surya dan Angkasa Luar

STRUKTUR BUMI. Bumi, Tata Surya dan Angkasa Luar STRUKTUR BUMI 1. Skalu 1978 Jika bumi tidak mempunyai atmosfir, maka warna langit adalah A. hitam C. kuning E. putih B. biru D. merah Jawab : A Warna biru langit terjadi karena sinar matahari yang menuju

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

Hasil Penelitian dan Pembahasan

Hasil Penelitian dan Pembahasan Bab IV Hasil Penelitian dan Pembahasan IV.1 Pengaruh Arus Listrik Terhadap Hasil Elektrolisis Elektrolisis merupakan reaksi yang tidak spontan. Untuk dapat berlangsungnya reaksi elektrolisis digunakan

Lebih terperinci

Fisika EBTANAS Tahun 1993

Fisika EBTANAS Tahun 1993 Fisika EBTANA Tahun 1993 EBTANA-93-01 Dimensi konstanta pegas adalah A. L T 1 B. M T C. M L T 1 D. M L T M L T 1 EBTANA-93-0 Perhatikan kelima grafik hubungan antara jarak a dan waktu t berikut ini. t

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMA / MA 2011 Program IPA Mata Ujian : Fisika Jumlah Soal : 20 1. Gas helium (A r = gram/mol) sebanyak 20 gram dan bersuhu 27 C berada dalam wadah yang volumenya 1,25 liter. Jika tetapan

Lebih terperinci

II. TINJAUAN PUSTAKA. Hujan adalah jatuhnya hydrometeor yang berupa partikel-partikel air dengan

II. TINJAUAN PUSTAKA. Hujan adalah jatuhnya hydrometeor yang berupa partikel-partikel air dengan II. TINJAUAN PUSTAKA A. Hujan 1. Pengertian Hujan Hujan adalah jatuhnya hydrometeor yang berupa partikel-partikel air dengan diameter 0,5 mm atau lebih. Jika jatuhnya air sampai ke tanah maka disebut hujan,

Lebih terperinci

3. Sebuah sinar laser dipancarkan ke kolam yang airnya tenang seperti gambar

3. Sebuah sinar laser dipancarkan ke kolam yang airnya tenang seperti gambar 1. Pembacaan jangka sorong di samping yang benar adalah. cm a. 1,05 c. 2, 05 b. 1,45 d. 2, 35 2. Adi berangkat ke sekolah pukul 06.15. Jarak rumah Ardi dengan sekolah 1.8 km. Sekolah dimulai pukul 07.00.

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Atmosphere Biosphere Hydrosphere Lithosphere

Atmosphere Biosphere Hydrosphere Lithosphere Atmosphere Biosphere Hydrosphere Lithosphere Atmosfer Troposfer Lapisan ini berada pada level yang paling rendah, campuran gasgasnya adalah yang paling ideal untuk menopang kehidupan di bumi. Di lapisan

Lebih terperinci

TUGAS PRESENTASI ILMU PENGETAHUAN BUMI & ANTARIKSA ATMOSFER BUMI

TUGAS PRESENTASI ILMU PENGETAHUAN BUMI & ANTARIKSA ATMOSFER BUMI TUGAS PRESENTASI ILMU PENGETAHUAN BUMI & ANTARIKSA ATMOSFER BUMI ATMOSFER BUMI 6.1. Awal Evolusi Atmosfer Menurut ahli geologi, pada mulanya atmosfer bumi mengandung CO 2 (karbon dioksida) berkadar tinggi

Lebih terperinci

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1)

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1) PLATIHAN OSN JAKATA 2016 LISTIK MAGNT (AGIAN 1) 1. Partikel deuterium (1 proton, 1 neutron) dan partikel alpha (2 proton, 2 neutron) saling mendekat dari jarak yang sangat jauh dengan energi kinetik masing-masing

Lebih terperinci

SMP kelas 9 - FISIKA BAB 9. KALOR DAN PERPINDAHANNYALatihan Soal 9.3

SMP kelas 9 - FISIKA BAB 9. KALOR DAN PERPINDAHANNYALatihan Soal 9.3 1. Perhatikan pernyataan berikut! SMP kelas 9 - FISIKA BAB 9. KALOR DAN PERPINDAHANNYALatihan Soal 9.3 1. Angin laut terjadi pada siang hari, karena udara di darat lebih panas daripada di laut. 2. Sinar

Lebih terperinci

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5

2. Sebuah partikel bergerak lurus ke timur sejauh 3 cm kemudian belok ke utara dengan sudut 37 o dari arah timur sejauh 5 cm. Jika sin 37 o = 3 5 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Diameter minimum benda sebesar. A. 9,775 cm B. 9,778 cm C. 9,782 cm D. 9,785 cm E. 9,788 cm 2. Sebuah

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

Doc. Name: SBMPTN2015FIS999 Version:

Doc. Name: SBMPTN2015FIS999 Version: SBMPTN 2015 Fisika Kode Soal Doc. Name: SBMPTN2015FIS999 Version: 2015-09 halaman 1 16. Posisi benda yang bergerak sebagai fungsi parabolik ditunjukkan pada gambar. Pada saat t 1 benda. (A) bergerak dengan

Lebih terperinci

PENGARUH KENAIKAN TEMPERATUR TERHADAP TEGANGAN TEMBUS UDARA PADA ELEKTRODA BOLA TERPOLUSI ASAM

PENGARUH KENAIKAN TEMPERATUR TERHADAP TEGANGAN TEMBUS UDARA PADA ELEKTRODA BOLA TERPOLUSI ASAM SINGUDA ENSIKOM VOL. NO. /Maret PENGARUH KENAIKAN TEMPERATUR TERHADAP TEGANGAN TEMBUS UDARA PADA ELEKTRODA BOLA TERPOLUSI ASAM Christian Daniel Simanjuntak, Syahrawardi Konsentrasi Teknik Energi Listrik,

Lebih terperinci

Atmosfer Bumi. Ikhlasul-pgsd-fip-uny/iad. 800 km. 700 km. 600 km. 500 km. 400 km. Aurora bagian. atas Meteor 300 km. Aurora bagian. bawah.

Atmosfer Bumi. Ikhlasul-pgsd-fip-uny/iad. 800 km. 700 km. 600 km. 500 km. 400 km. Aurora bagian. atas Meteor 300 km. Aurora bagian. bawah. Atmosfer Bumi 800 km 700 km 600 km 500 km 400 km Aurora bagian atas Meteor 300 km Aurora bagian bawah 200 km Sinar ultraviolet Gelombang radio menumbuk ionosfer 100 km 80 km Mesopause Stratopause 50 km

Lebih terperinci

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1. tetap

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1. tetap SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1 1. Keberadaan air yang terdapat di permukaan bumi jumlahnya... tetap semakin berkurang semakin bertambah selalu berubah-ubah

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter maksimum dari pengukuran benda di atas adalah. A. 2,199 cm B. 2,275 cm C. 2,285 cm D. 2,320 cm E. 2,375 cm 2.

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD Kalor dan Perpindahannya BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan

Lebih terperinci

BAB I PENDAHULUAN. dibangkitkan oleh sebuah sistem pembangkit perlu mengalami peningkatan nilai

BAB I PENDAHULUAN. dibangkitkan oleh sebuah sistem pembangkit perlu mengalami peningkatan nilai BAB I PENDAHULUAN 1.1 Latar Belakang Tegangan tinggi merupakan suatu bagian dari Sistem Tenaga Listrik yang memiliki peranan penting. Dalam proses penyaluran daya, tegangan yang dibangkitkan oleh sebuah

Lebih terperinci

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1

LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 LAPORAN RESMI PRAKTEK KERJA LABORATORIUM 1 KODE: L - 4 JUDUL PERCOBAAN : ARUS DAN TEGANGAN PADA LAMPU FILAMEN TUNGSTEN DI SUSUN OLEH: TIFFANY RAHMA NOVESTIANA 24040110110024 LABORATORIUM FISIKA DASAR FAKULTAS

Lebih terperinci

Skema proses penerimaan radiasi matahari oleh bumi

Skema proses penerimaan radiasi matahari oleh bumi Besarnya radiasi yang diserap atau dipantulkan, baik oleh permukaan bumi atau awan berubah-ubah tergantung pada ketebalan awan, kandungan uap air, atau jumlah partikel debu Radiasi datang (100%) Radiasi

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut.

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. 1 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. Panjang Lebar (menggunakan mistar) (menggunakan jangka sorong) Luas plat logam di atas

Lebih terperinci

Udara & Atmosfir. Angga Yuhistira

Udara & Atmosfir. Angga Yuhistira Udara & Atmosfir Angga Yuhistira Udara Manusia dapat bertahan sampai satu hari tanpa air di daerah gurun yang paling panas, tetapi tanpa udara manusia hanya bertahan beberapa menit saja. Betapa pentingnya

Lebih terperinci

Jika massa jenis benda yang tercelup tersebut kg/m³, maka massanya adalah... A. 237 gram B. 395 gram C. 632 gram D.

Jika massa jenis benda yang tercelup tersebut kg/m³, maka massanya adalah... A. 237 gram B. 395 gram C. 632 gram D. 1. Perhatikan gambar. Jika pengukuran dimulai pada saat kedua jarum menunjuk nol, maka hasil pengukuran waktu adalah. A. 38,40 menit B. 40,38 menit C. 38 menit 40 detik D. 40 menit 38 detik 2. Perhatikan

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan untuk perubahan suhu benda? 4. Apa yang dimaksud dengan

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

IKATAN KIMIA DALAM BAHAN

IKATAN KIMIA DALAM BAHAN IKATAN KIMIA DALAM BAHAN Sifat Atom dan Ikatan Kimia Suatu partikel baik berupa ion bermuatan, inti atom dan elektron, dimana diantara mereka, akan membentuk ikatan kimia yang akan menurunkan energi potensial

Lebih terperinci