BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Gelombang Ultrasonik Pemakaian gelombang ultrasonik telah digunakan sejak abad ke 19 dimana pertama kali digunakan untuk mendeteksi kapal selam. Sumber ultrasonik dihasilkan oleh Kristal kuarsa, pertama kali dibuat oleh paul langevin dengan menerapkan prinsip gelombang ultrasonik yang dipancarkan oleh Kristal tersebut kemudian hasil pantulannya dideteksi. Akibat berkembangnya dunia industri, maritime, kedokteran dan bidang lain maka penggunaan gelombang ultrasonik pun mengalami kemajuan pesat. Aplikasi yang sering kita dengar yakni untuk pengukuran jarak, ultrasonografi (USG), pengukur jarak kamera, membuka pintu garasi, mendeteksi keretakan, dan lain lain Pengertian Gelombang Akustik Dan Gelombang Ultrasonik Gelombang akustik adalah gelombang yang dirambatkan sebagai gelombang mekanik yang dapat menjalar dalam medium padat, cair, dan gas. Gelombang bunyi ini merupakan getaran molekul-molekul zat dan saling beradu satu sama lain namun demikian zat tersebut terkoordinasi menghasilkan gelombang serta mentransmisikan energi bahkan tanpa terjadi perpindahan partikel. Apabila gelombang bunyi merambat mencapai batas permukaan maka gelombang bunyi tersebut akan mengalami transmisi dan refleksi. Di dalam suatu gelombang akustik kita harus mengetahui dua fakta tentang getaran. Yaitu: 8

2 1. Getaran Bolak Balik. 2. Getaran Energi Bergerak. Gambar 2.1 Gambaran Permukaan Dari Posisi Normal Yang Disebut Perpindahan Ultrasonik adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bisa didengar oleh telinga manusia, yaitu kira-kira di atas 20 KHz. Hanya beberapa hewan, seperti lumba-lumba menggunakannya untuk komunikasi, sedangkan kelelawar menggunakan gelombang ultrasonik untuk navigasi. Dalam hal ini, gelombang ultrasonik merupakan gelombang ultra (diatas) frekuensi gelombang suara (sonik). Gelombang ultrasonik dapat merambat dalam medium padat, cair dan gas. Reflektivitas dari gelombang ultrasonik ini di permukaan cairan hampir sama dengan permukaan padat, tapi pada tekstil dan busa, maka jenis gelombang ini akan diserap. Frekuensi yang diasosiasikan dengan gelombang ultrasonik pada aplikasi elektronik dihasilkan oleh getaran elastis dari sebuah kristal kuarsa yang diinduksikan oleh resonans dengan suatu medan listrik bolak-balik yang 9

3 dipakaikan (efek piezoelektrik). Kadang gelombang ultrasonik menjadi tidak periodik yang disebut derau (noise), dimana dapat dinyatakan sebagai superposisi gelombang-gelombang periodik, tetapi banyaknya komponen adalah sangat besar. Kelebihan gelombang ultrasonik yang tidak dapat didengar, bersifat langsung dan mudah difokuskan. Jarak suatu benda yang memanfaatkan delay gelombang pantul dan gelombang datang seperti pada system radar dan deteksi gerakan oleh sensor pada robot atau hewan. Hewan-hewan tertentu, seperti anjing, kucing, dan lumba-lumba dapat mendengar gelombang ultrasonik. Kelelawar dapat menghasilkan dan mendengar frekuensi setinggi Hz untuk mengetahui posisi makanan dan menghindari bendabenda saat terbang di kegelapan. Gelombang ultrasonik digunakan pada sonar di samping pada diagnosis kesehatan dan pengobatan.. Gelombang ultrasonik merambat dalam dua bagian. Jika gelombang bolak balik terjadi terus menerus secara periodik maka akan menghasilkan deretan gelombang periodik, dimana pada setiap gerak periodik partikel partikel yang berada pada titik titik yang sama pada gelombang tersebut akan berada dalam fase yang sama. Visualisasi Ilustrasi getaran yang melewati bahan padat sebagai media pemindahan partikel dapat dilihat pada gambar 2.2 di bawah. 10

4 Gambar 2.2 Struktur Material Sebenarnya Yang Memiliki Partikel Kecil Atau Kelompok Atom Partikel-partikel ini berada dalam posisi normal atau diam, dan juga dapat dipindahkan dari posisi diam ini dengan secara paksa. Ketika gaya dihapus, partikel akan cenderung untuk kembali ke posisi semula. Energi ditransmisikan melalui bahan padat oleh serangkaian pemindahan materi kecil yang terdapat didalam material tersebut. Pengiriman getaran ultrasonik ini melalui materi yang berhubungan dengan suatu sifat ke elastis-an suatu bahan, jika kita menekan suatu permukaan logam, maka permukaan nya akan bergerak kedalam yang menyebabkan sebuah perpindahan. Gambar 2.3 Gambar Permukaan Logam Yang Diuji Karena permukaan logam yang elastis maka akan cenderung bergerak kembali ke posisi semula (diam), permukaan juga akan bergerak melalui posisi 11

5 asli dan pindah ke jarak maksimum dalam arah yang berlawanan. Urutan lengkap dari gerakan tersebut didefinisikan dengan siklus gelombang sebagai berikut. Gambar 2.4 Definisi Gelombang Dari Suatu Pergerakan Waktu yang dibutuhkan untuk benda melakukan suatu pergerakan melalui satu kali putaran penuh disebut Periode. Contoh jika kita mengayunkan bola diatas dengan sekali pergerakan dari a ke b, c, d dan e dalam satu detik, maka periode dari 1siklus adalah satu detik. Sedangkan jumlah getaran dalam suatu periode tertentu disebut frekwensi Cepat Rambat Bunyi Jika kita memukul batu di dalam air, kita akan mendengar suara pukulan tersebut. Demikian juga, ikan yang berenang di dalam kolam yang jernih, kita tentu akan beranggapan ikan-ikan tersebut tidak bersuara. Akan tetapi, jika kita menyelam ke dalam air, kita akan mendengar suara kibasan ekor dan sirip ikan tersebut. Hal ini membuktikan bahwa bunyi dapat merambat di dalam zat cair. Bukan hanya itu. Dengan bantuan alat seismograf, para ahli gempa dapat mendeteksi getaran gempa bumi. Getaran lebih kuat jika jaraknya lebih dekat pada sumber getar. Dari 12

6 contoh-contoh tersebut, kita dapat menyimpulkan bahwa bunyi yang terdengar bergantung pada jarak antara sumber bunyi dan pendengar. Jarak yang ditempuh bunyi tiap satuan waktu disebut cepat rambat bunyi (v). Secara matematis, hal itu dituliskan sebagai berikut: dengan : v = cepat rambat gelombang bunyi (m/s), s = jarak yang ditempuh (m), t = waktu tempuh (s). Pernahkah kita mendengarkan bunyi rel kereta api pada saat kereta api mau lewat? Jika pernah, kita harus berhati-hati. Ketika kereta api akan tiba, terdengar suara gemuruh dari kereta, walaupun keretanya belum terlihat. Suara kereta yang belum kelihatan juga dapat kita dengar melalui rel kereta api. Hal ini membuktikan bahwa cepat rambat bunyi di udara berbeda dengan cepat rambat bunyi pada rel kereta api (zat padat). Manakah yang lebih cepat? Bunyi yang merambat melalui rel kereta api (yang merupakan zat padat) lebih cepat dibandingkan dengan bunyi yang merambat melalui udara. Mengapa demikian? Suatu eksperimen yang telah dilakukan oleh para ahli membuktikan bahwa sebuah bunyi nyaring membutuhkan waktu lima sekon untuk sampai ke telinga kita melalui udara. Jika bunyi tersebut merambat melalui air, ternyata lebih cepat dan hanya membutuhkan waktu empat sekon. Jika bunyi tersebut melalui besi, ternyata hanya membutuhkan tiga sekon, atau satu sekon lebih cepat daripada 13

7 dalam zat cair. Hal ini membuktikan bahwa di dalam medium yang berbeda, cepat rambat bunyi akan berbeda pula. Zat padat merambatkan bunyi lebih cepat daripada zat cair dan zat cair lebih cepat merambatkan bunyi daripada gas. Kita bisa bermain-main untuk membuktikannya dengan membuat telepon mainan Sifat-Sifat Dasar Gelombang Bunyi 1. Gelombang Bunyi Memerlukan Medium Dalam Perambatannya. Karena gelombang bunyi merupakan gelombang mekanik, maka dalam perambatannya bunyi memerlukan medium. Hal ini dapat dibuktikan saat dua orang astronout berada jauh dari bumi dan keadaan dalam pesawat dibuat hampa udara, astronout tersebut tidak dapat bercakap-cakap langsung tetapi menggunakan alat komunikasi seperti telepon. Meskipun dua orang astronout tersebut berada dalam satu pesawat. 2. Gelombang Bunyi Mengalami Pemantulan (refleksi). Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat mengalami hal ini. Hukum pemantulan gelombang: sudut datang = sudut pantul juga berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi dalam ruang tertutup dapat menimbulkan gaung. Yaitu sebagian bunyi pantul bersamaan dengan bunyi asli sehingga bunyi asli terdengar tidak jelas. Untuk menghindari terjadinya gaung maka dalam bioskop, studio radio dan televisi, dan gedung konser musik dindingnya dilapisi zat peredam suara yang biasanya terbuat dari kain wol, kapas, gelas, karet, atau besi. 14

8 3. Gelombang bunyi mengalami pembiasan (refraksi). Salah satu sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras daripada siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas kelapisan udara bawah. 4. Gelombang bunyi mengalami pelenturan (difraksi). Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan. Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobil ditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang oleh bangunan tinggi dipinggir tikungan. 5. Gelombang bunyi mengalami perpaduan (interferensi). Gelombang bunyi mengalami gejala perpaduan gelombang atau interferensi, yang dibedakan menjadi dua yaitu interferensi konstruktif atau penguatan bunyi dan interferensi destruktif atau pelemahan bunyi. Misalnya waktu kita berada diantara dua buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama maka kita akan mendengar bunyi yang keras dan lemah secara bergantian. 15

9 2.1.4 Kenyaringan Dan Desibel Bunyi kereta lebih nyaring daripada bunyi bisikan, sebab bunyi kereta menghasilkan getaran lebih besar di udara. Kenyaringan bunyi juga bergantung pada jarak kita ke sumber bunyi. Kenyaringan diukur dalam satuan desibel (db). Bunyi pesawat jet yang lepas landas mencapai sekitar 120 db. Sedang bunyi desiran daun sekitar 33 db. Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel. Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 khz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 khz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik Perambatan Gelombang Ultrasonik Ada dua jenis perambatan gelombang akustik, yaitu gelombang longitudinal dan gelombang transversal. Pada gelombang longitudinal, getaran partikel dalam medium sejajar dengan arah rambat. Pada gelombang transversal, arah getar partikel tegak lurus arah rambatnya. Perambatan gelombang ultrasonik dalam medium gas, cair, dan tubuh manusia disebabkan oleh getaran bolak balik partikel melewati titik keseimbangan searah dengan arah rambat gelombangnya. Maka 16

10 gelombang bunyi lebih dikenal dengan gelombang longitudinal seperti yang ditunjukkan pada gambar. Gambar 2.5 Rambatan Gelombang Longitudinal Dan Transversal Karakteristik gelombang ultrasonik yang melalui medium mengakibatkan getaran partikel dengan medium amplitudo sejajar dengan arah rambat secara longitudinal sehingga menyebabkan partikel medium membentuk rapatan (strain) dan tegangan (stress). Proses kontinyu yang menyebabkan terjadinya rapatan dan regangan didalam medium disebabkan oleh getaran partikel secara periodik selama gelombang ultrasonik melaluinya. Gelombang suara merambat dalam medium dengan panjang gelombang λ, yang dapat ditulis : 17

11 λ = v/f (2.1) dimana : f = frekwensi v = cepat rambat gelombang dalam medium 2.2 Karakteristik Gelombang Ultrasonik Panjang gelombang (λ) adalah jarak yang ditempuh gelombang suara dalam dalam waktu satu detik yang diberi satuan Hertz. Frekwensi ultrasonik yang digunakan untuk mendeteksi berkisar antara 1 sampai 10 MHz. Periode adalah waktu yang dibutuhkan gelombang menempuh satu panjang gelombang dan sebanding dengan 1/f. Kecepatan ultrasonik (v) adalah jarak yang dilalui oleh gelombang per satuan waktu dan sebanding dengan panjang gelombang dibagi dengan periode. Karena periode dan frekwensi berbanding terbalik, maka hubungan antara kecepatan, panjang gelombang, dan frekwensi untuk gelombang ultrasonik adalah: V = λ. f (2.2) Dimana v (cm/s) adalah kecepatan gelombang ultrasonik dalam medium, λ (mm) adalah panjang gelombang, dan f (MHz) adalah frekwensi. berikut. Kecepatan gelombang ultrasonik didalam medium diperlihatkan pada tabel 18

12 Tabel 2.1 Impedansi, Kecepatan Suara, dan Densitas Dalam Berbagai Médium Pada tabel 2.1 memperlihatkan kecepatan bunyi melalui beberapa medium, dimana kecepatan bunyi bergantung kepada kerapatan medium (densitas). 2.3 Interaksi Gelombang Ultrasonik Dengan Materi Gelombang ultrasonik memiliki sifat memantul, diteruskan, dan diserap oleh suatu medium. Interaksi gelombang ultrasonik dengan jaringan mempengaruhi sinyal yang diterima oleh Receiver Impedansi Akustik Impedansi akustik suatu materi didefinisikan sebagai perkalian antara rapat jenis (ρ) rho, dan kecepatan gelombang akustik (v). Z = ρ. v (2.3) Dimana : Z adalah impedansi akustik (gram/cm 2 s). 19

13 ρ(rho) adalah massa jenis (gram/cm 3 ). v adalah cepat rambat gelombang (cm/sec). Ketika medium yang berdekatan memiliki impedansi akustik yang sama, hanya sedikit energi yang direfleksikan. Namun jika memiliki impedansi akustik yang berbeda maka akan banyak energi yang direfleksikan. Impedansi akustik memiliki peran menetapkan transmisi dan refleksi gelombang di batas antara medium yang memiliki impedansi akustik yang berbeda terlihat pada gambar dibawah ini (gambar 2.6). Gambar 2.6 Interaksi Ultrasonik Dalam Dua Medium Dengan Impedansi Akustik Yang Sama (gambar atas) Dan Impedansi Akustik Yang Berbeda (gambar bawah) 20

14 2.3.2 Atenuasi Ketika gelombang suara melewati suatu medium, intensitasnya semakin berkurang dengan bertambahnya kedalaman suatu material. Hal yang menyebabkan pelemahan gelombang adalah proses refraksi, hamburan dan absorbsi. Absorbsi adalah penyerapan energi suara oleh medium dan diubahnya menjadi energi bentuk lain. Hal ini akan menyebabkan pulsa ultrasonik yang bergerak melewati suatu zat akan mengalami kehilangan energi. Besarnya energi yang diabsorbsi sebanding dengan koefisien pelemahan dan tebalnya medium yang dilalui. Setiap medium memiliki koefisien pelemahan yang berbeda-beda. Semakin kecil koefisien pelemahan maka semakin baik medium itu sebagai media penghantar. Penyerapan energi gelombang ultrasonik akan mengakibatkan berkurangnya amplitudo gelombang ultrasonik. Secara umum, atenuasi sebanding dengan kuadrat frekwensi gelombang Refraksi Ketika gelombang ultrasonik melalui dua medium yang berbeda dengan sudut tertentu maka gelombang ultrasonik mengalami refraksi. Refraksi adalah perubahan arah gelombang ultrasonik yang ditransmisikan pada batas antara medium yang berbeda ketika berkas gelombang tidak datang tegak lurus terhadap batas jaringan. Refraksi terjadi pada dua medium yang memiliki perbedaan impedansi akustik. Hukum Snells menggambarkan hubungan antara sudut (sudut datang dan sudut bias) dan kecepatan gelombang. Persamaan hukum snell menggambarkan 21

15 perbandingan antara kecepatan gelombang di medium pertama (V L1 ) dan kecepatan gelombang di medium 2 (V L2 ) dengan sinus sudut datang (θ 1 ) dan sinus sudut bias (θ 2 ). V L1 V L1 θ 1 θ 1 θ 2 V L2 Gambar 2.7 Refraksi untuk sudut yang datang dan transmisi, maka: (2.4) Ketika V L2 >V L1, sudut transmisi lebih besar daripada sudut datang dan sebaliknya jika V L2 <V L1, tidak ada refraksi yang terjadi ketika kecepatan suara sama dalam dua medium atau dengan gelombang datang yang tegak lurus. Ketika refraksi terjadi, dapat menyebabkan artifak. 22

16 2.3.4 Hamburan Peristiwa hamburan yang terjadi ketika gelombang ultrasonik berinteraksi dengan batas antara dua medium. Jika batas dua medium relatif rata, maka pulsa ultrasonik dapat disebut dengan specular reflection (seperti pemantulan pada cermin) dimana semua pulsa ultrasonik akan dipantulkan kearah yang sama. Permukaan yang tidak rata menyebabkan gelombang echo dihamburkan ke segala arah. Hamburan ke segala arah ini menyebabkan hanya sedikit gelombang echo yang ditangkap kembali oleh tranduser dan akan berperan dalam menampilkan citra. Gambar 2.8 Hamburan Pada Beberapa Permukaan Refleksi Apabila gelombang ultrasonik mengenai permukaan antara dua medium yang memiliki perbedaan impedansi akustik (Z), maka sebagian dari gelombang ultrasonik ini akan direfleksikan/dipantulkan dan sebagian lagi akan ditransmisikan/diteruskan. Pulsa yang mengenai cacat akan direfleksikan dan ditangkap oleh receiver 23

17 Untuk diolah menjadi pulsa. Refleksi yang sangat kuat terjadi pada batas cacat dan dapat digunakan untuk mengetahui keabnormalan pada logam. Energi ultrasonik yang direfleksikan pada perbatasan antara dua jaringan terjadi karena perbedaan dari impedansi akustik dari kedua. Gambar 2.9 Transmisi dan Refleksi Keterangan gambar : Angle of Incidence adalah Amplitudo gelombang ultrasonik yang datang. Refracted Shear Wave adalah Gelombang ultrasonik yang ditransmisikan pada probe sudut. Longitudinal Wave adalah gelombang tegak lurus yang ditransmisikan pada proobe normal. 24

18 Gambar 2.10 Reflected Longitudinal Wave Adalah Gelombang Ultrasonik Yang Dipantulkan Proses perjalanan gelombang ultrasonik adalah sebagai berikut, mula mula gelombang ultrasonik dengan amplitudo tertentu mengenai medium, kemudian gelombang ultrasonik tersebut akan dipantulkan permukaan medium. Perbandingan amplitudo pantulan (R) terhadap amplitudo datang (Ao) bergantung pada impedansi akustik (Z) dari dua medium itu. Hubungan pernyataan itu adalah Medium 1 = Z 1. V 1 Medium 2 = Z 2. V 2 (2.5) Dengan Z1 dan Z2 adalah impedansi akustik dari kedua medium (kg/m 2 s). Telah dikemukakan diatas bahwa gelombang ultrasonik sebagian akan ditransmisikan. Perbandingan antara amplitudo transmisi (T) dan amplitudo gelombang datang (A o ) adalah : 25

19 (2.6) Koefisien intesitas pantulan (RI), didefinisikan sebagai perbandingan dari intensitas pantulan dan intensitas yang datang: 2 (2.7) dan koefisien intensitas transmisi adalah: T I = (2.8) Pada logam yang lunak, hanya sebagian kecil pulsa yang direfleksikan. Untuk logam yang keras, energi yang direfleksikan sangat besar. Amplitudo pulsa dilemahkan adanya absorbsi medium dan energi yang direfleksikan. Hal ini menyebabkan gelombang echo yang dikirimkan kembali ke tranduser sangat kecil dibandingkan dengan pulsa awal yang dihasilkan tranduser. 2.4 Tranduser Tranduser adalah sebuah alat yang jika digerakkan oleh suatu energi di dalam sebuah sistem transmisi, akan menyalurkan energi tersebut dalam bentuk yang sama atau dalam bentuk yang berlainan ke sistem transmisi berikutnya. Transmisi energi ini bisa berupa energi listrik, mekanik, kimia, optik (radiasi), atau thermal (panas). Ultrasonik dihasilkan dan dideteksi oleh tranduser. 26

20 Gambar 2.11 Tranduser Tranduser ultrasonik bekerja berdasarkan prinsip piezoelektrik yang ditemukan pada tahun Sifat bahan piezoelektrik adalah menghasilkan muatan listrik jika diberi perlakuan mekanik. Sebaliknya, jika bahan ini diberikan tegangan listrik maka akan terjadi perubahan ketebalan (mengembang dan mengkerut). Material yang biasa digunakan sebagai elemen tranduser adalah zirconate titanate (PZT). Elemen piezoelektrik mengubah energi listrik menjadi energi mekanik untuk menghasilkan ultrasonik dan energi mekanik menjadi energi listrik untuk mendeteksi ultrasonik. Tranduser memiliki dua fungsi yaitu: a. Menghasilkan pulsa ultrasonik b. Menerima atau mendeteksi echo yang kembali Elemen Aktif Elemen aktif atau dikenal dengan elemen piezoelektrik adalah komponen fungsional tranduser. Piezoelektrik mengubah energi listrik menjadi energi mekanik ketika mengirim gelombang ultrasonik dan mengubah energi mekanik menjadi energi listrik ketika menerima gelombang ultrasonik. Energi ultrasonik 27

21 dihasilkan melalui tranduser yang melibatkan efek atau fenomena piezoelektrik. Efek piezoelektrik adalah sifat dari kristal tertentu jika diberikan tekanan akan menghasilkan muatan-muatan elektrik positif dan negatif pada kedua belah permukaan. Ketika tekanan luar memberikan efek tegangan mekanik pada permukaan piezoelektrik, dipole-dipole akan terganggu dari posisi keseimbangannya. Hal ini mengakibatkan adanya ketidakseimbangan distribusi muatan. Kemudian akan mengakibatkan perbedaan potensial dimana satu sisi akan bermuatan positif dan yang lainnya bermuatan negatif. Elektroda yang berada di permukaan akan segera mengukur besarnya tegangan tersebut, dimana nilainya akan proporsional dengan amplitudo mekanik yang timbul. Begitupun sebaliknya, pemberian tegangan pada permukaan piezoelektrik akan menyebabkan ekspansi dan kontraksi mekanik dari elemen tranduser. Efek satu dengan yang lainnya (mutually effect) dari kristal akan terjadi jika diberikan beda potensial pada permukaan kristal maka kristal tersebut akan mengalami pengecutan atau pengembangan mekanik. Keadaan ini akan menghasilkan tekanan dalam bentuk energi ultrasonik. Andaikan beda potensial bolak-balik (alternative voltage) yang diberikan, maka kristal piezoelektrik tersebut akan mengembang dan mengecut mengikuti besarnya beda potensial yang diberikan, dan proses ini akan menghasilkan gelombang ultrasonik Damping Block Damping block adalah lapisan dibelakang elemen piezoelektrik yang akan menyerap energi ultrasonik yang datang dan melemahkan sinyal ultrasonik yang 28

22 merambat pada casing tranduser. Komponen ini juga berfungsi mengurangi vibrasi tranduser untuk menghasilkan pulsa ultrasonik dengan lebar pulsa yang pendek Wear Plate Penggunaan wear plate bertujuan untuk melindungi tranduser. Biasanya wear plate ini adalah kandungan plastik yang dapat melindungi tranduser dari gesekan antar permukaan plat. Wear plate ini juga berguna mengurangi grass yang timbul pada layar CRT Bandwidth Bandwidth adalah lebar distribusi frekwensi yang dilibatkan pulsa. Vmax bw Frekwensi Gambar 2.12 Bandwidth 2.5 Prinsip Kerja Ultrasonik Prinsip kerja ultrasonik memanfaatkan hasil pantulan pantulan (echo) dari gelombang ultrasonik apabila ditransmisikan pada jaringan tertentu. Gelombang suara frekwensi tinggi dikirimkan ke dalam medium dan akan dipantulkan kembali ketika sampai pada batas medium yang berbeda. Echo dari gelombang 29

23 tersebut akan kemudian dideteksi dengan tranduser yang mengubah gelombang akustik ke sinyal elektronik untuk diolah dan ditampilkan. Ultrasonik bekerja dengan cara memancarkan gelombang suara frekwensi tinggi ke logam melalui tranduser. Gelombang suara ini menembus material logam dan mengenai batas batas perbedaan impedansi didalam logam, misal antara logam dan rongga cacat ataupun dengan keretakan. Sebagian gelombang suara ini dipantulkan kembali ke tranduser, sebagian lain akan terus menembus bagian bagian lain didalam logam tersebut sampai kemudian juga dipantulkan. Gambar 2.13 Sistem Pulse Echo Ultrasonic Gelombang gelombang suara pantulan ini akan ditangkap kembali oleh tranduser dan diteruskan ke alat ultrasonik, yang akan menghitung berapa jarak indikasi pemantul dengan probe berdasarkan kecepatan suara didalam jaringan. Lalu mesin ultrasonik menampilkan pantulan gelombang suara itu di layar dalam bentuk sinyal. 30

24 2.5.1 A-Mode Gambar 2.14 A-Mode A-mode display digunakan untuk menggambarkan hubungan amplitudo pulsa echo dengan kedalaman indikasi cacat dalam logam. Posisi sinyal echo di kedalaman logam dipengaruhi oleh interval waktu pulsa yang dikirimkan dan diterima. Gambar 3.3 menjelaskan proses terbentuknya A-mode. Pantulan pertama terjadi sebagai pulsa yang dikirim oleh transmitter. Pulsa ultrasonik merambat kedalam logam sampai pada batas indikasi cacat yang memiliki impedansi akustik berbeda. Hal ini menyebabkan sebagian pulsa ultrasonik dipantulkan dan diterima oleh receiver sehingga menghasilkan pulsa echo A. Sebagian pulsa ultrasonik yang telah melewati batas indikasi cacat akan diteruskan pada sampai batas perbedaan impedansi kembali, sehingga dihasilkan echo kembali. 31

25 2.6 Couplant Couplant adalah media perantara antara tranduser dengan permukaan logam, couplant harus bisa melindungi permukaan plat dari udara, karena udara adalah adalah penghantar yang buruk bagi sinyal ultrasonik. Couplant harus zat yang halus sehingga memudahkan tranduser untuk bergerak di permukaan logam. Oli atau air bercampur dengan glycerine direkomendasikan untuk setiap pengujian ultrasonik. Cairan couplant tidak boleh tebal dan tidak boleh terlalu tipis. Karena akan berpengaruh pada gaya mekanis tranduser. Gambar 2.15 Couplant Gambar 2.16 Permukaan Logam Yang Kasar dan Halus Diberikan Lapisan Couplant Mempengaruhi Sinyal Ultrasonik 32

26 Gambar 2.17 Tampilan Pulsa Pada Alat Ultrasonik 2.7 Calibration Block Blok kalibrasi terdiri dari beberapa unit dengan masing masing standard prosedur sesuai peraturan (ASME, AWS). Didalam pengujian menggunakan ultrasonik, setiap indikasi di ilustrasikan kedalam blok kalibrasi sesuai dengan tipe standard blok ASTM. Masing masing block memiliki standar yang berbeda beda. Tebal standar kalibrasi block dapat berbentuk datar atau melengkung untuk aplikasi pipa dan tubing. Area standar amplitudo memanfaatkan lobang bawah sisi datar atau lobang di bor untuk menetapkan ukuran reflektor yang dikenal dengan perubahan bentuk permukaan. Standar kualifikasi berbeda dari standar kalibrasi, yang menerapkan tujuan dari berbagai operasi dengan peralatan dan kualifikasi penggunaan peralatan yang tepat untuk kode tertentu dan standar. 33

27 . Gambar 2.18 Kalibrasi Block V1 Gambar 2.19 Kalibrasi Block V2 Kedua block diatas adalah block standar untuk pengujian ultrasonik, biasa digunakan untuk mengkalibrasi sudut, jarak dan keakuratan reflektor. 34

28 Gambar 2.20 Kalibrasi Block IOW Gambar block kalibrasi diatas adalah block standar untuk ASME prosedur. Umumnya untuk pengujian pada bejana tekan, piping process, dan piping power yang mengikuti standar ASME 1, ASME VIII, ASME IX. Gambar 2.21 Dc-Db Accuracy Block Gambar block kalibrasi diatas untuk keakuratan dalam mendeteksi laminasi pada benda uji. Gambar 2.22 Block BCB/RC 35

29 Block BCB adalah block untuk standar AWS D1.1 yang dipakai pada pengujian structure (T, Y, K) sambungan. Serta berfungsi meningkatkan resolusi dan sensitivity. Gambar 2.23 Jenis Jenis Blok Kalibrasi Lainnya 36

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK 3.1 Gelombang Ultrasonik Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau gelombang bunyi dengan persamaan

Lebih terperinci

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K)

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K) Gelombang Bunyi Bunyi termasuk gelombang mekanik, karena dalam perambatannya bunyi memerlukan medium perantara. Ada tiga syarat agar terjadi bunyi yaitu ada sumber bunyi, medium, dan pendengar. Bunyi dihasilkan

Lebih terperinci

BAB I PENDAHULUAN. 1. Latar belakang

BAB I PENDAHULUAN. 1. Latar belakang BAB I PENDAHULUAN 1. Latar belakang Di dalam kehidupan sehari-hari kita tidak pernah lepas dari bunyi. Karen kita memiliki alat indera yaitu telinga yang berfungsi untuk mendengar bunyi. Bunyi adalah salah

Lebih terperinci

RANGKUMAN MATERI GETARAN DAN GELOMBANG MATA PELAJARAN IPA TERPADU KELAS 8 SMP NEGERI 55 JAKARTA

RANGKUMAN MATERI GETARAN DAN GELOMBANG MATA PELAJARAN IPA TERPADU KELAS 8 SMP NEGERI 55 JAKARTA RANGKUMAN MATERI GETARAN DAN GELOMBANG MATA PELAJARAN IPA TERPADU KELAS 8 SMP NEGERI 55 JAKARTA Getaran A. Pengertian getaran Getraran adalah : gerak bolak-balik benda secara teratur melalui titik keseimbangan.salah

Lebih terperinci

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari FISIKA 2 SKS By : Sri Rezeki Candra Nursari MATERI Satuan besaran Fisika Gerak dalam satu dimensi Gerak dalam dua dan tiga dimensi Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik) Gelombang

Lebih terperinci

KISI-KISI SOAL UJI COBA. Menurut medium perambatannya, gelombang

KISI-KISI SOAL UJI COBA. Menurut medium perambatannya, gelombang LAMPIRAN IV KISI-KISI SOAL UJI COBA No Indikator soal Teknik Bentuk Instrumen 1 Peserta didik menjelaskan karakteristik mekanik dan elektromagnetik Contoh Soal Menurut medium perambatannya, diklasifiikasikan

Lebih terperinci

5. Satu periode adalah waktu yang diperlukan bandul untuk bergerak dari titik. a. A O B O A b. A O B O c. O A O B d. A O (C3)

5. Satu periode adalah waktu yang diperlukan bandul untuk bergerak dari titik. a. A O B O A b. A O B O c. O A O B d. A O (C3) 1. Simpangan terjauh pada suatu benda bergetar disebut. a. Amplitudo c. Periode b. Frekuensi d. Keseimbangan 2. Berikut ini adalah sebuah contoh getaran. a. Roda yang berputar pada sumbunya b. Gerak buah

Lebih terperinci

1. SUMBER BUNYI. Gambar 1

1. SUMBER BUNYI. Gambar 1 1. SUMBER BUNYI Gambar 1 Bunyi adalah salah satu bentuk energi. Bunyi yang kita dengar selalu berasal dari suatu sumber bunyi. Kita dapat mendengar bunyi jika sumber bunyi bergetar. Getaran dari sumber

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

: 1. KARAKTERISTIK GELOMBANG 2. PERSAMAAN GELOMBANG BERJALAN DAN GELOMBANG TEGAK

: 1. KARAKTERISTIK GELOMBANG 2. PERSAMAAN GELOMBANG BERJALAN DAN GELOMBANG TEGAK LAMPIRAN XV SATUAN PENDIDIKAN MATA PELAJARAN MATERI POKOK KELAS/ SEMESTER PENELITI LEMBAR VALIDASI INSTRUMEN TES : MAN 1 PADANG : FISIKA : 1. KARAKTERISTIK GELOMBANG 2. PERSAMAAN GELOMBANG BERJALAN DAN

Lebih terperinci

1. SUMBER BUNYI. Gambar 7

1. SUMBER BUNYI. Gambar 7 1. SUMBER BUNYI Oleh : Arif Kristanta Gambar 7 Bunyi adalah salah satu bentuk energi. Bunyi yang kita dengar selalu berasal dari suatu sumber bunyi. Kita dapat mendengar bunyi jika sumber bunyi bergetar.

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi

Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi Fisika Umum (MA-301) Topik hari ini Getaran, Gelombang dan Bunyi Getaran dan Gelombang Getaran/Osilasi Gerak Harmonik Sederhana Gelombang Gelombang : Gangguan yang merambat Jika seutas tali yang diregangkan

Lebih terperinci

sepanjang lintasan: i) A-B adalah 1/4 getaran ii) A-B-C-B-A adalah 4/4 atau 1 getaran iii) A-B-C-B-A-B adalah 5/4 atau 1,25 getaran

sepanjang lintasan: i) A-B adalah 1/4 getaran ii) A-B-C-B-A adalah 4/4 atau 1 getaran iii) A-B-C-B-A-B adalah 5/4 atau 1,25 getaran contoh soal dan pembahasan jawaban getaran dan gelombang, materi fisika SMP Kelas 8 (VIII), tercakup amplitudo, frekuensi, periode dari getaran dan gelombang, panjang gelombang, cepat rambat suatu gelombang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Penelitian dunia yang berkenaan dengan gelombang ultrasonik bukan hal yang baru melainkan sudah berlangsung cukup lama sehingga pemahaman ilmuwan mengenai sifat dan interaksinya

Lebih terperinci

Jenis dan Sifat Gelombang

Jenis dan Sifat Gelombang Jenis dan Sifat Gelombang Gelombang Transversal, Gelombang Longitudinal, Gelombang Permukaan Gelombang Transversal Gelombang transversal merupakan gelombang yang arah pergerakan partikel pada medium (arah

Lebih terperinci

BAB I GETARAN, GELOMBANG DAN BUNYI

BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI Kompetensi dasar : Memahami Konsep Dan Prinsip-Prinsip Gejala Gelombang Secara Umum Indikator : 1. Arti fisis getaran diformulasikan 2. Arti fisis gelombang dideskripsikan

Lebih terperinci

BAB I GETARAN, GELOMBANG DAN BUNYI

BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI BAB I GETARAN, GELOMBANG DAN BUNYI Kompetensi dasar : Memahami Konsep Dan Prinsip Prinsip Gejala Gelombang Secara Umum Indikator Tujuan 1. : 1. Arti fisis getaran diformulasikan

Lebih terperinci

Gelombang. Rudi Susanto

Gelombang. Rudi Susanto Gelombang Rudi Susanto Pengertian Gelombang Gelombang adalah suatu gejala terjadinya perambatan suatu gangguan (disturbane) melewati suatu medium dimana setelah gangguan ini lewat keadaan medium akan kembali

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

Gelombang Transversal Dan Longitudinal

Gelombang Transversal Dan Longitudinal Gelombang Transversal Dan Longitudinal Pada gelombang yang merambat di atas permukaan air, air bergerak naik dan turun pada saat gelombang merambat, tetapi partikel air pada umumnya tidak bergerak maju

Lebih terperinci

DASAR TEORI ULTRASONIC TEST

DASAR TEORI ULTRASONIC TEST DASAR TEORI ULTRASONIC TEST (materi kuliah UTR ) Tegas Sutondo Tujuan Memberikan dasar teori teknik inspeksi menggunakan peralatan UT Problem Testing menggunakan UT Karakteristik gelombang suara Pembangkitan

Lebih terperinci

BAB IV ANALISA. TERSEBUT DIAPLIKASIKAN UNTUK PENDETEKSIAN CACAT DALAM PADA MATERIAL BAJA. DENGAN

BAB IV ANALISA. TERSEBUT DIAPLIKASIKAN UNTUK PENDETEKSIAN CACAT DALAM PADA MATERIAL BAJA. DENGAN BAB IV ANALISA. TERSEBUT DIAPLIKASIKAN UNTUK PENDETEKSIAN CACAT DALAM PADA MATERIAL BAJA. DENGAN BAB IV ANALISA 4.1 Analisis Simulasi Salah satu teknik untuk memodelkan perambatan ultrasonik dalam medium

Lebih terperinci

- - GETARAN DAN GELOMBANG

- - GETARAN DAN GELOMBANG - - GETARAN DAN GELOMBANG - - Modul ini singkron dengan Aplikasi Android, Download melalui Play Store di HP Kamu, ketik di pencarian dlp4getaran Jika Kamu kesulitan, Tanyakan ke tentor bagaimana cara downloadnya.

Lebih terperinci

Gelombang Bunyi 8 SMP

Gelombang Bunyi 8 SMP Gelombang Bunyi 8 SMP Fisikastudycenter.com, contoh soal dan pembahasan jawaban gelombang bunyi, materi fisika SMP Kelas 8 (VIII), tercakup sifat-sifat gelombang dari bunyi diantaranya frekuensi, periode,

Lebih terperinci

TEORI MAXWELL Maxwell Maxwell Tahun 1864

TEORI MAXWELL Maxwell Maxwell Tahun 1864 TEORI MAXWELL TEORI MAXWELL Maxwell adalah salah seorang ilmuwan fisika yang berjasa dalam kemajuan ilmu pengetahuan serta teknologi yang berhubungan dengan gelombang. Maxwell berhasil mempersatukan penemuanpenumuan

Lebih terperinci

GETARAN DAN GELOMBANG. Gelombang. dibedakan berdasarkan. Gel. mekanik. contoh contoh contoh. Gel. air Gel. pada tali Gel. bunyi Gel.

GETARAN DAN GELOMBANG. Gelombang. dibedakan berdasarkan. Gel. mekanik. contoh contoh contoh. Gel. air Gel. pada tali Gel. bunyi Gel. n Getaran dan Gelombang Bab XXI GETARAN DAN GELOMBANG Tujuan Pembelajaran Kamu dapat mendeskripsikan konsep getaran dan gelombang serta parameter-parameternya. Peta Konsep Getaran terdiri atas - Frekuensi

Lebih terperinci

BAB IV ANALISA. tersebut diaplikasikan untuk pendeteksian cacat dalam pada material baja. Dengan

BAB IV ANALISA. tersebut diaplikasikan untuk pendeteksian cacat dalam pada material baja. Dengan BAB IV ANALISA 4.1 Analisis Simulasi Salah satu teknik untuk memodelkan perambatan ultrasonik dalam medium adalah dengan pulse echo single probe. Pulse echo single probe adalah salah satu probe ultrasonik

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Gelombang - - GELOMBANG - GELOMBANG ------------------------------- 1 Gelombang Gelombang Berjalan

Lebih terperinci

Pertemuan 10 PRINSIP KOMUNIKASI LISTRIK. Dahlan Abdullah Website :

Pertemuan 10 PRINSIP KOMUNIKASI LISTRIK. Dahlan Abdullah   Website : Pertemuan 10 PRINSIP KOMUNIKASI LISTRIK Dahlan Abdullah Email : dahlan@unimal.ac.id Website : http://www.dahlan.web.id Pendahuluan Dalam setiap komunikasi salah satunya selalu diperlukan sumber informasi

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

ALAT YANG DIPERLUKAN TALI SLINKI PEGAS

ALAT YANG DIPERLUKAN TALI SLINKI PEGAS Getaran dan Gelombang ALAT YANG DIPERLUKAN TALI SLINKI PEGAS BANDUL Amplitudo Amplitudo (A) Amplitudo adalah posisi maksimum benda relatif terhadap posisi kesetimbangan Ketika tidak ada gaya gesekan, sebuah

Lebih terperinci

- S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI

- S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI - S. Indriani Lestariningati, M.T- Week 3 TERMINAL-TERMINAL TELEKOMUNIKASI Dengan kemajuan teknologi, telekomunikasi menjadi lebih cepat, lebih andal dan lebih murah dibandingkan dengan metode komunikasi

Lebih terperinci

Pemantulan Bunyi gaung gema

Pemantulan Bunyi gaung gema Gelombang dan Sonar Ketika kita mendengarkan suatu bunyi, sesungguhnya bunyi itu merambat dari sumber bunyi hingga ke telinga kita melalui udara. Proses yang terjadi mirip dengan getaran yang terjadi pada

Lebih terperinci

GELOMBANG YUSRON SUGIARTO

GELOMBANG YUSRON SUGIARTO GELOMBANG YUSRON SUGIARTO OUTLINE Gelombang Klasiikasi Gelombang Siat gelombang Gelombang Suara Eek Doppler GELOMBANG KLASIFIKASI GELOMBANG Gelombang menurut arah perambatannya: Gelombang Longitudinal

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan dunia pengetahuan sekarang ini, gelombang bunyi dapat dimanfaatkan dalam berbagai keperluan penelitian. Di bidang kelautan misalnya untuk mengukur

Lebih terperinci

GETARAN DAN GELOMBANG BUNYI

GETARAN DAN GELOMBANG BUNYI GETARAN DAN GELOMBANG BUNYI GETARAN Getaran adalah gerak bolak-balik melalui suatu titik keseimbangan. Kesetimbangan di sini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik BAB II GELOMBANG ELEKTROMAGNETIK 2.1 Umum elektromagnetik adalah gelombang yang dapat merambat walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik seperti yang diilustrasikan pada

Lebih terperinci

Gejala Gelombang. gejala gelombang. Sumber:

Gejala Gelombang. gejala gelombang. Sumber: Gejala Gelombang B a b B a b 1 gejala gelombang Sumber: www.alam-leoniko.or.id Jika kalian pergi ke pantai maka akan melihat ombak air laut. Ombak itu berupa puncak dan lembah dari getaran air laut yang

Lebih terperinci

PENGAMATAN PENJALARAN GELOMBANG MEKANIK

PENGAMATAN PENJALARAN GELOMBANG MEKANIK PENGAMATAN PENJALARAN GELOMBANG MEKANIK Elinda Prima F.D 1, Muhamad Naufal A 2, dan Galih Setyawan, M.Sc 3 Prodi D3 Metrologi dan Instrumentasi, Sekolah Vokasi, Universitas Gadjah Mada, Yogyakarta, Indonesia

Lebih terperinci

SOAL FISIKA UNTUK TINGKAT KAB/KOTA Waktu: 120 menit. Laju (m/s)

SOAL FISIKA UNTUK TINGKAT KAB/KOTA Waktu: 120 menit. Laju (m/s) SOAL FISIKA UNTUK TINGKAT KAB/KOTA Waktu: 120 menit A. SOAL PILIHAN GANDA Petunjuk: Pilih satu jawaban yang paling benar. 1. Sebuah mobil bergerak lurus dengan laju ditunjukkan oleh grafik di samping.

Lebih terperinci

Membahas bio-akustik berarti berusaha mengurai keterkaitan antara bunyi. gelombang bunyi, getaran dan sumber bunyi dengan kesehatan.

Membahas bio-akustik berarti berusaha mengurai keterkaitan antara bunyi. gelombang bunyi, getaran dan sumber bunyi dengan kesehatan. _Bio Akustik_01 Membahas bio-akustik berarti berusaha mengurai keterkaitan antara bunyi gelombang bunyi, getaran dan sumber bunyi dengan kesehatan. Apa sih yang dimaksud gelombang itu? dan apa hubungannya

Lebih terperinci

Penghasil Gelombang Bunyi. Gelombang. bunyi adalah gelombang. medium. Sebuah

Penghasil Gelombang Bunyi. Gelombang. bunyi adalah gelombang. medium. Sebuah Bunyi Penghasil Gelombang Bunyi Gelombang bunyi adalah gelombang longitudinal yang merambat melalui sebuah medium Sebuah garpu tala dapat digunakan sebagai contoh penghasil gelombang bunyi Penggunaan Garpu

Lebih terperinci

penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant.

penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant. penetrant dan developer. Umumnya warna yang digunakan adalah putih untuk developer dan merah untuk penetrant. Metode yang lain adalah menggunakan penetrant bercahaya/fluoresens. Langkah-langkah inspeksinya

Lebih terperinci

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi.

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. MACAM GELOMBANG Gelombang dibedakan menjadi : Gelombang Mekanis : Gelombang yang memerlukan

Lebih terperinci

Getaran dan Gelombang

Getaran dan Gelombang Fisika Umum (MA301) Topik hari ini: Getaran dan Gelombang Hukum Hooke, Sistem Pegas-Massa Energi Potensial Pegas Perioda dan frekuensi Gerak Gelombang Bunyi Gelombang Bunyi Efek Doppler Gelombang Berdiri

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

SMA IT AL-BINAA ISLAMIC BOARDING SCHOOL UJIAN AKHIR SEMESTER GANJIL TAHUN AJARAN 2011/2012

SMA IT AL-BINAA ISLAMIC BOARDING SCHOOL UJIAN AKHIR SEMESTER GANJIL TAHUN AJARAN 2011/2012 PTUNJUK UMUM SMA T AL-NAA SLAMC OARDNG SCHOOL UJAN AKHR SMSTR GANJL TAHUN AJARAN 2011/2012 LMAR SOAL Mata Pelajaran : isika Pengajar : Harlan, S.Pd Kelas : X Hari/Tanggal : Senin/26 Desember 2011 AlokasiWaktu

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Pengukuran Ketebalan serta Posisi Cacat pada Sampel Carbon Steel dan Stainless Steel dengan Metode Ultrasonic Testing.

Pengukuran Ketebalan serta Posisi Cacat pada Sampel Carbon Steel dan Stainless Steel dengan Metode Ultrasonic Testing. Pengukuran Ketebalan serta Posisi Cacat pada Sampel Carbon Steel dan Stainless Steel dengan Metode Ultrasonic Testing Fransisca Debora Jurusan Fisika FMIPA Universitas Sriwijaya Email : fransisca.debora91@gmail.com

Lebih terperinci

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Gelombang Gelombang adalah gejala dari perambatan usikan (gangguan) di dalam suatu medium. Pada peristiwa rambatan tersebut tidak disertai dengan perpindahan tempat yang permanen

Lebih terperinci

PENDEKATAN TEORITIK. Elastisitas Medium

PENDEKATAN TEORITIK. Elastisitas Medium PENDEKATAN TEORITIK Elastisitas Medium Untuk mengetahui secara sempurna kelakuan atau sifat dari suatu medium adalah dengan mengetahui hubungan antara tegangan yang bekerja () dan regangan yang diakibatkan

Lebih terperinci

SOAL FISIKA UNTUK TINGKAT KAB/KOTA. Laju (m/s)

SOAL FISIKA UNTUK TINGKAT KAB/KOTA. Laju (m/s) E. 8 m/s 2 Jawab: A SOAL FISIKA UNTUK TINGKAT KAB/KOTA SOAL PILIHAN GANDA 1. Sebuah mobil bergerak lurus dengan laju ditunjukkan oleh grafik di samping. Selama sepuluh detik pertama mobil menempuh jarak:

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

7.4 Alat-Alat Optik. A. Mata. Latihan 7.3

7.4 Alat-Alat Optik. A. Mata. Latihan 7.3 Latihan 7.3 1. Bagaimanakah bunyi hukum pemantulan cahaya? 2. Bagaimanakah bunyi hukum pembiasan cahaya? 3. Apa hubungan pembiasan dengan peristiwa terebntuknya pelangi setelah hujan? Jelaskan! 4. Suatu

Lebih terperinci

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari FISIKA 2 SKS By : Sri Rezeki Candra Nursari MATERI Satuan besaran Fisika Gerak dalam satu dimensi Gerak dalam dua dan tiga dimensi Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik) Gelombang

Lebih terperinci

CEPAT RAMBAT BUNYI. Cepat rambat bunyi pada zat padat

CEPAT RAMBAT BUNYI. Cepat rambat bunyi pada zat padat CEPAT RAMBAT BUNYI Cepat rambat bunyi pada zat padat Pada zaman dahulu, orang mendekatkan telinganya ke atas rel untuk mengetahui kapan kereta datang. Hal tersebut membuktikan bahwa bunyi dapat merambat

Lebih terperinci

Sifat Alami Gelombang

Sifat Alami Gelombang Sifat Alami Gelombang Bunyi Sebagai Gelombang Mekanik Sifat alami gelombang bunyi serupa dengan gelombang slinki. Seperi halnya gelombang slinki, pada gelombang bunyi ada medium yang membawa gangguan dari

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Fisika Tahun Ajaran 2017/2018-1. Hambatan listrik adalah salah satu jenis besaran turunan yang memiliki satuan Ohm. Satuan hambatan jika

Lebih terperinci

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM)

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM) Disusun oleh : MIRA RESTUTI 1106306 PENDIDIKAN FISIKA (RM) PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI PADANG 2013 Kompetensi Dasar :

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal dua macam sumber informasi, yaitu ide-ide yang bersumber dari

Lebih terperinci

LAPORAN RESMI UJI ULTRASONIK (Ultrasonic Test)

LAPORAN RESMI UJI ULTRASONIK (Ultrasonic Test) LAPORAN RESMI UJI ULTRASONIK (Ultrasonic Test) Oleh : Ahmad Rizeki Erika Rizky Ratih Kusumaningtyas Rahardi Wardhana Politeknik Perkapalan Negeri Surabaya PPNS 2012/2013 BAB 1 Tujuan Untuk mendeteksi adanya

Lebih terperinci

1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah

1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah 1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah A. y = 0,5 sin 2π (t - 0,5x) B. y = 0,5 sin π (t - 0,5x) C. y = 0,5 sin π (t - x) D. y = 0,5 sin 2π (t - 1/4 x) E. y = 0,5 sin 2π (t

Lebih terperinci

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB Getaran (Osilasi) : Gerakan berulang pada lintasan yang sama Ayunan Gerak Kipas Gelombang dihasilkan oleh getaran Gelombang bunyi Gelombang air

Lebih terperinci

Tugas Sensor Ultrasonik HC-SR04

Tugas Sensor Ultrasonik HC-SR04 Fandhi Nugraha K D411 13 313 Teknik Elektro Makalah Tugas Sensor Ultrasonik HC-SR04 Universitas Hasanuddin Makassar 2015/2016 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pemanfaatan teknologi saat ini sangat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay

SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay SOAL FISIKA UNTUK TINGKAT PROVINSI Waktu: 180 menit Soal terdiri dari 30 nomor pilihan ganda, 10 nomor isian dan 2 soal essay A. PILIHAN GANDA Petunjuk: Pilih satu jawaban yang paling benar. 1. Grafik

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

Waktu yang dibutuhkan oleh gelombang adalah 4 sekon.

Waktu yang dibutuhkan oleh gelombang adalah 4 sekon. Usikan yang terjadi ketika sebuah batu dijatuhkan dk permukaan air di sebuah kolam akan merambat menjauhi titik jatuh batu dan akhirnya mencapai tepi kolam. Gelombang atau usikan air ini memang bergerak

Lebih terperinci

Aroem Kristalia Astry Limas Y

Aroem Kristalia Astry Limas Y PERENCANAAN DAN PEMBUATAN ALAT PEMANGGIL IKAN DENGAN SUARA DAN CAHAYA BERBASIS MIKROKONTROLLER Aroem Kristalia 6407030003 Astry Limas Y. 6407030004 Mencari ikan adalah kegiatan pokok seorang nelayan. Dan

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / I Mata Pelajaran : FISIKA Standar : 1. Menerapkan konsep dan prinsip gejala dalam menyelesaikan masalah 1.1 gejala dan ciriciri secara umum.

Lebih terperinci

BAB 1 PENDAHULUAN. Pada tahun 2000-an berkembang isu didunia internasional akan dampak

BAB 1 PENDAHULUAN. Pada tahun 2000-an berkembang isu didunia internasional akan dampak BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada tahun 2000-an berkembang isu didunia internasional akan dampak dari konsumsi bahan bakar minyak yang menjadi topik utama di berbagai media massa. Salah satu dampaknya

Lebih terperinci

GELOMBANG. Lampiran I.2

GELOMBANG. Lampiran I.2 GELOMBANG 1. Pengertian Gelombang Pernahkah kamu pergi ke pantai? Tentu sangat menyenangkan, bukan? Demikian indahnya ciptaan Tuhan. Di pantai kamu bisa melihat ombak. Ombak tersebut terlihat bergelombang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Gelombang Bunyi Gelombang bunyi merupakan gelombang longitudinal yang terjadi sebagai hasil dari fluktuasi tekanan karena perapatan dan perenggangan dalam media elastis. Sinyal

Lebih terperinci

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK

BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK BAB 10 GELOMBANG BUNYI DALAM ZAT PADAT ISOTROPIK Sepertinya bunyi dalam padatan hanya berperan kecil dibandingkan bunyi dalam zat alir, terutama, di udara. Kesan ini mungkin timbul karena kita tidak dapat

Lebih terperinci

Indra manusia: penglihatan, suara, sentuhan, rasa, dan bau memberikan kami informasi penting berfungsi dan bertahan Robot sensor: mengukur

Indra manusia: penglihatan, suara, sentuhan, rasa, dan bau memberikan kami informasi penting berfungsi dan bertahan Robot sensor: mengukur Indra manusia: penglihatan, suara, sentuhan, rasa, dan bau memberikan kami informasi penting berfungsi dan bertahan Robot sensor: mengukur konfigurasi / kondisi lingkungannya dan mengirim informasi tersebut

Lebih terperinci

memahami konsep dan penerapan getaran, gelombang, dan optika dalam produk teknologi sehari-hari.

memahami konsep dan penerapan getaran, gelombang, dan optika dalam produk teknologi sehari-hari. Bab 13 Sumber: www.fas.nus.edu.sg Hasil yang harus kamu capai: memahami konsep dan penerapan getaran, gelombang, dan optika dalam produk teknologi sehari-hari. Setelah mempelajari bab ini, kamu harus mampu:

Lebih terperinci

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X

Mekanika (interpretasi grafik GLB dan GLBB) 1. Diberikan grafik posisi sebuah mobil terhadap waktu yang melakukan gerak lurus sebagai berikut: X Pengukuran, Besaran dan Satuan: 1. Besi mempunyai massa jenis 7,86 kg/m 3. Tentukan volume sepotong besi yang massanya 3,93 g. A. 0,5 cm 3 B. 0,5 m 3 C. 2,0 cm 3 D. 2,0 m 3 (hubungan besaran pokok dan

Lebih terperinci

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa

2. TINJAUAN PUSTAKA Gelombang Bunyi Perambatan Gelombang dalam Pipa 2 Metode yang sering digunakan untuk menentukan koefisien serap bunyi pada bahan akustik adalah metode ruang gaung dan metode tabung impedansi. Metode tabung impedansi ini masih dibedakan menjadi beberapa

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 2.1 Blind Spot LANDASAN TEORI Blind spot merupakan adalah suatu kawasan yang berada di area sekitar kendaraan, dimana area tersebut adalah area yang tidak dapat ditangkap secara baik oleh spion kendaraan.

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1 GELOMBANG MEKANIK Pada pembelajaran ini kita akan mem pelajari gelombang mekanik Gelombang mekanik dapat dipelajari gejala gelombang pada tali melalui Pernahkah kalian melihat sekumpulan anak anak yang

Lebih terperinci

Getaran, Gelombang dan Bunyi

Getaran, Gelombang dan Bunyi Getaran, Gelombang dan Bunyi Getaran 01. EBTANAS-06- Pada getaran selaras... A. pada titik terjauh percepatannya maksimum dan kecepatan minimum B. pada titik setimbang kecepatan dan percepatannya maksimum

Lebih terperinci

PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL

PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL SUMARNA Program Studi Teknik Informatika Universita PGRI Yogyakarta Abstrak Sinyal ultrasonik merupakan sinyal dengan frekuensi tinggi berkisar

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Elektromagnetik Teori gelombang elektromagnetik pertama kali dikemukakan oleh James Clerk Maxwell (83 879). Hipotesis yang dikemukakan oleh Maxwell, mengacu pada tiga aturan dasar listrik-magnet

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB V GETARAN DAN GELOMBANG

BAB V GETARAN DAN GELOMBANG 38 FISIKA KELAS VIII BAB V GETARAN DAN GELOMBANG Pembelajaran ini bertujuan agar Anda dapat : Mengidentifikasi getaran pada kehidupan sehari-hari Mengukur periode dan frekuensi suatu getaran Menyelidiki

Lebih terperinci

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK =================================================

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ

Lebih terperinci

BAB 1 PENDAHULUAN. 1 Universitas Indonesia

BAB 1 PENDAHULUAN. 1 Universitas Indonesia BAB 1 PENDAHULUAN Pada bab ini akan dijelaskan mengenai suatu kasus yang akan menjadi alasan dilakukan penelitian ini, yang akan diuraikan pada Latar Belakang. Atas dasar masalah yang telah dikemukakan

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

SOAL - JAWAB FISIKA Soal 1. Kation terjadi jika sebuah atom. a. melepaskan satu atau lebih protonnya b. melepas kan satu atau lebih elektronnya c.

SOAL - JAWAB FISIKA Soal 1. Kation terjadi jika sebuah atom. a. melepaskan satu atau lebih protonnya b. melepas kan satu atau lebih elektronnya c. SOAL - JAWAB FISIKA Soal 1. Kation terjadi jika sebuah atom. a. melepaskan satu atau lebih protonnya b. melepas kan satu atau lebih elektronnya c. menangkap satu atau lebih proton bebas d. menangkap satu

Lebih terperinci

BAB 11 GETARAN DAN GELOMBANG

BAB 11 GETARAN DAN GELOMBANG BAB 11 GETARAN DAN GELOMBANG A. Getaran Benda Getaran adalah gerakan bolak balik terhadap titik keseimbangan. - Penggaris melakukan getaran dari posisi 1 2 1 3 1 - Bandul melakukan gerak bolak balik dari

Lebih terperinci

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga

Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi

Lebih terperinci