BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Pendahuluan Pada bab ini akan dibahas tentang travelling salesman problem (TSP), metodemetode yang digunakan dalam penyelesaian TSP. Khusus penggunaan metode algoritma genetika akan dipaparkan secara teoritis mengenai tahap-tahap yang dilakukan dalam penggunaan metode algoritma mulai dari representasi kromosom, fungsi fitness, seleksi, crossover, mutasi Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) merupakan sebuah permasalahan optimasi yang dapat diterapkan pada berbagai kegiatan seperti routing. Masalah optimasi TSP terkenal dan telah menjadi standar untuk mencoba algoritma yang komputational. Pokok permasalahan dari TSP adalah seorang salesman harus mengunjungi sejumlah kota yang diketahui jaraknya satu dengan yang lainnya. Menurut Arora (2000), pada traveling Salesman Problem (TSP) kita diberikan n buah simpul dan untuk setiap pair { i, j}, sebuah jarak d ij. Kita menginginkan sebuah path tertutup yang mengunjungi setiap simpul tepat sekali dan mencari biaya minimum, yang merupakan penjumlahan dari jarak-jarak yang ada pada path tersebut Sejarah Permasalahan TSP Permasalahan matematika tentang Traveling Salesman Problem dikemukakan pada tahun 1800 oleh matematikawan Irlandia William Rowan Hamilton dan matematikawan Inggris Thomas Penyngton.

2 Bentuk umum dari TSP pertama dipelajari oleh para matematikawan mulai tahun Diawali oleh Karl Menger di Vienna dan Harvard. Setelah itu permasalahan TSP dipublikasikan oleh Hassler Whitney dan Merrill Flood di Princeton. Penelitian secara detail dari hubungan antara Menger dan Whitney, dan perkembangan TSP sebagai sebuah topik studi dapat ditemukan di makalah Alexander Schrijver s On the history of combinatorial optimization (till 1960) Perkembangan Pemecahan TSP Untuk menilai apakah kita melakukan perkembangan dalam menyelesaikan permasalahan TSP, kita pasti menilai dari jumlah waktu yang makin berkurang. Misal kita memiliki metode baru A yang lebih cepat menyelesaikan permasalahan TSP dibanding metode B, kita akan menilai bahwa kita telah menemukan solusi lebih baik. Tetapi masalah perangkingan untuk metode ini akan sangat sulit dilakukan, karena metode-metode yang sangat berkaitan erat satu sama lain tidak dapat dinilai hanya melalui perbandingan yang sederhana (permasalahanpermasalahan TSP yang ringan). Oleh karena itu, untuk memutuskan apakah metode A lebih baik dibandingkan metode B, Kita harus mengesampingkan hasil dari contoh-contoh kasus yang sederhana dan dapat diselesaikan oleh hampir semua metode pemecahan permasalahan TSP. Saat ini kita seharusnya berkonsentrasi pada permasalahan-permasalahan yang benar-benar sulit yang sangat sulit terpecahkan sampai saat ini. Dari permasalahan-permasalahan yang sangat sulit ini, kita gunakan metode A dan metode B untuk menyelesaikannya. Setelah itu kita dapat memutuskan metode A lebih baik dari metode B jika untuk setiap permasalahan n-kota dengan n bilangan yang besar, metode A lebih cepat dalam menyelesaikan permasalahan dibanding metode B. Agar perbandingan metode-metode TSP ini dapat diaplikasikan, kita dapat menganalisis solusi-solusi dari sebuah metode dan menjamin bahwa setiap n akan memakan sejumlah waktu f(n). Jadi f(n) fungsi waktu dari sebuah metode terhadap jumlah kota (n). Untuk membandingkan dua buah metode, kita cukup

3 membandingkan fungsi f(n) dari masing-masing metode. Hal ini tentu saja dapat menghasilkan perhitungan yang salah ketika ada metode yang baik tapi dianalisis dengan buruk sehingga menghasilkan f(n) yang buruk. Dalam banyak permasalahan komputasional, studi tentang algoritma+fungsi telah menghasilkan solusi matematika yang sangat bagus, yang penting dalam pengembangan untuk penyelesaian permasalahan praktis. Hal ini telah menjadi subjek studi yang utama dalam sains komputer. Untuk setiap permasalahan TSP akan sangat mudah kita katakan bahwa fungsi f(n)-nya adalah (n-1)!=n-1 x n-2 x n-3 x...x 3 x 2 x 1 dan jumlah jalur yang mungkin terjadi adalah (n-1)!/2. Hasil yang lebih baik ditemukan pada tahun 1962 oleh Michael Held dan Richard Karp, yang menemukan algoritma dan fungsi yang mempunyai proporsi n22n, yaitu n x n x2 x 2 x x 2, dimana ada sebanyak n perkalian dua. Untuk setiap n bernilai besar, fungsi f(n) Held-Karp akan selalu lebih kecil dibandingkan (n-1)!. Untuk setiap orang yang tertarik untuk menyelesaikan permasalahan TSP dalam jumlah besar, ada sebuah berita buruk bahwa selama 43 tahun sejak Held dan Karp menemukan fungsi f(n)= n22n ternyata tidak ditemukan fungsi f(n) yang lebih baik lagi. Hal ini tentu saja sangat mengecewakan karena dengan n=30 fungsi f(n) Held-Karp menghasilkan nilai yang sangat besar, dan untuk n=100 merupakan sesuatu yang mustahil untuk diselesaikan oleh kemampuan komputer saat ini. Perkembangan fungsi f(n) dalam TSP yang sangat lambat ini mungkin memang tidak dapat kita hindari; dengan komputer saat ini bisa jadi memang tidak ada metode yang menghasilkan f(n) yang mempunyai performansi yang baik, misal nc dimana c adalah sebuah angka konstanta, oleh karena itu, n x n x n x x n dimana n muncul sebanyak c kali. TSP secara sederhana dapat didefinisikan sebagai proses pencarian lintasan terefisien dan terpendek dari beberapa kota yang dipresentasikan, melewati setiap kota tersebut dan kembali ke kota awal. Setiap kota hanya bisa sekali disinggahi. Persoalan yang dihadapi TSP ialah bagaimana merencanakan total jarak yang

4 minimum. Untuk menyelesaikan persoalan tersebut, tidak mudah dilakukan karena terdapat ruang pencarian dari sekumpulan permutasi sejumlah kota. Maka TSP kemudian dikenal dengan persoalan Non Polinomial. Gambaran sederhana dari pengertian TSP adalah sebagai berikut: Gambar 2.1. Posisi kota-kota yang akan dilewati Kota-kota pada gambar 1., masing-masing mempunyai koordinat (x,y), sehingga jarak antar kedua kota dapat dihitung dengan rumus: d 2 ( x x ) + ( y ) 2 =... (2.1) y2 Setelah jarak-jarak yang menghubungkan tiap kota diketahui, maka dicari rute terpendek dari jalur yang akan dilewati untuk kembali ke kota awal. Gambar 2.2. Rute optimal yang telah dicari Pencarian Lintasan Terpendek dapat dinyatakan dengan persamaan: Min n n d k m k 1 m 1,... (2.2)

5 2.3. Metode-metode Penyelesaian TSP Banyak metode yang dapat dipakai untuk menyelesaikan TSP antara lain : Greedy Heuristic, Ant Colony System, Simulated Annealing, Tabu Search. Metode lain yang dapat dipakai untuk menyelesaikan TSP adalah algoritma genetik. Algoritma genetik merupakan sebuah algoritma yang meniru cara kerja proses genetika pada makhluk hidup, dimana terdapat proses seleksi, rekombinasi dan mutasi untuk mendapatkan kromosom terbaik pada suatu generasi Metode Aproksimasi (Greedy Heuristic) Pada algoritma ini, pemilihan lintasan akan dimulai pada lintasan yang memiliki nilai paling minimum, setiap mencapai suatu kota, algoritma ini akan memilih kota selanjutnya yang belum dikunjungi dan memiliki jarak yang paling minimum. Algoritma ini disebut juga Nearest Neighbour. Kompleksitas algoritma ini memang sangat mengagumkan yaitu O(n), tetapi hasil yang kita dapat bisa sangat jauh dari hasil yang optimal, semakin banyak kota semakin besar pula perbedaan hasil yang dicapai. Misalnya untuk contoh kasus yang sama dengan algoritma Branch and Bound sebelumnya yang menghasilkan nilai 15, maka algoritma ini menghasilkan nilai 18 berbeda sebesar 20% dari hasil sebelumnya padahal jumlah kota hanya 5 buah Metode Heuristic Teknik ini digunakan untuk mencari jawaban dari masalah kombinatorial dengan secepat mungkin. Algoritma tradisional akan gagal ketika menghadapi permasalahan yang sangat rumit, seperti permasalahan TSP dengan jumlah kota (n) yang sangat besar. Metode Heuristic memberikan pendekatan untuk menyelesaikan permasalahan optimasi kombinatorial. Optimasi kombinatorial akan memberi kita hasil yang mungkin dan mencari yang hasil yang mendekati optimal dari hasilhasil tersebut. Tetapi mungkin memang tidak ada metode Heuristik yang menghasilkan solusi yang merupakan solusi optimal. Metode Heuristik seperti

6 simulated annealing, algoritma genetika, tabu search, ant colony system mengusahakan suatu cara untuk mencari hasil yang baik tapi bukan yang terbaik Algoritma Genetik Algoritma genetik pertama kali diperkenalkan oleh John Holland dalam bukunya yang berjudul Adaption in natural and artificial systems, dan oleh De Jong dalam bukunya Adaption of the behavior of a class of genetic adaptive systems, yang keduanya diterbitkan pada tahun 1975, yang merupakan dasar dari algoritma genetik (Davis, 1991). Teori Holland menerangkan suatu metode untuk mengklasifikasikan obyek-obyek, kemudian secara selektif mengawinkan obyek-obyek tersebut satu sama lain untuk menghasilkan obyek baru untuk kemudian diklasifikasikan lagi. Hal ini didasarkan atas kreasi untuk tujuan memodelkan teori seleksi natural Darwin dari suatu bentuk makhluk hidup. Algoritma genetik merupakan teknik pencarian yang didasarkan atas mekanisme seleksi dan genetik natural. Algoritma genetik berbeda dengan tehnik pencarian konvensional, dimana pada algoritma genetik kondisi diawali dengan setting awal solusi acak yang disebut populasi. Tiap individu dalam populasi disebut kromosom, yang merepresentasikan suatu solusi atas permasalahan. Kromosom adalah suatu string simbol, yang umumnya merupakan string bit biner. Kromosom berevolusi melalui iterasi berkelanjutan, yang disebut generasi. Pada setiap generasi, kromosom dievaluasi berdasarkan suatu fungsi evaluasi (Gen M. et.all, 1997). Untuk menghasilkan generasi berikutnya, kromosom baru yang disebut offspring, dibentuk baik melalui penyatuan dua kromosom dari generasi awal menggunakan operator perkawinan silang (crossover) atau memodifikasi kromosom menggunakan operator mutasi (mutation). Suatu generasi baru dibentuk melalui proses seleksi beberapa induk (parents) dan anak (offspring), sesuai dengan nilai fitness, dan melalui eliminasi kromosom lainnya agar ukuran populasi tetap konstan. Kromosom yang sesuai memiliki kemungkinan tertinggi untuk dipilih. Setelah beberapa generasi, algoritma menghasilkan kromosomkromosom terbaik yang diharapkan mewakili solusi optimal atau suboptimal atas

7 permasalahan. Bila P(t) dan C(t) masing-masing merupakan parents dan offspring pada suatu generasi t, struktur umum algoritma genetik dapat dijelaskan sebagai berikut: Procedure: Genetic Algorithm begin t 0; initialize P(t); evaluate P(t); while (not termination condition) do recombine P(t) to yield C(t); evaluate C(t); select P(t + ) from P(t) and C(t); t t + 1; end end Struktur algoritma tersebut merupakan versi modifikasi dari Grefenstette dan Baker (1989). Umumnya, inisialisasi diasumsikan acak (random). Rekombinasi umumnya melibatkan crossover dan mutation untuk menghasilkan offspring. Sesungguhnya hanya ada dua macam operasi dalam algoritma genetik, yaitu: 1. Operasi genetik: crossover dan mutasi. 2. Operasi evolusi: selection. Operasi genetik mencerminkan proses hereditas gen untuk menciptakan offspring baru pada tiap generasi. Operasi evolusi mencerminkan proses evolusi Darwin untuk menghasilkan populasi dari generasi ke generasi. Crossover merupakan operator genetik utama, yang dioperasikan pada dua kromosom pada suatu waktu dan menghasilkan offspring dengan mengkombinasikan pola-pola kedua kromosom. Cara termudah untuk melakukan crossover adalah dengan pemilihan cut-point secara acak dan membentuk offspring dengan mengkombinasikan segmen sebelah kiri dari cut-point salah satu parent dengan segmen sebelah kanan dari cut-point parent lainnya. Metode ini berjalan baik pada

8 representasi bit string. Kinerja algoritma genetik tergantung atas kinerja operator crossover yang digunakan. crossover chromosome s solutions encoding mutation evaluation selection offspring New population decoding Roulette wheel solutions Fitness computation Gambar 2.3. Struktur Utama Algoritma Genetik Sumber: (Gen M. et.all, 1997). Probabilitas crossover (p c ) didefinisikan sebagai rasio jumlah offspring yang dihasillkan dalam tiap generasi atas ukuran populasi (pop_size). Rasio ini mengendalikan jumlah p c x pop_size yang diharapkan dari kromosom untuk menjalankan operasi crossover. Tingkat crossover yang tinggi memperbolehkan

9 eksplorasi solusi lebih luas dan mengurangi kemungkinan menghasilkan kesalahan optimasi, tetapi apabila tingkat rasio terlalu tinggi, maka akan menghasilkan pemborosan waktu komputasi atas eksplorasi kondisi-kondisi ketidakpastian terhadap solusi permasalahan Encoding Kromosom Langkah awal untuk mengimplementasikan suatu program komputer seringkali adalah pemilihan tipe data. Hal inilah yang merupakan variasi perbedaan awal antara teori asli Holland dan beberapa teori alternatif algoritma genetik lainnya yang kemudian muncul. Holland meng-encoding kromosom ke dalam suatu string digit biner. Sejumlah operasi encoding biner digunakan untuk menghasilkan algoritma genetik yang sederhana, efektif dan sesuai. Akan tetapi ada banyak cara untuk merepresentasikan gen suatu obyek, yang masing-masing memiliki keuntungan implisit tersendiri (Davis, 1991). Agar dapat merepresentasikan suatu problem ke dalam bentuk gen, substansi-substansi solusi harus direpresentasikan sebagai suatu kumpulan unit informasi (Davis, 1991) Encoding dan Decoding Pada aturan algoritma genetik, kumpulan gen yang diencoding disebut dengan genotype, sedangkan data aktual yang diencoding disebut dengan phenotype (Gen M. et.all, 1997). Apakah phenotype diencoding untuk membentuk suatu genotype atau genotype didecoding untuk membentuk suatu phenotype, hanyalah menyangkut perbedaan penafsiran dalam literatur (Heitkoetter, 1993). Pada banyak kasus, nilai aktual tiap gen disebut dengan allele (Gen M. et.all, 1997). Menurut realitasnya, gen dari makhluk hidup disimpan berpasangan dan tiap induk hanya memunculkan satu gen untuk tiap pasangan (Sherwod, 1993). Hal ini berbeda dengan algoritma genetik, dimana gen tidak disimpan berpasangan, tetapi baik pada algoritma genetik dan bentuk nyata biologis, hanya sebagian gen induk yang diwariskan pada anak (offspring) (Davis, 1991).

10 Ukuran Populasi Langkah awal pada algoritma genetik adalah menginisialisasi keseluruhan populasi kromosom. Jumlah populasi ini harus ditentukan, tergantung pada teknik komputasi yang tersedia, perbedaan ukuran akan menghasilkan hasil optimal. Apabila ukuran populasi yang dipilih terlalu kecil, maka tingkat eksplorasi atas ruang pencarian global akan terbatas, walaupun arah menuju konvergensi lebih cepat. Apabila ukuran populasi terlalu besar, maka waktu akan banyak terbuang karena berkaitan dengan besarnya jumlah data yang dibutuhkan dan waktu ke arah konvergensi akan lebih lama (Goldberg, 1989) Evaluasi Kromosom Populasi yang acak hampir selalu tidak sesuai (Davis, 1991). Untuk dapat menentukan yang mana yang lebih tepat, tiap obyek harus dievaluasi. Untuk mengevaluasi obyek, beberapa pengetahuan tentang lingkungan kerjanya harus diketahui supaya dapat tetap survive. Lingkungan ini diencoding secara parsial (atau secara parsial didecoding) untuk menyesuaikan dengan deskripsi permasalahan (Gen M. et.all, 1997) Insialisasi Populasi Terdapat dua teknik umum untuk inisialisasi suatu populasi. Populasi obyek (keseluruhan informasi genetik tentang obyek dalam koloni) dapat diambil dari secondary storage. Data ini akan merupakan titik awal bagi evolusi yang terarah. Secara umum algoritma genetik dapat diawali dengan populasi acak. Hal ini merupakan ukuran penuh populasi obyek dimana operasi genetik ditentukan dengan proses acak (Davis, 1991).

11 Metode Seleksi Untuk Kepunahan atau Kelahiran Seleksi bertujuan untuk memberikan kesempatan reproduksi yang lebih besar bagi anggota populasi yang paling fit. (Kusumadewi, 2005) Apabila populasi awal obyek telah dibentuk, dimana masing-masing diukur oleh fitness (atau biaya), maka dapat ditemukan nilai fitness keseluruhan. Apabila nilai fitness keseluruhan tidak setinggi yang diharapkan, sebagian obyek dalam populasi dapat diseleksi untuk dieliminasi (punah). Hal ini berkaitan berkaitan operator seleksi natural elitist (elitist natural selection) (Davis, 1991). Pada awal munculnya algoritma genetik, digunakan strategi penggantian untuk mempertahankan jumlah populasi tetap dengan menggantikan dua induk dengan dua offspring pada tiap generasi. Setelah itu strategi crowding dikembangkan dimana pada metode ini, satu offspring menggantikan induknya yang memiliki banyak kesamaan. Hal ini membutuhkan perbandingan gen per gen anak dengan tiap induknya, dan kondisi semacam ini membutuhkan perhitungan komputasi yang cukup rumit (Gen M. et.all, 1997). Tournament selection merupakan teknik lain untuk menentukan obyek mana yang akan dieliminasi. Pada metode ini, dua obyek dipilih dan diadu, pemenangnya akan melakukan reproduksi dan yang kalah akan punah (Rich, 1995). Hal ini meniru perilaku yang terjadi pada populasi rusa dalam jumlah besar dan kadang-kadang juga terjadi di antara manusia. Banyaknya obyek yang akan dieliminasi pada tiap generasi merupakan suatu hal yang harus benar-benar diperhatikan. Proporsi terminasi prematur dalam populasi menciptakan apa yang dinamakan dengan tekanan seleksi. Misalnya, pada kejadian nyata peristiwa seperti wabah, perang, banjir, jaman es merepresentasikan periode dimana tekanan seleksi cukup tinggi, yang tingkat tekanannya berbeda pada tiap kasus. Pada perkembangan teori algoritma genetik, metode seleksi obyek untuk melahirkan diatur dengan cara yang berbeda. Model dasar dari Holland mengunakan metode dimana yang paling sehat yang akan dipilih untuk melahirkan. Metode lain melakukan pilihan pada dua obyek secara acak untuk melahirkan. Kelahiran yang selektif dapat digunakan secara terpadu dengan atau

12 tanpa operator elitist natural selection untuk melakukan evolusi (Gen M. et.all, 1997). Pada populasi yang memiliki tingkat evolusi yang cukup tinggi, proses spesialisasi akan terjadi. Kondisi terjadinya intra-mating dari beberapa grup (spesies) menghasilkan offspring dengan nilai fitness tinggi dalam spesies, sedangkan perkawinan anggota spesies dengan anggota populasi yang bukan dalam spesies akan menghasilkan offspring dengan nilai fitness yang sangat rendah, yang disebut lethals. Lethal jarang bisa survive pada generasi selanjutnya (Heitkoetter, 1993). Tujuan kelahiran selektif adalah menghasilkan kromosom dengan nilai fitness tinggi (Gen M. et.all, 1997) dan untuk menghindari kelebihan produksi lethal (Heitkoetter, 1993). Beberapa metode seleksi dari induk, antara lain : 1. Rank Based Fitness Assignment 2. Roulette Wheel Selection 3. Stochastic Universal Sampling 4. Local Selection 5. Trunction Selection 6. Tournament Selection. Roulettte Wheel Selection Metode seleksi dengan mesin roulette ini merupakan metode yang paling sederhana. Seleksi ini sering dikenal dengan nama stochastic sampling with replacement Seleksi ini bertujuan untuk memberikan kesempatan reproduksi yang lebih besar bagi anggota populasi yang memiliki fitness tinggi untuk melakukan reproduksi. Algoritma dari seleksi roulette wheel : 1. Dihitung nilai fitness masing-masing individu (f i, dimana i adalah individu ke 1 s/d ke-n 2. Dihitung total fitness semua individu 3. Dihitung fitness relatif masing-masing individu

13 4. Dari fitness relatif tersebut, dihitung fitness kumulatifnya. 5. Dibangkitkan nilai random 6. Dari bilangan random yang dihasilkan, ditentukan individu mana yang terpilih dalam proses seleksi Crossover Apabila induk telah dipilih, maka kelahiran dapat terjadi. Bagi tiap gen dalam kromosom obyek baru dihasilkan dari seleksi allele baik dari ibu atau bapak. Proses mengkombinasikan gen dapat dilakukan dengan beberapa cara. Metode paling sederhana disebut dengan single point crossover (Gen M. et.all, 1997; Davis, 1991). Metode ini dapat didemonstrasikan dengan jelas menggunakan gen yang diencoding dalam biner, walaupun begitu nantinya dapat ditranslasikan ke bentuk representasi gen manapun (Davis, 1991). Crossover (perkawinan silang) bertujuan menambah keanekaragaman string dalam populasi dengan penyilangan antar-string yang diperoleh dari sebelumnya. Beberapa jenis crossover tersebut adalah: 1. Crossover 1-titik Pada crossover dilakukan dengan memisahkan suatu string menjadi dua bagian dan selanjutnya salah satu bagian dipertukarkan dengan salah satu bagian dari string yang lain yang telah dipisahkan dengan cara yang sama. Proses yang demikian dinamakan operator crossover satu titik. Induk 1: Induk 2: Diperoleh : Anak 1: Anak 2: Crossover 2-titik Proses crossover ini dilakukan dengan memilih dua titik crossover. Kromosom keturunan kemudian dibentuk dengan barisan bit dari awal kromosom

14 sampai titik crossover pertama disalin dari orangtua pertama, bagian dari titik crossover pertama dan kedua disalin dari orangtua kedua, kemudian selebihnya disalin dari orangtua pertama lagi. Induk 1: Induk 2: Diperoleh : Anak 1 : Anak 2 : Crossover seragam (uniform) Crossover seragam manghasilkan kromosom keturunan dengan menyalin bit-bit secara acak dari kedua orangtuanya. Induk 1: Induk 2: Diperoleh : Anak 1: Anak 2: 4. Partial Mapped Crossover (PMX). PMX diciptakan oleh Goldberg dan Lingle. PMX merupakan rumusan modifikasi dari pindah silang dua-poin. Hal yang penting dari PMX adalah pindah silang dua poin ditambah dengan beberapa prosedur tambahan. Pilih posisi untuk menentukan substring secara acak Induk 1 : Induk 2 : Diperoleh : Anak 1 : Anak 2 :

15 Gambar 2.4. Pemetaan PMX Sumber (Larranaga P. et.all, 1999) Proses crossover dapat dilakukan dengan lebih dari satu crossover point (Gen M. et.all, 1997). Sesungguhnya, tiap titik dapat dipilih bagi crossover apabila kondisi tersebut lebih baik (Heitkoetter, 1993). Salah satu metode crossover yang seringkali digunakan dalam sistem multi-objective, adalah unity based crossover (Heitkoetter, 1993). Pada metode ini, tiap gen memiliki probabilitas yang sama muncul dari induk manapun, mungkin ada crossover point yang diletakkan di belakang pada tiap gen atau gen manapun (Heitkoettr, 1993) Mutasi Setelah crossover dilakukan dan sebelum anak dilepaskan ke rimba belantara, ada kemungkinan terjadinya mutasi. Kemungkinan terjadinya mutasi ini diukur dengan tingkat mutasi. Nilainya biasanya cukup rendah (Davis, 1991). Tujuan adanya mutasi adalah menghasilkan noise, pada khususnya allele baru ke dalam populasi. Hal ini berguna untuk menghindari nilai minimum, juga membantu dalam eksplorasi wilayah baru pada ruang solusi multi dimensi (Gen M. et.all, 1997). Apabila tingkat mutasi yang terlalu tinggi, dapat menyebabkan gen yang dilahirkan dengan sempurna akan hilang dan oleh karena itu memperendah eksploitasi wilayah nilai fitness tinggi atas solusi. Beberapa sistem tidak menggunakan operator mutasi sama sekali (Heitkoetter, 1993). Sebaliknya, mereka mengandalkan populasi acak yang penuh perbedaan yang dihasilkan atas

16 inisialisasi untuk menyediakan gen yang cukup dimana rekombinasi itu sendiri akan menghasilkan pencarian yang efektif (Heitkoetter, 1993). Saat gen telah dipilih untuk bermutasi, mutasi tersebut dapat mengambil berbagai macam bentuk (Davis, 1991), hal ini tergantung atas implementasi algoritma genetik Mutasi Bilangan Real Pada mutasi bilangan real, ukuran langkah mutasi biasanya sangat sulit ditentukan. Ukuran yang kecil biasanya sering mengalami kesuksesan, namun adakalanya ukuran yang lebih besar akan berjalan lebih cepat. Operator mutasi untuk bilangan real dapat ditetapkan sebagai : 1. Variabel yang dimutasi = variabel ± range * delta; (+ atau memiliki probabilitas yang sama. 2. range = 0.5 * domain variabel; (interval pencarian) 3. delta = Σ ( a i * 2 -i ); a i = 1 dengan probabilitas 1/m, selain itu a i = 0 dengan m = Mutasi Biner Mutasi biner memiliki prosedur yang mirip dengan mutasi bilangan real. Cara sederhana untuk mendapatkan mutasi biner adalah dengan mengganti satu atau beberapa nilai gen dari kromosom. Langkah-langkah mutasi ini adalah : 1. Hitung jumlah gen pada populasi (panjang kromosom ini dikalikan dengan ukuran populasi. 2. Pilih secara random gen yang akan dimutasi 3. Tentukan kromosom dari gen yang terpilih untuk dimutasi 4. Ganti nilai gen (n ke m, atau m ke n) dari kromosom yang akan dimutasi tersebut. Posisi mutasi : ke-2 dan ke-6 Kromosom terpilih : Hasil Mutasi :

17 Parameter Genetik Pengoperasian algoritma genetik dibutuhkan 4 parameter (Juniawati, 2003) yaitu: 1. Probabilitas Persilangan (Crossover Probability) Menunjukkan kemungkinan crossover terjadi antara 2 kromosom. Jika tidak terjadi crossover maka keturunannya akan sama persis dengan kromosom orangtua, tetapi tidak berarti generasi yang baru akan sama persis dengan generasi yang lama. Jika probabilitas crossover 100% maka semua keturunannya dihasilkan dari crossover. Crossover dilakukan dengan harapan bahwa kromosom yang baru akan lebih baik. 2. Probabilitas Mutasi (Mutation Probability) Menunjukkan kemungkinan mutasi terjadi pada gen-gen yag menyusun sebuah kromosom. Jika tidak terjadi mutasi maka keturunan yang dihasilkan setelah crossover tidak berubah. Jika terjadi mutasi bagian kromosom akan berubah. Jika probabilitas 100%, semua kromosom dimutasi. Jika probabilitasnya 0%, tidak ada yang mengalami mutasi. 3. Jumlah Individu Menunjukkan jumlah kromosom yang terdapat dalam populasi (dalam satu generasi). Jika hanya sedikit kromosom dalam populasi maka algoritma genetik akan mempunyai sedikit variasi kemungkinan untuk melakukan crossover antara orangtua karena hanya sebagian kecil dari search space yang dipakai. Sebaliknya jika terlalu banyak maka algoritma genetik akan berjalan lambat. 4. Jumlah Populasi Menentukan jumlah populasi atau banyaknya generasi yang dihasilkan, digunakan sebagai batas akhir proses seleksi, persilangan dan mutasi Riset-riset Terkait Beberapa riset-riset terkait yang telah diteliti oleh peneliti sebelumnya yang berkaitan dengan penelitian ini adalah sebagai berikut : Aulia Fitrah et.al (2006), dalam risetnya menjelaskan bahwa Persoalan pedagang keliling (TSP) dapat diselesaikan dengan menggunakan algoritma genetika. Walaupun solusi TSP yang dihasilkan oleh algoritma ini belum tentu

18 merupakan solusi paling optimal (misalnya apabila yang dilalui sangat banyak), namun algoritma genetika akan menghasilkan solusi yang lebih optimal pada setiap generasinya. Hal tersebut terlihat dari nilai fitness tiap generasi. Crossover yang digunakan adalah order crossover dengan probabilty crossover sebesar 50%. Buthainah Fahran Al-Dulaimi, et.al (2008), penyelesaian traveling salesman problem dengan membandingkan antara partially mapped crossover (PMX), Order Crossover (OX), Cycle Crossover (CX) dengan menggunakan mutasi 1%, 30%, 70% dan 100%. Samuel Lukas et.al (2005), penerapan algoritma genetika untuk travelling salesman problem dengan menggunakan metode order crossover dan insertion mutation.

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Pendahuluan Bab ini menjelaskan secara singkat tentang review untuk mengidentifikasikasi dalam penyelesaian pencarian rute terpendek dengan adanya lintasan terlarang (Forbidden

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika 6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Traveling Salesman Problem (TSP) adalah permasalahan dimana seorang salesman harus mengunjungi semua kota yang ada dan kota tersebut hanya boleh dikunjungi tepat satu

Lebih terperinci

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar najirah_stmikh@yahoo.com Abstrak

Lebih terperinci

ERWIEN TJIPTA WIJAYA, ST.,M.KOM

ERWIEN TJIPTA WIJAYA, ST.,M.KOM ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk

Lebih terperinci

Lingkup Metode Optimasi

Lingkup Metode Optimasi Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1. Algoritma Genetika Pada tahun 1975, John Holland, di dalam bukunya yang berjudul Adaption in Natural and Artificial Systems, mengemukakan komputasi berbasis evolusi. Tujuannya

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,

Lebih terperinci

Algoritma Evolusi Dasar-Dasar Algoritma Genetika

Algoritma Evolusi Dasar-Dasar Algoritma Genetika Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan optimasi kombinatorial (kombinasi permasalahan). Banyak permasalahan yang dapat direpresentasikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma

Lebih terperinci

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga

Lebih terperinci

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,

Lebih terperinci

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply BAB II KAJIAN TEORI Berikut diberikan beberapa teori pendukung untuk pembahasan selanjutnya. 2.1. Distribusi Menurut Chopra dan Meindl (2010:86), distribusi adalah suatu kegiatan untuk memindahkan barang

Lebih terperinci

Bab II Konsep Algoritma Genetik

Bab II Konsep Algoritma Genetik Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG Adnan Buyung Nasution 1 1,2 Sistem Infomasi, Tehnik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut

Lebih terperinci

BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan

BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan BAB II LANDASAN TEORI 2.1 Sejarah Perusahaan Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan pengadaan suku cadang computer. Dalam bidang tersebut diharuskan berbadan hukum PD,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi

Lebih terperinci

BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM

BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM 3.1 TRAVELLING SALESMAN PROBLEM Sebelum membahas pencarian solusi Travelling Salesman Problem menggunakan algoritma

Lebih terperinci

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani

Lebih terperinci

Genetic Algorithme. Perbedaan GA

Genetic Algorithme. Perbedaan GA Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma

Lebih terperinci

BAB III. Metode Penelitian

BAB III. Metode Penelitian BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 36 BAB 2 LANDASAN TEORI 2.1 Pengurutan Pekerjaan (Job Sequencing) 2.1.1 Deskripsi Umum Dalam industri manufaktur, tujuan penjadwalan ialah untuk meminimasikan waktu dan biaya produksi, dengan cara mengatur

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi

Lebih terperinci

PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM

PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM Nico Saputro dan Suryandi Wijaya Jurusan Ilmu Komputer Universitas Katolik Parahyangan nico@home.unpar.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Algoritma Genetika Algoritma genetika sebagai cabang dari algoritma evolusi merupakan metode yang digunakan untuk memecahkan suatu pencarian nilai dalam permasalahan-permasalahan

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: moh.subhan@gmail.com ABSTRAK: Permasalahan pencarian rute terpendek dapat

Lebih terperinci

PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek

PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK Fajar Saptono 1, Taufiq Hidayat 2 Laboratorium Pemrograman dan Informatika Teori Jurusan Teknik Informatika, Fakultas Teknologi Industri,

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Algoritma

BAB 2 LANDASAN TEORI. 2.1 Algoritma 13 BAB 2 LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC)

PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC) PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC) Yayun Hardianti 1, Purwanto 2 Universitas Negeri Malang E-mail: yayunimoet@gmail.com ABSTRAK:

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Penjadwalan Menurut Dian (2011), penjadwalan merupakan proses untuk menyusun suatu jadwal atau urutan proses yang diperlukan dalam sebuah persoalan. Persoalan penjadwalan biasanya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 20 BAB 2 TINJAUAN PUSTAKA 2.1. Pengantar Algoritma genetika merupakan algoritma yang lahir dari sebuah inspirasi teori evolusi Darwin yang mengatakan anggota dari spesies yang lemah lambat laun akan mengalami

Lebih terperinci

Algoritma Evolusi Real-Coded GA (RCGA)

Algoritma Evolusi Real-Coded GA (RCGA) Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Khowarizmi. Algoritma didasarkan pada prinsiup-prinsip Matematika, yang

BAB II TINJAUAN PUSTAKA. Khowarizmi. Algoritma didasarkan pada prinsiup-prinsip Matematika, yang BAB II TINJAUAN PUSTAKA A. ALGORITMA Algoritma adalah metode langkah demi langkah pemecahan dari suatu masalah. Kata algoritma berasal dari matematikawan Arab ke sembilan, Al- Khowarizmi. Algoritma didasarkan

Lebih terperinci

ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning

ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma

Lebih terperinci

PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR

PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR Karels, Rheeza Effrains 1), Jusmawati 2), Nurdin 3) karelsrheezaeffrains@gmail.com

Lebih terperinci

BAB II KAJIAN TEORI. berbeda di, melambangkan rusuk di G dan jika adalah. a. dan berikatan (adjacent) di. b. rusuk hadir (joining) simpul dan di

BAB II KAJIAN TEORI. berbeda di, melambangkan rusuk di G dan jika adalah. a. dan berikatan (adjacent) di. b. rusuk hadir (joining) simpul dan di 1. Teori graf BAB II KAJIAN TEORI 1. Definisi Graf G membentuk suatu graf jika terdapat pasangan himpunan ) )), dimana ) (simpul pada graf G) tidak kosong dan ) (rusuk pada graf G). Jika dan adalah sepasang

Lebih terperinci

PRESENTASI TUGAS AKHIR

PRESENTASI TUGAS AKHIR PRESENTASI TUGAS AKHIR Travelling Salesman Problem menggunakan Algoritma Genetika Via GPS berbasis Android (kata kunci : android,gps,google Maps, Algoritma Genetika, TSP) Penyusun Tugas Akhir : Azmi Baharudin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 17 BAB II LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap

Lebih terperinci

BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :

BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut

Lebih terperinci

BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat

BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat BAB I PENDAHULUAN A. Latar Belakang Masalah Objek pariwisata di Yogyakarta sudah semakin beragam mulai dari wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat wisatawan dapat dibuat

Lebih terperinci

Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial

Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 m.abdy@unm.ac.id,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.

Lebih terperinci

BAB II LANDASAN TEORI. Evolutionary Algorithm merupakan terminologi umum yang menjadi payung

BAB II LANDASAN TEORI. Evolutionary Algorithm merupakan terminologi umum yang menjadi payung BAB II LANDASAN TEORI 2.1 Algoritma Genetika Evolutionary Algorithm merupakan terminologi umum yang menjadi payung bagi empat istilah : algoritma genetika (genetic algorithm), pemrograman genetika (genetic

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Abstrak PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Aulia Fitrah 1, Achmad Zaky 2, Fitrasani 3 Program Studi Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE

PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE PENERAPAN ALGORTMA GENETK UNTUK OPTMAS DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE Samuel Lukas, M.Tech." Abstract The purpose of this paper is to introducing genetic algorithm. This algorithm is one

Lebih terperinci

Analisis Operator Crossover pada Permasalahan Permainan Puzzle

Analisis Operator Crossover pada Permasalahan Permainan Puzzle Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang

Lebih terperinci

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM Poetri Lestari Lokapitasari Belluano poe3.setiawan@gmail.com Universitas Muslim Indonesia Abstrak Non Dominated Sorting pada

Lebih terperinci

PERBANDINGAN ALGORITMA EXHAUSTIVE, ALGORITMA GENETIKA DAN ALGORITMA JARINGAN SYARAF TIRUAN HOPFIELD UNTUK PENCARIAN RUTE TERPENDEK

PERBANDINGAN ALGORITMA EXHAUSTIVE, ALGORITMA GENETIKA DAN ALGORITMA JARINGAN SYARAF TIRUAN HOPFIELD UNTUK PENCARIAN RUTE TERPENDEK PERBANDINGAN ALGORITMA EXHAUSTIVE, ALGORITMA GENETIKA DAN ALGORITMA JARINGAN SYARAF TIRUAN HOPFIELD UNTUK PENCARIAN RUTE TERPENDEK Rudy Adipranata 1) Felicia Soedjianto 2) Wahyudi Tjondro Teknik Informatika,

Lebih terperinci

PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL

PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 98 106 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL YOSI PUTRI, NARWEN

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut

Lebih terperinci

Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek

Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek Rudy Adipranata 1, Felicia Soedjianto 2, Wahyudi Tjondro Teknik Informatika,

Lebih terperinci

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail

Lebih terperinci

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma

Lebih terperinci

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Haris Sriwindono Program Studi Ilmu Komputer Universitas Sanata Dharma Paingan, Maguwoharjo, Depok Sleman Yogyakarta, Telp. 0274-883037 haris@staff.usd.ac.id

Lebih terperinci

Modul Matakuliah Algoritma Evolusi oleh

Modul Matakuliah Algoritma Evolusi oleh Modul Matakuliah Algoritma Evolusi oleh Wayan Firdaus Mahmudy Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya September 2013 Kata Pengantar Buku ini disusun untuk mengisi kelangkaan

Lebih terperinci

PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES

PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES J~ICON, Vol. 2 No. 2, Oktober 2014, pp. 84 ~ 91 84 PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES Emsi M. Y. Monifani 1, Adriana

Lebih terperinci

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu

Lebih terperinci

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN  Studi Pustaka Pembentukan Data Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria

Lebih terperinci

OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA Mike Susmikanti Pusat Pengembangan Informatika Nuklir, Badan Tenaga Nuklir Nasional Kawasan

Lebih terperinci

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004

Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004 Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004 Perbandingan Metode-Metode dalam Algoritma Genetika untuk Travelling Salesman Problem Irving Vitra P. Jurusan Teknik Informatika,

Lebih terperinci

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10: BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari

Lebih terperinci

Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika

Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 1, No. 2, (2017) 28 Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika Andreas Christian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai

Lebih terperinci

BAB II KAJIAN TEORI. dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle

BAB II KAJIAN TEORI. dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle BAB II KAJIAN TEORI Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle routing problem (VRP), capacitated

Lebih terperinci

BAB I PENDAHULUAN. grafyang menjadi salah satu permasalahanpenting dalam dunia matematika

BAB I PENDAHULUAN. grafyang menjadi salah satu permasalahanpenting dalam dunia matematika BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH TravellingSalesman Problem merupakan masalah optimasidi bidang grafyang menjadi salah satu permasalahanpenting dalam dunia matematika khususnya bidang komputasi.

Lebih terperinci

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas

Lebih terperinci

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Priza Pandunata, Rachmad Agung Bagaskoro, Agung Ilham

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer

Lebih terperinci

Denny Hermawanto

Denny Hermawanto Algoritma Genetika dan Contoh Aplikasinya Denny Hermawanto d_3_nny@yahoo.com http://dennyhermawanto.webhop.org Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teka-Teki Silang Teka-teki silang merupakan permainan sederhana yang banyak dimainkan dari berbagai kalangan. Cara bermain permaian ini memang sederhana, hanya merangkaikan jawaban

Lebih terperinci

BAB II KAJIAN TEORI. digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP),

BAB II KAJIAN TEORI. digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP), BAB II KAJIAN TEORI Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP), capacitated vehicle routing problem with time

Lebih terperinci

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas.

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas. ABSTRAK Job shop scheduling problem merupakan salah satu masalah penjadwalan yang memiliki kendala urutan pemrosesan tugas. Pada skripsi ini, metode yang akan digunakan untuk menyelesaikan job shop scheduling

Lebih terperinci

BAB I PENDAHULUAN. telah diadopsi untuk mengurangi getaran pada gedung-gedung tinggi dan struktur

BAB I PENDAHULUAN. telah diadopsi untuk mengurangi getaran pada gedung-gedung tinggi dan struktur BAB I PENDAHULUAN 1.1 Latar Belakang Tuned mass damper (TMD) telah banyak digunakan untuk mengendalikan getaran dalam sistem teknik mesin. Dalam beberapa tahun terakhir teori TMD telah diadopsi untuk mengurangi

Lebih terperinci

PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA

PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA Bagus Priambodo Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana e- mail : bagus.priambodo@mercubuana.ac.id

Lebih terperinci

Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetik

Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetik Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetik Teddy Rachmayadi Teknik Informatika Institut Teknologi Bandung Ganeca 10 Bandung if16079@students.if.itb.ac.id ABSTRAK Algoritma

Lebih terperinci

DAFTAR ISI. Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii

DAFTAR ISI. Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii DAFTAR ISI Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii Faiz Rafdh Ch SISTEM INFORMASI ZAKAT BERBASIS WEB MENGGUNAKAN PHP DAN MYSQL PADA RUMAH ZAKATINDONESIA 1-7 Abdul Jamil Syamsul Bachtiar

Lebih terperinci

BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya

BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya 5 BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya Traveling salesman problem (TSP) merupakan salah satu permasalahan yang telah sering diangkat dalam berbagai studi kasus dengan penerapan berbagai

Lebih terperinci

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan kombinatorial. Banyak permasalahan yang dapat direpresentasikan dalam bentuk TSP. Persoalan ini

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Representasi Matriks untuk Proses Crossover Pada Algoritma Genetika untuk Optimasi Travelling Salesman Problem Matrix Representation for The Crossover on Genetic Algorithm

Lebih terperinci

APLIKASI TRAVELLING SALESMAN PROBLEM DENGAN METODE ARTIFICIAL BEE COLONY

APLIKASI TRAVELLING SALESMAN PROBLEM DENGAN METODE ARTIFICIAL BEE COLONY APLIKASI TRAVELLING SALESMAN PROBLEM DENGAN METODE ARTIFICIAL BEE COLONY Andri 1, Suyandi 2, WinWin 3 STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id 1, suyandiz@gmail.com

Lebih terperinci

Jl. Ahmad Yani, Pontianak Telp./Fax.: (0561)

Jl. Ahmad Yani, Pontianak Telp./Fax.: (0561) APLIKASI PENCARIAN RUTE TERPENDEK MENGGUNAKANALGORITMA GENETIKA (Studi Kasus: Pencarian Rute Terpendek untuk Pemadam Kebakaran di Wilayah Kota Pontianak) [1] Putri Yuli Utami, [2] Cucu Suhery, [3] Ilhamsyah

Lebih terperinci

Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi

Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi Rahman Aulia Universitas Sumatera Utara Pasca sarjana Fakultas Ilmu Komputer Medan, Indonesia Rahmanaulia50@gmail.com Abstract

Lebih terperinci