BAB II TINJAUAN PUSTAKA. 2.1 State of The Art Review on Application The Feasibility of Renewable Energy

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. 2.1 State of The Art Review on Application The Feasibility of Renewable Energy"

Transkripsi

1 6 BAB II TINJAUAN PUSTAKA 2.1 State of The Art Review on Application The Feasibility of Renewable Energy Case Study Feasibility Analysis of Renewable Energy Supply Options for Small to Medium-Sized Tourist Accommodationst dilakukan oleh G.J. Dalton, D.A. Lockington dan T.E. Baldock (2009). Penelitian ini memanfaatkan beban listrik dari tiga akomodasi yang sudah menerapkan sistem hibrida untuk energi terbarukan. Operasional karakteristik khusus, seperti operasional 24 jam, penyediaan kenyamanan dan tingkat kegagalan yang rendah adalah penilaian viabilitas energi terbarukan untuk sektor ini. Kriteria untuk Net Present Cost (NPC), faktor terbarukan dan waktu pengembalian modal menjadi penilaian yang utama. Hasil penelitian menunjukkan bahwa waktu pengembalian sistem hibrida dari energi terbarukan akan menjadi sekitar setengah jika harga solar meningkat dan karbon pajak dilaksanakan. Ini menunjukkan bahwa energi terbarukan layak secara teknis dan ekonomis dipergunakan untuk akomodasi pariwisata skala kecil dan menengah. Techno-Economic Feasibility of Grid Connected Solar PV System in Bangladesh dilakukan oleh Alam Hossain Mondal dan Sadrul Islam (2009). Penelitian ini menganalisis kelayakan teknis dan ekonomi untuk sistem grid 500kW PV di Rajshahi Bangladesh. Hasil penelitian menunjukkan bahwa biaya produksi listrik untuk sistem grid PV dengan umur proyek 20 tahun dan tingkat diskonto 10% adalah 14,51 BDT (Bangladesh Taka). Biaya ini menjadi bervariasi 6

2 7 antara 14,10 dan 15,25 BDT berdasarkan data radiasi matahari terendah dan tertinggi. Hasil penelitian ini kemudian dibandingkan dengan biaya grid connected dari pembangkit listrik diesel yang besarnya sekitar BDT. Hasil perbandingan tersebut menunjukkan bahwa biaya produksi per satuan unit listrik dari grid connected PV kompetitif dengan biaya grid connected dari pembangkit diesel. Bahkan jika mekanisme pembangunan bersih, pajak karbon dan kenaikan harga minyak dipertimbangkan maka biaya satuan akan lebih rendah daripada grid connected pembangkit diesel. Design and Economic Analysis of a Stand-Alone PV System to Electrify a Remote Area Household in Egypt dilakukan oleh Abd El-Shafy A. Nafeh (2009). Penelitian ini menyajikan sebuah design lengkap dan analisis biaya siklus hidup untuk sistem Photovoltaic (PV) Stand-Alone, yang dilakukan untuk satu rumah tangga di kota Rudies Abu Semenanjung Sinai Mesir, yang letaknya terisolasi dan terpencil serta jauh dari jaringan listrik nasional. Hasil penelitian menunjukkan bahwa sistem PV yang dikembangkan untuk lokasi terpencil yang jauh dari jaringan listrik Mesir, berada pada kisaran harga $ 0,74/kWh. Harga ini sangat tinggi bila dibandingkan dengan biaya listrik di Mesir ($ 0,1/kWh). Akan tetapi pada penelitian ini juga dinyatakan bahwa harga sistem PV dapat turun menjadi $ 0,49/kWh jika biaya awal modul PV turun $ 0,1/Wp. Pada saat yang sama, karena peningkatan dalam harga bahan bakar konvensional maka biaya listrik di Mesir menjadi lima kali nilai saat ini. Hal ini menunjukkan bahwa pembangkit sistem PV bermanfaat dan cocok untuk investasi jangka panjang, terutama jika

3 8 harga awal sistem PV mengalami penurunan serta didukung oleh peningkatan efisiensi komponennya. Faisal Ahammed dan Abdullahil Azeem (2009), melakukan penelitian tentang An Economic Analysis of Solar PV Micro-Utility in Rural Areas of Bangladesh. Penelitian ini menganalisis kelayakan ekonomi PV Micro-Utility di Manikgang Bazaar Bangladesh, dengan menggunakan Net Present Value (NPV), Benefit Cost Ratio (BCR), Internal Rate of Return (IRR) dan Discounted Pay Back Period. Untuk mengatasi biaya investasi awal PV yang relatif mahal maka diperlakukan konsep pembayaran tarif harian untuk setiap pelanggan yang terhubung ke utility. Diasumsikan discount rate sebesar 10% untuk pertimbangan nilai waktu uang. Hasil analisis menunjukkan bahwa NPV lebih besar dari 0 (nol), sedangkan untuk BCR menunjukkan nilai lebih besar dari 1 (satu). Discount payback period pada penelitian ini juga menunjukkan bahwa pada tahun ke-11, biaya investasi proyek akan kembali. Dari tingkat diskonto terlihat bahwa IRR proyek lebih besar yaitu 14%, nilai ini lebih besar dari nilai biaya modal (10%). Hasil penelitian ini menunjukkan bahwa proyek PV Micro-Utility telah layak secara ekonomi. 2.2 Pembangkit Listrik Tenaga Surya Pembangkit Listrik Tenaga Surya (PLTS) adalah suatu pembangkit yang mengkonversikan energi foton dari surya menjadi energi listrik. Konversi ini terjadi pada panel surya yang terdiri dari sel-sel surya. PLTS memanfaatkan cahaya matahari untuk menghasilkan listrik DC (Direct Current), yang dapat diubah menjadi listrik AC (Alternating Current) apabila diperlukan. PLTS pada

4 9 dasarnya adalah pencatu daya dan dapat dirancang untuk mencatu kebutuhan listrik dari yang kecil sampai dengan yang besar, baik secara mandiri maupun hibrida Sel Surya Sel surya tersusun dari dua lapisan semikonduktor dengan muatan yang berbeda. Lapisan atas sel surya bermuatan negatif sedangkan lapisan bawahnya bermuatan positif. Silikon adalah bahan semikonduktor yang paling umum digunakan untuk sel surya. Ketika cahaya mengenai permukaan sel surya, beberapa foton dari cahaya diserap oleh atom semikonduktor untuk membebaskan elektron dari ikatan atomnya sehingga menjadi elektron yang bergerak bebas. Adanya perpindahan elektron-elektron inilah yang menyebabkan terjadinya arus listrik (Quaschning, 2005). Gambar 2.1 menunjukkan struktur dari sel surya. Sumber : Quaschning, 2005 Gambar 2.1 Struktur Sel Surya Karakteristik Sel Surya Total pengeluaran listrik (Watt) dari sel surya adalah sama dengan tegangan (V) operasi dikalikan dengan arus (I) operasi. Tegangan serta arus

5 10 keluaran yang dihasilkan ketika sel surya memperoleh penyinaran merupakan karakteristik yang disajikan dalam bentuk kurva I-V pada gambar 2.2. Kurva ini menunjukkan bahwa pada saat arus dan tegangan berada pada titik kerja maksimal (Maximum Power Point) maka akan menghasilkan daya keluaran maksimum (P MPP ). Tegangan di Maximum Power Point (MPP) V MPP, lebih kecil dari tegangan rangkaian terbuka (Voc) dan arus saat MPP I MPP, adalah lebih rendah dari arus short circuit (Isc) (Quaschning, 2005). a) Short Circuit Current (Isc) : terjadi pada suatu titik dimana tegangannya adalah nol, sehingga pada saat ini, daya keluaran adalah nol. b) Open Circuit Voltage (Voc) : terjadi pada suatu titik dimana arusnya adalah nol, sehingga pada saat ini pun daya keluaran adalah nol. c) Maximum Power Point (MPP) : adalah titik daya output maksimum, yang sering dinyatakan sebagai knee dari kurva I-V. Sumber : Quaschning, 2005 Gambar 2.2 Kurva I-V

6 Komponen-komponen PLTS Pemanfaatan tenaga surya sebagai pembangkit tenaga listrik, umumnya terdiri dari komponen-komponen sebagai berikut : Panel (Modul) Surya Panel surya merupakan komponen yang berfungsi untuk mengubah energi sinar matahari menjadi energi listrik. Panel ini tersusun dari beberapa sel surya yang dihubungkan secara seri maupun paralel. Sebuah panel surya umumnya terdiri dari sel surya, tergantung ukuran panel (Quaschning, 2005). Gabungan dari panel-panel ini akan membentuk suatu Array. Sumber : Patel, 1999 Gambar 2.3 Hubungan Sel Surya, Panel Surya dan Array Jenis panel surya yang terjual di pasaran saat ini, antara lain adalah : 1) Monokristal Silikon (Mono-crystalline Silicon) Monokristal merupakan panel (modul) yang paling efisien, yaitu mencapai angka sebesar 16-25% (Narayana, 2010). 2) Polikristal Silikon (Poly-crystalline Silicon) Polikristal merupakan panel surya yang memiliki susunan kristal acak. Tipe ini memiliki efisiensi sebesar 14-16% (Narayana, 2010).

7 12 3) Amorphous Silicon Amorphous adalah tipe panel dengan harga yang paling murah akan tetapi efisiensinya paling rendah, yaitu antara 9-10,4% (Narayana, 2010). Pengoperasian maksimum panel surya sangat tergantung pada hal-hal sebagai berikut : 1) Temperatur Sebuah panel surya dapat beroperasi secara maksimum jika temperatur yang diterimanya tetap normal pada temperatur 25 o C. Kenaikan temperatur lebih tinggi dari temperatur normal pada panel surya akan melemahkan tegangan (Voc) yang dihasilkan. Setiap kenaikan temperatur panel surya 1 o C (dari 25 o C) akan mengakibatkan berkurang sekitar 0,5% pada total tenaga (daya) yang dihasilkan (Foster dkk., 2010). Untuk menghitung besarnya daya yang berkurang pada saat temperatur di sekitar panel surya mengalami kenaikan o C dari temperatur standarnya, dipergunakan rumus sebagai berikut : o P saat t naik C = 0,5% / o C x P MPP x kenaikan temperatur ( o C) Dimana : P saat t naik o C = daya pada saat temperatur naik o C dari temperatur standarnya. P MPP = daya keluaran maksimum panel surya. Daya keluaran maksimum panel surya pada saat temperaturnya naik menjadi t o C dari temperatur standarnya diperhitungkan dengan rumus sebagai berikut : o o P MPP saat naik menjadi t C = P MPP - P saat t naik C...2.2

8 13 Dimana : o P MPP saat naik menjadi t C adalah daya keluaran maksimum panel surya pada saat temperatur di sekitar panel surya naik menjadi t o C dari temperatur standarnya. Faktor koreksi temperatur (Temperature Correction Factor) diperhitungkan dengan rumus sebagai berikut : TCF = P MPP saat naik menjadi t oc P MPP Sumber : Strong, 1987 Gambar 2.4 Pengaruh Temperatur terhadap Panel Surya 2) Intensitas Cahaya Matahari Intensitas cahaya matahari akan berpengaruh pada daya keluaran panel surya. Semakin rendah intensitas cahaya yang diterima oleh panel surya maka arus (Isc) akan semakin rendah. Hal ini membuat titik Maximum Power Point berada pada titik yang semakin rendah.

9 14 Sumber : Strong 1987 Gambar 2.5 Pengaruh Intensitas Radiasi terhadap Panel Surya 3) Orientasi Panel Surya (Array) Orientasi dari rangkaian panel surya (array) ke arah matahari adalah penting, agar panel surya (array) dapat menghasilkan energi maksimum. Misalnya, untuk lokasi yang terletak di belahan bumi Utara maka panel surya (array) sebaiknya diorientasikan ke Selatan. Begitu pula untuk lokasi yang terletak di belahan bumi Selatan maka panel surya (array) diorientasikan ke Utara (Foster dkk., 2010). 4) Sudut Kemiringan Panel Surya (Array) Sudut kemiringan memiliki dampak yang besar terhadap radiasi matahari di permukaan panel surya. Untuk sudut kemiringan tetap, daya maksimum selama satu tahun akan diperoleh ketika sudut kemiringan panel surya sama dengan lintang lokasi (Foster dkk., 2010). Misalnya panel surya yang terpasang di khatulistiwa (lintang = 0 o ) yang diletakkan mendatar (tilt angle = 0 o ), akan menghasilkan energi maksimum.

10 15 Sumber : Foster dkk., 2010 Gambar 2.6 Pemasangan Panel Surya dengan Sudut Kemiringan Charge Controller Charge controller adalah perangkat elektronik yang digunakan untuk mengatur pengisian arus searah dari panel surya ke baterai dan mengatur penyaluran arus dari baterai ke peralatan listrik (beban). Charge controller mempunyai kemampuan untuk mendeteksi kapasitas baterai. Bila baterai sudah penuh terisi maka secara otomatis pengisian arus dari panel surya berhenti. Cara deteksi adalah melalui monitor level tegangan baterai. Charge controller akan mengisi baterai sampai level tegangan tertentu, kemudian apabila level tegangan telah mencapai level terendah, maka baterai akan diisi kembali. Charge controller adalah indikator yang akan memberikan informasi mengenai kondisi baterai sehingga pengguna PLTS dapat mengendalikan konsumsi energi menurut ketersediaan listrik yang terdapat di dalam baterai Baterai Baterai adalah komponen PLTS yang berfungsi menyimpan energi listrik yang dihasilkan oleh panel surya pada siang hari, untuk kemudian dipergunakan pada malam hari dan pada saat cuaca mendung. Baterai yang dipergunakan pada PLTS mengalami proses siklus mengisi (Charging) dan mengosongkan

11 16 (Discharging), tergantung pada ada atau tidaknya sinar matahari. Selama ada sinar matahari, panel surya akan menghasilkan energi listrik. Apabila energi listrik yang dihasilkan tersebut melebihi kebutuhan bebannya, maka energi listrik tersebut akan segera dipergunakan untuk mengisi baterai. Sebaliknya selama matahari tidak ada, permintaan energi listrik akan disuplai oleh baterai. Proses pengisian dan pengosongan ini disebut satu siklus baterai. Ada dua jenis baterai isi ulang yang dapat dipergunakan untuk sistem PLTS, yaitu baterai Asam Timbal (Lead Acid) dan baterai Nickel-Cadmium. Akan tetapi karena memiliki efisiensi yang rendah dan biaya yang lebih tinggi, membuat baterai Nickel-Cadmium relatif lebih sedikit dipergunakan dalam sistem PLTS. Sebaliknya baterai Asam Timbal adalah baterai dengan efisiensi tinggi dengan biaya yang lebih ekonomis. Hal inilah membuat baterai Asam Timbal menjadi perangkat penyimpanan yang penting untuk beberapa tahun ke depan, terutama untuk sistem PLTS ukuran menengah dan besar (Messenger dan Ventre, 2005). Kapasitas baterai umumnya dinyatakan dalam Ampere hour (Ah). Nilai Ah pada baterai menunjukkan nilai arus yang dapat dilepaskan, dikalikan dengan nilai waktu untuk pelepasan tersebut. Berdasarkan hal tersebut maka secara teoritis, baterai 12 V, 200 Ah harus dapat memberikan baik 200 A selama satu jam, 50 A selama 4 jam, 4 A untuk 50 jam, atau 1 A untuk 200 jam. Pada saat mendesain kapasitas baterai yang akan dipergunakan dalam sistem PLTS, penting juga untuk menentukan ukuran hari-hari otonomi (days of autonomy). (Polarpowerinc, 2011).

12 17 Suatu ketentuan yang membatasi tingkat kedalaman pengosongan maksimum, diberlakukan pada baterai. Tingkat kedalaman pengosongan (Depth of Discharge) baterai biasanya dinyatakan dalam persentase. Misalnya, suatu baterai memiliki DOD 80%, ini berarti bahwa hanya 80% dari energi yang tersedia dapat dipergunakan dan 20% tetap berada dalam cadangan. Pengaturan DOD berperan dalam menjaga usia pakai (life time) dari baterai tersebut. Semakin dalam DOD yang diberlakukan pada suatu baterai maka semakin pendek pula siklus hidup dari baterai tersebut. Gambar 2.7, menunjukkan hubungan antara DOD dengan siklus hidup baterai. Sumber : Polarpowerinc, 2011 Gambar 2.7 Hubungan DOD dengan Siklus Hidup Baterai Inverter Inverter adalah peralatan elektronika yang berfungsi untuk mengubah arus listrik searah (direct current) dari panel surya atau baterai menjadi arus listrik bolak-balik (alternating current) dengan frekuensi 50Hz/60Hz. Pemilihan inverter yang tepat untuk aplikasi tertentu, tergantung pada kebutuhan beban dan juga tergantung pada apakah inverter akan menjadi bagian dari sistem yang terhubung ke jaringan listrik atau sistem yang berdiri sendiri. Efisiensi inverter pada saat pengoperasian adalah sebesar 90% (Foster dkk., 2010).

13 18 Berdasarkan bentuk gelombang yang dihasilkan, inverter dikelompokkan menjadi tiga yaitu inverter dengan gelombang keluaran berbentuk square, modified, dan true sine wave. Inverter yang terbaik adalah yang mampu menghasilkan gelombang sinusoida murni atau true sine wave yaitu bentuk gelombang yang sama dengan bentuk gelombang dari jaringan listrik (grid utility). 2.4 Sistem PLTS Sistem PLTS umumnya diklasifikasikan menurut konfigurasi komponennya. Pada prinsipnya ada dua klasifikasi sistem PLTS (Florida Solar Energy Center, 2011), yaitu PLTS yang terhubung dengan jaringan listrik (PLTS- Grid Connected) dan PLTS yang berdiri sendiri (Stand Alone) PLTS-Grid Connected Sistem PLTS-Grid Connected pada dasarnya adalah menggabungkan PLTS dengan jaringan listrik (PLN). Komponen utama dalam sistem ini adalah inverter, atau Power Conditioning Unit (PCU). Inverter inilah yang berfungsi untuk mengubah daya DC yang dihasilkan oleh PLTS menjadi daya AC sesuai dengan persyaratan dari jaringan listrik yang terhubung (utility grid). Sumber: Florida Solar Energy Center, 2011 Gambar 2.8 Diagram Sistem PLTS-Grid Connected

14 19 Apabila penggabungan PLTS dengan jaringan listrik (PLN), dilakukan pada sisi konsumen (setelah kwhmeter) maka diagram sistemnya dapat dilihat pada gambar 2.9. Sumber : Bien dkk., 2008 Gambar 2.9 Diagram Sistem Hibrida PLTS-Electric Utility PLTS Berdiri Sendiri (Stand- Alone) Sistem PLTS yang berdiri sendiri (Stand-Alone) dirancang beroperasi mandiri untuk memasok beban DC atau AC. Jenis sistem ini dapat diaktifkan oleh array photovoltaic saja, atau dapat menggunakan sumber tambahan energi lain, seperti : air, angin dan mesin diesel. Baterai digunakan pada kebanyakan sistem PLTS yang berdiri sendiri untuk penyimpanan energi. Gambar 2.10 menunjukkan diagram dari PLTS yang berdiri sendiri. Sumber: Florida Solar Energy Center, 2011 Gambar 2.10 Diagram Sistem PLTS Berdiri Sendiri dengan Baterai

15 Kapasitas Komponen PLTS Jumlah Panel Surya Daya (W peak ) yang dibangkitkan PLTS untuk memenuhi kebutuhan energi, diperhitungkan dengan persamaan-persamaan sebagai berikut (Nafeh, 2009) : Menghitung Area Array (PV Area) Area array (PV Area) diperhitungkan dengan menggunakan rumus sebagai berikut : PV Area = E L G av x η PV x TCF x η Out Dimana : E L adalah pemakaian energi (kwh/hari). Gav adalah insolasi harian matahari rata-rata (kwh/m 2 /hari). η PV adalah efisiensi panel surya. TCF adalah temperature correction factor. η out adalah efisiensi inverter Menghitung Daya yang Dibangkitkan PLTS (Watt peak) Dari perhitungan area array, maka besar daya yang dibangkitkan PLTS (Watt peak) dapat diperhitungkan dengan rumus sebagai berikut : P Watt peak = Area array x PSI x η PV Dimana : PSI (Peak Solar Insolation) adalah 1000 W/m 2. η PV adalah efisiensi panel surya.

16 21 Selanjutnya berdasarkan besar daya yang akan dibangkitkan (W peak ), maka jumlah panel surya yang diperlukan, diperhitungkan dengan rumus sebagai berikut : Jumlah panel surya = P Watt peak P MPP Dimana : P Watt Peak P MPP = Daya yang dibangkitkan (Wp). = Daya maksimum keluaran (output) panel surya (W). Untuk memperoleh besar tegangan, arus dan daya yang sesuai dengan kebutuhan, maka panel-panel surya tersebut harus dikombinasikan secara seri dan paralel dengan aturan sebagai berikut : 1) Untuk memperoleh tegangan keluaran yang lebih besar dari tegangan keluaran panel surya, maka dua buah (lebih) panel surya harus dihubungkan secara seri. 2) Untuk memperoleh arus keluaran yang lebih besar dari arus keluaran panel surya, maka dua buah (lebih) panel surya harus dihubungkan secara paralel. 3) Untuk memperoleh daya keluaran yang lebih besar dari daya keluaran panel surya dengan tegangan yang konstan maka panel-panel surya harus dihubungkan secara seri dan pararel. Sumber : Kaltschmitt dkk., 2007 Gambar 2.11 Hubungan Panel Surya

17 Kapasitas Charge Controller Charge controller diperlukan untuk melindungi baterai dari pengosongan dan pengisian berlebih. Masukan atau keluaran untuk Charge controller disesuaikan dengan arus (I MPP ) keluaran array dan tegangan baterai,v B (Messenger dan Ventre, 2005) Kapasitas Baterai Besar kapasitas baterai yang dibutuhkan untuk memenuhi konsumsi energi harian menurut Lynn (2010), dapat dihitung dengan rumus sebagai berikut : C = N x E d V s x DOD x η 2.7 Dimana : C N E d V s = Kapasitas baterai (Ah). = Hari-hari otonomi (hari). = Konsumsi energi harian (kwh). = Tegangan baterai (Volt). DOD = Kedalaman maksimum untuk pengosongan baterai. η = Efisiensi baterai x efisiensi inverter Kapasitas Inveter Pada pemilihan inverter, diupayakan kapasitas kerjanya mendekati kapasitas daya yang dilayani. Hal ini agar efisiensi kerja inverter menjadi maksimal (Foster dkk., 2010).

18 Pembangkit Listrik Tenaga Surya PT. PLN Distribusi Bali di Nusa Penida Pemanfaatan tenaga matahari sebagai sumber energi listrik untuk pengadaan energi listrik PLN di Nusa Penida, dimulai pada tahun Ada dua unit Pembangkit Listrik Tenaga Surya (PLTS) yang dibangun di Nusa Penida, yaitu unit I dengan kapasitas 32,4 kw dan unit II dengan kapasitas 30 kw. Sumber : PT. PLN Distribusi Bali, 2010 Gambar 2.12 Pembangkit Listrik Tenaga Surya di Nusa Penida Kedua unit PLTS PLN di Nusa Penida mempergunakan sistem PLTS-Grid Connected, yaitu menghubungkan PLTS dengan jaringan listrik PLN (Grid Connected System) pada tegangan 20 kv. Sumber: PT. PLN Distribusi Bali, 2010 Gambar 2.13 Sistem PLTS-Grid Connected di Nusa Penida

19 Komponen-komponen PLTS di Nusa Penida Komponen-komponen PLTS PLN di Nusa Penida yang tidak dilengkapi dengan baterai, terdiri dari panel surya dan inverter. Data teknik panel surya dan inverter yang terpasang untuk PLTS PLN di Nusa Penida dapat dilihat pada tabel 2.1 dan tabel 2.2. Technical Data Tabel 2.1 Data Teknik Panel Surya BP 3150N BP 3150N Maximum Power (P max ) Voltage at P max (V mp ) Current at P max (I mp ) Warranted min P max Short-circuit current (I sc ) Open-circuit voltage (V oc ) Min bypass diode Max series fuse Electrical rating at STC Warranty level 1 Panel terdapat Sumber : PT. PLN Distribusi Bali, W 34,5 V 4,35 A 145,5 W 4,75 A 43,5 V 8 A 15 A 1000W/m sel surya Technical Data Tabel 2.2 Data Teknik Inverter SMC 5000A SMC 5000A Input Values V dc max V dc Mpp I dc max Output Values V ac nom f ac nom P ac nom I ac max Cos φ Sumber : PT. PLN Distribusi Bali, V V 26 A 230 V 50/60 Hz 5000W 21,7 1

20 25 PLTS unit I dengan kapasitas 32,4 kw, dibangun dengan panel surya sebanyak 216 buah panel dan inverter sebanyak 6 buah. Sistem satu fasa (1Ø) PLTS ini terbentuk dari 3 rangkaian (string) yang terhubung paralel, dengan satu rangkaian terdiri dari 12 panel surya yang terhubung secara seri. Jumlah total panel untuk sistem 1Ø adalah sebanyak 36 panel surya yang dilayani oleh satu inverter. Sehingga untuk sistem tiga fasa (3Ø), terdiri dari 108 panel surya dengan 9 rangkaian yang terhubung paralel. PLTS unit II dengan kapasitas 30 kw, dibangun dengan panel (modul) surya sebanyak 198 buah dan inverter sebanyak 6 buah. Sistem satu phasa (1Ø) PLTS ini terbentuk dari 3 rangkaian (string) yang terhubung paralel dengan satu rangkaian terdiri dari 11 panel surya yang terhubung secara seri. Jumlah total panel untuk 1Ø adalah sebanyak 33 panel surya yang dilayani oleh satu inverter. Sehingga untuk sistem tiga phasa (3Ø), terdiri dari 99 panel surya dengan 9 rangkaian yang terhubung paralel Data Produksi PLTS di Nusa Penida Hasil pengamatan produksi harian yang dilakukan pada PLTS Unit II tahun 2010, menunjukkan bahwa PLTS mulai berproduksi pada pukul pagi dengan menghasilkan energi sebesar 0,80 kwh. Menjelang siang hari mulai pukul produksi PLTS meningkat cukup tinggi, yaitu menghasilkan energi sebesar 14 kwh. Produksi pembangkit ini mencapai puncaknya pada saat waktu menunjukkan pukul 12.00, dengan produksi energi sebesar 19 kwh. Kemudian menjelang sore hari mulai pukul kwh produksi PLTS menurun, seiring berkurangnya radiasi matahari ke bumi. PLTS PLN di Nusa Penida tidak

21 26 dilengkapi dengan baterai, sehingga pembangkit ini tidak akan berproduksi saat matahari terbenam. Sumber : PT. PLN Distribusi Bali, 2010 Gambar 2.14 Grafik kwh Produksi Harian PLTS Unit II Tabel 2.3 menunjukkan tingkat persentase kwh produksi yang dihasilkan oleh PLTS PLN Unit II Nusa Penida dalam rentang waktu pukul Tabel 2.3 Tingkat Persentase kwh Produksi Harian PLTS Unit II Waktu Tingkat Persentase (%) Produksi kwh Produksi PLTS ,21 0, ,95 1, ,89 5, ,95 5, ,21 6, ,68 14, ,00 19, ,74 18, ,16 12, ,63 10, ,58 6, ,53 2, ,53 0, Sumber : PT. PLN Distribusi Bali, 2010

22 Data Insolasi Matahari dan Temperatur di Nusa Lembongan Data Insolasi Matahari di Nusa Lembongan Menurut Florida Solar Energy System (2011), pada dasarnya insolasi matahari adalah radiasi matahari rata-rata yang terintegrasi terhadap waktu. Sehingga dapat dinyatakan bahwa insolasi matahari adalah jumlah energi matahari yang diterima oleh suatu permukaan (lokasi) tertentu, yang biasanya dinyatakan dalam satuan kilowatthours per meter persegi (kwh/m2). Data insolasi harian matahari untuk wilayah Nusa Lembongan selama periode tahun 2008 sampai 2010 dapat dilihat pada tabel 2.4. Tabel 2.4 Data Insolasi Harian Matahari di Nusa Lembongan (kwh/m 2 /hari) Bulan Januari 5,49 4,98 5,41 Pebruari 5,74 5,22 5,80 Maret 5,13 5,94 5,89 April 5,56 5,76 4,92 Mei 5,12 4,96 4,29 Juni 5,04 5,20 4,74 Juli 5,16 5,21 5,01 Agustus 5,37 5,75 5,55 September 6,34 5,91 5,64 Oktober 6,36 6,47 5,74 November 5,51 6,60 5,74 Desember 5,08 6,15 4,38 Rata-rata 5,49 5,68 5,26 Sumber : NASA, Data Temperatur Di Nusa Lembongan Temperatur mempengaruhi pengoperasian maksimum panel surya. Setiap kenaikan temperatur 1 o C (dari 25 o C) mengakibatkan total daya yang dihasilkan panel surya berkurang sekitar 0,5%. Hal tersebut menunjukkan bahwa temperatur

23 28 adalah salah satu faktor yang harus diperhatikan dalam memperhitungkan kapasitas daya (Wp) PLTS yang akan dibangkitkan. Data temperatur maksimum ( o C) untuk wilayah Nusa Lembongan selama periode tahun 2008 sampai 2010 dapat dilihat pada tabel 2.5. Sumber : NASA, 2011 Tabel 2.5 Data Temperatur Maksimum di Nusa Lembongan ( o C) Bulan Januari 28,51 27,98 28,59 Pebruari 27,96 28,14 29,22 Maret 27,88 28,49 29,33 April 29,01 29,37 29,19 Mei 28,23 28,33 28,65 Juni 28,75 28,58 28,27 Juli 27,83 28,03 28,09 Agustus 27,88 27,90 28,83 September 29,21 28,71 28,97 Oktober 29,94 29,82 29,34 November 28,68 31,21 29,71 Desember 28,66 30,14 28,56 Rata-rata 28,55 28,89 28, Aspek Biaya Biaya Siklus Hidup (Life Cycle Cost) Biaya siklus hidup suatu sistem adalah semua biaya yang dikeluarkan oleh suatu sistem, selama kehidupannya. Pada sistem PLTS, biaya siklus hidup (LCC) ditentukan oleh nilai sekarang dari biaya total sistem PLTS yang terdiri dari biaya investasi awal, biaya jangka panjang untuk pemeliharaan dan operasional serta biaya penggantian baterai (Kolhe dkk., 2002; Foster dkk., 2010). Biaya siklus hidup (LCC) diperhitungkan dengan rumus sebagai berikut : LCC = C + M PW + R PW...2.8

24 29 Dimana : LCC = Biaya siklus hidup (Life Cycle Cost). C = Biaya investasi awal adalah biaya awal yang dikeluarkan untuk pembelian komponen-komponen PLTS, biaya instalasi dan biaya lainnya misalnya biaya untuk rak penyangga. M PW = Biaya nilai sekarang untuk total biaya pemeliharaan dan operasional selama n tahun atau selama umur proyek. R PW = Biaya nilai sekarang untuk biaya penggantian yang harus dikeluarkan selama umur proyek. Contohnya adalah biaya untuk penggantian baterai. Nilai sekarang biaya tahunan yang akan dikeluarkan beberapa waktu mendatang (selama umur proyek) dengan jumlah pengeluaran yang tetap, dihitung dengan rumus sebagai berikut (Halim, 2009; Al-Qutub, 2010) : Dimana : P = A (1+i)n 1 i(1+i) n P = Nilai sekarang biaya tahunan selama umur proyek. A = Biaya tahunan. i = Tingkat diskonto. n = Umur proyek.

25 Faktor Diskonto Perbandingan yang valid antara penerimaan-penerimaan di masa mendatang dengan pengeluaran dana sekarang adalah hal yang sulit dilakukan karena ada perbedaan nilai waktu uang. Masalah ini dapat diatasi dengan menggunakan konsep nilai waktu uang (Time Value of Money). Berdasarkan konsep tersebut maka penerimaan-penerimaan di masa mendatang didiskontokan ke nilai sekarang sehingga dapat dibandingkan dengan pengeluaran pada saat ini. Faktor diskonto (Discount factor) adalah faktor yang digunakan untuk menilaisekarangkan penerimaan-penerimaan di masa mendatang sehingga dapat dibandingkan dengan pengeluran pada masa sekarang (Halim, 2009). Sedangkan tingkat diskonto yang digunakan untuk menilaisekarangkan penerimaanpenerimaan tersebut dapat berupa tingkat suku bunga pasar (tingkat suku bunga bank). Adapun rumus faktor diskonto adalah sebagai berikut : Dimana : DF = DF = Faktor diskonto. 1 (1+i ) n i n = Tingkat diskonto. = Periode dalam tahun (umur investasi) Biaya Energi (Cost of Energy) Biaya energi merupakan perbandingan antara biaya total per tahun dari sistem dengan energi yang dihasilkannya selama periode yang sama (Wengqiang dkk., 2004). Dilihat dari sisi ekonomi, biaya energi PLTS berbeda dari biaya

26 31 energi untuk pembangkit konvensional (Nafeh, 2009). Hal ini karena biaya energi PLTS, dipengaruhi oleh biaya-biaya seperti : a) Biaya awal (biaya modal) yang tinggi. b) Tidak ada biaya untuk bahan bakar. c) Biaya pemeliharaan dan operasional rendah. d) Biaya penggantian rendah (terutama hanya untuk baterai). Perhitungan biaya energi suatu PLTS ditentukan oleh biaya siklus hidup (LCC), faktor pemulihan modal (CRF) dan kwh produksi tahunan PLTS Faktor Pemulihan Modal (Capital Recovery Factor) Faktor pemulihan modal adalah faktor yang dipergunakan untuk mengkonversikan semua arus kas biaya siklus hidup (LCC) menjadi serangkaian pembayaran atau biaya tahunan dengan jumlah yang sama (Kolhe dkk., 2002 ;Al- Qutub, 2010). Faktor pemulihan modal diperhitungkan dengan rumus sebagai berikut : Dimana : CRF = i(1+i)n (1+i) n CRF = Faktor pemulihan modal. i n = Tingkat diskonto. = Periode dalam tahun (umur investasi).

27 32 Biaya energi (Cost Of Energy ) PLTS diperhitungkan dengan rumus sebagai berikut : COE = LCC x CRF A kwh Dimana : COE CRF = Cost of Energy atau Biaya Energi (Rp/kWh). = Faktor pemulihan modal. A kwh = Energi yang dibangkitkan tahunan (kwh/year) Teknik Analisis Kelayakan Investasi Net Present Value (NPV) Net Present Value (NPV) menyatakan bahwa seluruh aliran kas bersih dinilaisekarangkan atas dasar faktor diskonto (discount factor). Teknik ini menghitung selisih antara seluruh kas bersih nilai sekarang dengan investasi awal yang ditanamkan (Halim, 2009). Untuk menghitung Net Present Value (NPV) dipergunakan rumus sebagai berikut : NPV = n t=1 NCF t (1+i) t II Dimana : NCFt II i n = Net Cash Flow periode tahun ke-1 sampai tahun ke-n. = Investasi awal (Initial Investment). = Tingkat diskonto. = Periode dalam tahun (umur investasi). Kriteria pengambilan keputusan apakah usulan investasi layak diterima atau layak ditolak adalah sebagai berikut :

28 33 a) Investasi dinilai layak, apabila Net Present Value (NPV) bernilai positif (> 0). b) Investasi dinilai tidak layak, apabila Net Present Value (NPV) bernilai negatif (< 0) Profitability Index (PI) Profitability Index merupakan perbandingan antara seluruh kas bersih nilai sekarang dengan investasi awal. Teknik ini juga sering disebut dengan model rasio manfaat biaya (benefit cost ratio). Teknik Profitability Index dihitung dengan rumus sebagai berikut : PI = n t=1 NCF t (1+i) t II Dimana : NCFt II i n = Net Cash Flow periode tahun ke-1 sampai tahun ke-n. = Investasi awal (Initial Investment). = Tingkat diskonto. = Periode dalam tahun (umur investasi). Kriteria pengambilan keputusan apakah usulan investasi layak diterima atau layak ditolak adalah sebagai berikut : a) Investasi dinilai layak, apabila Profitability Index (PI) bernilai lebih besar dari satu (>1). b) Investasi dinilai tidak layak, apabila Profitability Index (PI) bernilai lebih kecil dari satu (< 1).

29 Discounted Payback Period (DPP) Payback Period adalah periode lamanya waktu yang dibutuhkan untuk mengembalikan nilai investasi melalui penerimaan-penerimaan yang dihasilkan oleh proyek (investasi). Sedangkan Discounted Payback Period adalah periode pengembalian yang didiskontokan. Discounted Payback Period (DPP) dapat dicari dengan menghitung berapa tahun kas bersih nilai sekarang (PVNCF) kumulatif yang ditaksir akan sama dengan investasi awal. Kriteria pengambilan keputusan apakah usulan investasi layak diterima atau layak ditolak adalah : a) Investasi dinilai layak, apabila DPP memiliki periode waktu lebih pendek dari umur proyek (periode cutoff). b) Investasi dinilai tidak layak, apabila DPP memiliki periode waktu lebih panjang dari umur proyek (periode cutoff). 2.9 Konsumsi Bahan Bakar Spesifik (Specific Fuel Consumption) Konsumsi bahan bakar spesifik adalah parameter unjuk kerja mesin yang berhubungan langsung dengan nilai ekonomis sebuah mesin. Dengan menggunakan parameter ini maka jumlah bahan bakar yang dibutuhkan untuk menghasilkan sejumlah daya dalam selang waktu tertentu dapat dihitung. Berdasarkan SPLN No. 80 tahun 1989, untuk menghitung konsumsi bahan bakar spesifik (SFC) dipergunakan rumus sebagai berikut : SFC B = Q f kwh B

30 35 Dimana : SFC B = Konsumsi bahan bakar spesifik (liter/kwh). Qf = Jumlah bahan bakar yang dipakai (liter). kwh B = Jumlah kwh yang dibangkitkan generator (kwh) Regulasi Energi Terbarukan Regulasi Energi Terbarukan Berbagai Negara di Dunia Regulasi untuk mempromosikan energi terbarukan telah ada di beberapa negara pada tahun 1980 hingga awal 1990-an, tetapi regulasi energi terbarukan mulai banyak muncul di berbagai negara selama periode (REN21, 2011). Untuk meningkatkan peranan energi terbarukan pada bauran konsumsi energi finalnya, maka beberapa negara di dunia telah menetapkan persentase target kebijakan penggunaan energi terbarukan hingga tahun Tabel 2.6. menunjukkan target kebijakan energi terbarukan pada beberapa negara di dunia. Upaya lain yang dilakukan oleh berbagai negara di dunia untuk mendorong pengembangan dan pemanfaatan sumber energi terbarukan adalah dengan menerapkan regulasi (kebijakan) Feed-in Tariff. Mekanisme kebijakan ini dirancang dengan menempatkan kewajiban kepada perusahaan listrik negara untuk membeli listrik dari produsen energi terbarukan dengan harga yang ditetapkan oleh pemerintah setempat. Tujuan dari kebijakan Feed-in Tariff adalah untuk memberikan kepastian harga dan kompensasi biaya dalam kontrak jangka panjang kepada produsen energi terbarukan, sehingga hal tersebut akan membantu membiayai investasi energi terbarukan yang telah dilakukan. Di beberapa negara penetapan Feed-in Tariff biasanya dilakukan dengan berdasarkan biaya

31 36 pembangkitan dari setiap penggunaan teknologi yang berbeda dan kualitas sumber daya lokal. Tabel 2.6 Target Energi Nasional Sumber Terbarukan 2020 di Berbagai Negara Share of energy from renewable sources in final consumption of energy, 2005 Target for share for energy from renewable sources in final consumption of energy, 2020 Belgium 2,2 % 13 % Bulgaria 9,4 % 16 % The Czech Republic 6,1 % 13 % Denmark 17,0 % 30 % Germany 5,8 % 18 % Estonia 18,0 % 25 % Ireland 3,1 % 16 % Greece 6,9 % 18 % Spain 8,7 % 20 % France 10,3 % 23 % Italy 5,2 % 17 % Cyprus 2,9 % 13 % Latvia 34,9 % 42 % Lithuania 15,0 % 23 % Luxembourg 0,9 % 11 % Hungary 4,3 % 13 % Malta 0,0 % 10 % The Netherland 2,4 % 14 % Austria 23,3 % 34 % Poland 7,2 % 15 % Portugal 20,5 % 31 % Romania 17,8 % 24 % Slovenia 16,0 % 25 % The Slovak Republic 6,7 % 14 % Finland 28,5 % 38 % Sweden 39,8 % 49 % United Kingdom 1,3 % 15 % China 8 % 15 % Egypt 4,2 % 14 % Jordan 1,1 % 10 % Mali - 15 % Sumber : European Renewable Energy Council (2011) dan REN21, 2011

32 37 Jerman adalah salah satu negara yang paling sukses menerapkan Feed-in Tariff dalam pengembangan energi terbarukan. Negara ini mulai menerapkan kebijakan Feed-in Tariff pada tahun 1990, akan tetapi kebijakan yang ditetapkan saat itu belum efektif untuk mendorong pengembangan sumber energi terbarukan dengan teknologi mahal seperti energi surya fotovoltaik. Feed-in Tariff tahun 1990 tersebut kemudian mengalami restrukturisasi pada tahun 2000, dengan beberapa perubahan seperti : harga pembelian energi ditetapkan berdasarkan biaya pembangkitan dan jaminan pembelian yang diperpanjang untuk periode 20 tahun. Karena terbukti efektif mempercepat pengembangan sumber energi terbarukan, maka Feed-in Tariff tahun 2000 ini kemudian diamandemenkan oleh pemerintah Jerman pada tahun Energi surya fotovoltaik adalah salah satu energi terbarukan yang mengalami perkembangan sangat pesat di Jerman. Ini terlihat dari besarnya peningkatan kapasitas daya terpasang energi surya fotovoltaik di negara tersebut, yaitu dari 2,6 GW di tahun 2006 menjadi 9,8 GW di tahun 2009 (REN21, 2011). Tabel 2.7 menunjukkan besarnya Feed-in Tariff yang diterapkan oleh pemerintah Jerman untuk energi surya fotovoltaik. Tabel 2.7 Tarif Energi Surya Fotovoltaik di Jerman Letak Pemasangan Jaminan Tahun Pembelian Tarif ($/kwh) Berdiri Bebas (Freestanding) 20 0,542 Di atap ( < 30kW ) 20 0,703 Di atap ( < 100 kw ) 20 0,688 Di atap ( > 100 kw ) 20 0,661 Sumber : Peter dan Weis, 2008

33 38 Pemberian subsidi terhadap industri energi terbarukan di beberapa negara, telah membuat pertumbuhan energi ini menjadi cukup signifikan. Salah satu energi terbarukan yang saat ini mengalami perkembangan cukup pesat adalah energi surya. Pemberian subsidi terhadap industri energi surya telah membuat penurunan biaya produksi untuk per Wp (Wattpeak). Ini terlihat dari penurunan harga per Wattpeak yang berlaku di beberapa negara, seperti USA (US $ 1,76/Wp), Spanyol, Jerman dan Inggris (US $ 1,68/Wp), Jepang (US $ 2,04/ Wp), serta Cina dan Taiwan (US $ 1,68/ Wp) (Astawa, 2011). Selain dengan sistem Feed-in Tariff, beberapa negara juga menerapkan aturan subsidi dengan sistem kredit seperti sistem kredit untuk perumahan. Bantuan pendanaan sistem ini berasal dari pihak ketiga seperti bank, dengan jangka waktu tertentu. Adanya program insentif ini, membuat konsumen dapat menikmati harga energi surya dengan investasi awal yang tidak memberatkan. Biasanya penerapan sistem ini disertai dengan program Feed-in Tariff sehingga waktu pelunasan kredit terbantukan dengan adanya pemasukan dari penjualan listrik ke perusahaan listrik, yang pada akhirnya akan mempersingkat masa pembayaran atau meringankan pengeluaran. Program ini sudah cukup mapan ditemui di USA (negara bagian California) maupun Uni Eropa seperti, Jerman, Belanda, Perancis dan Spanyol. Di negara berkembang, program kredit ini baru tercatat telah dikembangkan oleh negara Bangladesh. Program ini bertujuan untuk memberdayakan masyarakat pedesaan atau daerah yang terisolir jaringan listrik (Tenaga surya, 2011).

34 Regulasi Energi Terbarukan di Indonesia Pengembangan energi baru dan terbarukan (EBT) di Indonesia, mengacu kepada Peraturan Presiden (Perpres) No. 5 tahun 2006 tentang Kebijakan Energi Nasional. Dalam Perpres disebutkan kontribusi EBT dalam bauran energi primer nasional pada tahun 2025 adalah sebesar 17% dengan komposisi Bahan Bakar Nabati sebesar 5%, Panas Bumi 5%, Biomasa, Nuklir, tenaga Air, tenaga Surya, dan tenaga Angin sebesar 5% serta batubara yang dicairkan sebesar 2% (ESDM, 2011). Kebijakan Feed-in Tariff (FiT) di Indonesia sudah mulai diterapkan dalam skala terbatas sejak tahun 2002, yaitu melalui Kepmen ESDM No K/30/MEM/2002. Kepmen ini mengatur tentang Pedoman Pengusahaan Pembangkit Tenaga Listrik Skala Kecil Tersebar (PSK Tersebar, kurang dari 1 MW), badan usaha atau koperasi dapat menjual listrik kepada PLN dari sumber energi terbarukan dengan harga tertentu. Kepmen ini kemudian diperbaharui pada tahun 2009 dengan dikeluarkannya Peraturan Menteri ESDM Nomor 31 Tahun 2009 tentang harga pembelian tenaga listrik oleh PT. PLN (Persero) dari pembangkit tenaga listrik yang menggunakan energi terbarukan skala kecil dan menengah atau kelebihan tenaga listrik. FiT ini mewajibkan perusahaan jaringan listrik nasional untuk membeli listrik yang dihasilkan dari sumber-sumber energi terbarukan seperti energi surya, energi angin, biomassa, panas bumi maupun air. Pemerintah Indonesia melalui Peraturan Menteri ESDM No. 31 Tahun 2009 telah menetapkan kebijakan FiT untuk energi terbarukan dengan harga Rp 656/kWh jika terinterkoneksi

35 40 pada tegangan menengah atau Rp 1.004/kWh jika terinterkoneksi pada tegangan rendah (ESDM, 2011). Dalam draft Rancangan Peraturan Presiden Republik Indonesia tentang Kebijakan Energi Nasional (KEN) , pemerintah membuat kebijakan terkait energi surya. Kebijakan-kebijakan tersebut diantaranya menerapkan kebijakan penggunaan sel surya pada pemakai tertentu seperti industri besar, gedung komersial, rumah mewah, serta PLN. Sejalan dengan itu, pemerintah juga akan menggalakkan industri sistem dan komponen peralatan instalasi Pembangkit Listrik Tenaga Surya (PLTS), mewujudkan keekonomian PLTS, meningkatkan penguasaan teknologi PLTS dan surya termal dalam negeri melalui penelitian dan pengembangan serta pembelian lisensi (ESDM, 2011) Analisis SWOT Analisis SWOT adalah suatu metode perencanaan strategis yang digunakan untuk mengevaluasi faktor-faktor yang menjadi kekuatan (Strengths), kelemahan (Weaknesses), peluang (Opportunities), dan ancaman (Threats) yang mungkin terjadi dalam mencapai suatu tujuan dari kegiatan proyek atau usaha, institusi atau lembaga dalam skala yang lebih luas. Untuk keperluan tersebut diperlukan kajian dari aspek lingkungan baik yang berasal dari lingkungan internal maupun eskternal yang mempengaruhi pola strategi kegiatan proyek, institusi atau lembaga dalam mencapai tujuan. Analisis SWOT dilakukan dalam suatu matrik, yang memaparkan secara jelas bagaimana peluang dan ancaman eksternal yang dihadapi oleh kegiatan proyek atau usaha dapat disesuaikan dengan kekuatan dan kelemahan yang

36 41 dimilikinya. Matrik ini dapat menghasilkan empat set kemungkinan alternatif strategis seperti ditunjukkan pada gambar berikut ini. Internal Strategic Factors Analysis External ( IFAS) Strategic Factors Analysis (EFAS) OPPORTUNIES (O) STRENGTHS (S) Tentukan faktor-faktor kekuatan internal STRATEGI SO WEAKNESSES (W) Tentukan faktor-faktor kelemahan internal STRATEGI WO Tentukan faktor eksternal peluang Ciptakan strategi yang menggunakan kekuatan untuk memanfaatkan peluang Ciptakan strategi yang meminimalkan kelemahan untuk memanfaatkan peluang TREATHS (T) STRATEGI ST STRATEGI WT Tentukan faktor ancaman eksternal Ciptakan strategi yang menggunakan kekuatan untuk mengatasi ancaman Ciptakan strategi yang meminimalkan kelemahan dan menghindari ancaman Sumber : Rangkuti, 2009 Gambar 2.15 Matrik SWOT

BAB III METODE PENELITIAN. Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS)

BAB III METODE PENELITIAN. Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS) 42 BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian tentang pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS) sebagai catu daya tambahan dilaksanakan pada industri perhotelan di kawasan

Lebih terperinci

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN I.W.G.A Anggara 1, I.N.S. Kumara 2, I.A.D Giriantari 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Hotel Bali Hai Tide Huts merupakan salah satu hotel klasifikasi melati (non

BAB IV HASIL DAN PEMBAHASAN. Hotel Bali Hai Tide Huts merupakan salah satu hotel klasifikasi melati (non 48 BAB IV HASIL DAN PEMBAHASAN 4.1 Gambaran Umum Hotel Bali Hai Tide Huts Hotel Bali Hai Tide Huts merupakan salah satu hotel klasifikasi melati (non bintang) yang terletak di kawasan wisata Nusa Lembongan

Lebih terperinci

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal

Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Perencanaan Pembangkit Listrik Tenaga Surya Secara Mandiri Untuk Rumah Tinggal Sandro Putra 1) ; Ch. Rangkuti 2) 1), 2) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Trisakti E-mail: xsandroputra@yahoo.co.id

Lebih terperinci

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN PERANCANGAN HYBRID SISTEM PHOTOVOLTAIC DI GARDU INDUK BLIMBING-MALANG Irwan Yulistiono 1, Teguh Utomo, Ir., MT. 2, Unggul Wibawa, Ir., M.Sc. 3 ¹Mahasiswa Teknik Elektro, ² ³Dosen Teknik Elektro, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kawasan Agropolitan Provinsi Gorontalo Agropolitan terdiri dari kata Agro (Pertanian) dan Politan (Polis = Kota), sehingga agropolitan dapat diartikan sebagai kota pertanian

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 24 BAB III METODE PENELITIAN 3.1 PENDAHULUAN Metode penelitian memuat informasi mengenai tempat dan waktu penelitian, metode pengumpulan data, jenis data yang dikumpulkan, tahapan penelitian, studi literatur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA 2.1 Kebutuhan Listrik Bagi Industri Pariwisata Industri pariwisata adalah kumpulan usaha pariwisata yang saling terkait dalam rangka menghasilkan barang dan/atau jasa bagi pemenuhan

Lebih terperinci

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED TMLEnergy TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat Jl Soekarno Hatta no. W: 541 www.tmlenergy.co.id C, Bandung, Jawa Barat W: www.tmlenergy.co.id E: marketing@tmlenergy.co.id E: marketing@tmlenergy.co.id

Lebih terperinci

Sistem PLTS Off Grid Komunal

Sistem PLTS Off Grid Komunal PT. REKASURYA PRIMA DAYA Jl. Terusan Jakarta, Komp Ruko Puri Dago no 342 kav.31, Arcamanik, Bandung 022-205-222-79 Sistem PLTS Off Grid Komunal PREPARED FOR: CREATED VALID UNTIL 2 2 mengapa menggunakan

Lebih terperinci

PERANCANGAN PHOTOVOLTAIC STAND ALONE SEBAGAI CATU DAYA PADA BASE TRANSCEIVER STATION TELEKOMUNIKASI DI PULAU NUSA PENIDA

PERANCANGAN PHOTOVOLTAIC STAND ALONE SEBAGAI CATU DAYA PADA BASE TRANSCEIVER STATION TELEKOMUNIKASI DI PULAU NUSA PENIDA PERANCANGAN PHOTOVOLTAIC STAND ALONE SEBAGAI CATU DAYA PADA BASE TRANSCEIVER STATION TELEKOMUNIKASI DI PULAU NUSA PENIDA IP. Eka Indrawan, Rukmi Sari Hartati, Linawati Manajemen Energi Pascasarjana Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Hotel merupakan bentuk usaha akomodasi pariwisata dengan perkembangan yang cukup pesat di Indonesia. Jumlah hotel terus bertambah setiap tahunnya dan menyumbang devisa

Lebih terperinci

Materi Sesi Info Listrik Tenaga Surya. Politeknik Negeri Malang, Sabtu 12 November 2016 Presenter: Azhar Kamal

Materi Sesi Info Listrik Tenaga Surya. Politeknik Negeri Malang, Sabtu 12 November 2016 Presenter: Azhar Kamal Materi Sesi Info Listrik Tenaga Surya Politeknik Negeri Malang, Sabtu 12 November 2016 Presenter: Azhar Kamal Pengantar Presentasi ini dipersiapkan oleh Azhar Kamal untuk acara Sesi Info Listrik Tenaga

Lebih terperinci

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim

pusat tata surya pusat peredaran sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Ari Susanti Restu Mulya Dewa 2310100069 2310100116 pusat peredaran pusat tata surya sumber energi untuk kehidupan berkelanjutan menghangatkan bumi dan membentuk iklim Tanpa matahari, tidak akan ada kehidupan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Sel Surya Sel surya di definisikan sebagai teknologi yang menghasilkan listrik dc dari suatu bahan semikonduktor ketika dipaparkan oleh cahaya. Selama bahan semikonduktor tersebut

Lebih terperinci

BAB I PENDAHULUAN. perhatian utama saat ini adalah terus meningkatnya konsumsi energi di Indonesia.

BAB I PENDAHULUAN. perhatian utama saat ini adalah terus meningkatnya konsumsi energi di Indonesia. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dewasa ini, energi listrik merupakan kebutuhan penting dalam kelangsungan hidup manusia. Masalah di bidang tersebut yang sedang menjadi perhatian utama saat

Lebih terperinci

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN

12/18/2015 ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN ENERGI BARU TERBARUKAN Demi matahari dan cahaya siangnya. (QS Asy Syams :1) Dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-nya manzilah-manzilah (tempattempat) bagi perjalanan bulan itu, supaya kamu

Lebih terperinci

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ G.17 DESAIN SISTEM HIBRID PHOTOVOLTAICBATERAI MENGGUNAKAN BIDIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ Soedibyo 1*, Dwiana Hendrawati 2 1 Jurusan Teknik Elektro,

Lebih terperinci

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL

BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL BAB III PERANCANGAN SISTEM PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) SEBAGAI CATU DAYA PADA BTS MAKROSEL TELKOMSEL 3.1 Survey Lokasi Langkah awal untuk merancang dan membuat Pembangkit Listrik Tenaga Surya

Lebih terperinci

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK

PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK PENGARUH FILTER WARNA KUNING TERHADAP EFESIENSI SEL SURYA ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh filter warna kuning terhadap efesiensi Sel surya. Dalam penelitian ini menggunakan metode

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Dari hasil pengamatan dan pencatatan dari kwh meter pada PLTS bisa dilakukan perhitungan biaya efisiensi yang dihasilkan dari penggunaan PLTS dari jumlah kwh penggunaan

Lebih terperinci

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER 3.1 Deskripsi Plant Sistem solar tracker yang penulis buat adalah sistem yang bertujuan untuk mengoptimalkan penyerapan cahaya matahari pada

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN Diajukan Oleh: ABDUR ROZAQ D 400 100 051 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

5 HASIL DAN PEMBAHASAN

5 HASIL DAN PEMBAHASAN 5 HASIL DAN PEMBAHASAN 5.1 Rangkaian Elektronik Lampu Navigasi Energi Surya Rangkaian elektronik lampu navigasi energi surya mempunyai tiga komponen utama, yaitu input, storage, dan output. Komponen input

Lebih terperinci

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER Oleh: Muhammad Anwar Widyaiswara BDK Manado ABSTRAK Penelitian ini bertujuan untuk mengetahui perbedaan

Lebih terperinci

BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG

BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG BAB III PRINSIP KERJA ALAT DAN RANGKAIAN PENDUKUNG 3.1 RANGKAIAN SOLAR HOME SISTEM Secara umum sistem pemabangkit daya listrik fotovoltaik dapat dibedakan atas 2 (dua) jenis[2]: a. Sistem langsung, yaitu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dengan meningkatnya kebutuhan akan energi listrik yang terus meningkat dan semakin menipisnya cadangan minyak bumi maka dibutuhkan pula sumber-sumber energi listrik

Lebih terperinci

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING Oleh : FARHAN APRIAN NRP. 2207 100 629 Pembimbing : Prof. Dr. Ir. Mochamad Ashari,

Lebih terperinci

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA

INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA INTENSITAS CAHAYA MATAHARI TERHADAP DAYA KELUARAN PANEL SEL SURYA Hasyim Asy ari 1, Jatmiko 2, Angga 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol

Lebih terperinci

BAB I PENDAHULUAN. Indonesia adalah negara kepulauan yang terdiri dari pulau

BAB I PENDAHULUAN. Indonesia adalah negara kepulauan yang terdiri dari pulau 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah negara kepulauan yang terdiri dari 17.504 pulau (Wikipedia, 2010). Sebagai Negara kepulauan, Indonesia mengalami banyak hambatan dalam pengembangan

Lebih terperinci

KAJIAN PEMANFAATAN STAND ALONE PHOTOVOLTAIC SYSTEM UNTUK PENERANGAN JALAN UMUM DI PULAU NUSA PENIDA. Abstrak

KAJIAN PEMANFAATAN STAND ALONE PHOTOVOLTAIC SYSTEM UNTUK PENERANGAN JALAN UMUM DI PULAU NUSA PENIDA. Abstrak Kajian Pemanfaatan Stand Alone I Wayan Yudi Martha Wiguna, dkk KAJIAN PEMANFAATAN STAND ALONE PHOTOVOLTAIC SYSTEM UNTUK PENERANGAN JALAN UMUM DI PULAU NUSA PENIDA I.W. Yudi Martha Wiguna, W. G. Ariastina,

Lebih terperinci

BAB IV ANALISA DAN KOMBINASI SOLAR HOME SYSTEM DENGAN LISTRIK PLN

BAB IV ANALISA DAN KOMBINASI SOLAR HOME SYSTEM DENGAN LISTRIK PLN SUPLY PLN SHS MCB 2 MCB 1 BEBAN Gambar 3.10 Panel daya (kombinasi solar home system dengan listrik PLN) BAB IV ANALISA DAN KOMBINASI SOLAR HOME SYSTEM DENGAN LISTRIK PLN 4.1 ANALISA SOLAR HOME SYSTEM Analisa

Lebih terperinci

PANEL SURYA dan APLIKASINYA

PANEL SURYA dan APLIKASINYA PANEL SURYA dan APLIKASINYA Suplai energi surya dari sinar matahari yang diterima oleh permukaan bumi sebenarnya sangat luar biasa besarnya yaitu mencapai 3 x 10 24 joule pertahun. Jumlah energi sebesar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan menjelaskan pengertian energi surya, potensi energi surya di Indonesia, teori tentang panel surya, komponen - komponen utama Pembangkit Listrik

Lebih terperinci

PERENCANAAN SISTEM FOTOVOLTAIK BAGI PELANGGAN RUMAH TANGGA DI KOTA PANGKALPINANG

PERENCANAAN SISTEM FOTOVOLTAIK BAGI PELANGGAN RUMAH TANGGA DI KOTA PANGKALPINANG PERENCANAAN SISTEM FOTOVOLTAIK BAGI PELANGGAN RUMAH TANGGA DI KOTA PANGKALPINANG Wahri Sunanda 1, Rika Favoria Gusa 2 Teknik Elektro Fakultas Teknik Universitas Bangka Belitung 1,2 wahrisunanda@gmail.com

Lebih terperinci

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc. Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control Andi Novian L. 2210 106 027 Dosen Pembimbing : Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum

Lebih terperinci

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT Mujiburrahman Fakultas Teknik Universitas Islam Kalimantan MAAB Jl. Adhyaksa No 2 Kayu Tangi Banjarmasin Email : Mujiburrahman.4646@gmail.com

Lebih terperinci

PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS

PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS PERENCANAAN PERKAMPUNGAN SURYA (SOLAR RURAL) 20 kwp SISTEM SENTRALISASI DI KABUPATEN BENGKALIS Zulkifli Teknik Mesin Politeknik Bengkalis Jl. Batin Alam Sei-Alam, Bengkalis -Riau zulkifli@polbeng.ac.id

Lebih terperinci

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PERKOTAAN Liem Ek Bien, Ishak Kasim & Wahyu Wibowo* Dosen-Dosen Jurusan Teknik Elektro - Fakultas Teknologi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Bab ini meliputi waktu dan tempat penelitian, alat dan bahan, rancangan alat, metode penelitian, dan prosedur penelitian. Pada prosedur penelitian akan dilakukan beberapa

Lebih terperinci

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk energi yang lain. Saat ini kebutuhan energi, khususnya energi listrik terus meningkat dengan pesat,

Lebih terperinci

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System

P R O P O S A L. Pembangkit Listrik Tenaga Surya (PLTS), LPG Generator System P R O P O S A L CV. SURYA SUMUNAR adalah perusahaan swasta yang bergerak dibidang pengadaan dan penjualan energi listrik dengan menggunakan tenaga surya (matahari) sebagai sumber energi utamanya. Kami

Lebih terperinci

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL

KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL KAJIAN EKONOMIS ENERGI LISTRIK TENAGA SURYA DESA TERTINGGAL TERPENCIL Oleh Aditya Dewantoro P (1) Hendro Priyatman (2) Universitas Muhammadiyah Pontianak Fakultas Teknik, Jurusan Teknik Mesin Tel/Fax 0561

Lebih terperinci

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PEDESAAN

PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PEDESAAN PERANCANGAN SISTEM HIBRID PEMBANGKIT LISTRIK TENAGA SURYA DENGAN JALA-JALA LISTRIK PLN UNTUK RUMAH PEDESAAN Ahmad Munawar* Mahasiswa Jurusan Teknik Elektro - Fakultas Teknik Elektro Universitas Negeri

Lebih terperinci

KAJIAN ASPEK TEKNIS DAN ASPEK BIAYA INVESTASI PROYEK PEMBANGKIT LISTRIK TENAGA SURYA PADA ATAP BETON GEDUNG

KAJIAN ASPEK TEKNIS DAN ASPEK BIAYA INVESTASI PROYEK PEMBANGKIT LISTRIK TENAGA SURYA PADA ATAP BETON GEDUNG KAJIAN ASPEK TEKNIS DAN ASPEK BIAYA INVESTASI PROYEK PEMBANGKIT LISTRIK TENAGA SURYA PADA ATAP BETON GEDUNG (Studi Kasus RS Mitra Keluarga Kenjeran Surabaya) Subekti Yuliananda Fakultas Teknik, Universitas

Lebih terperinci

ANALISIS PELUANG PENGHEMATAN EKONOMI SISTEM FOTOVOLTAIK TERHUBUNG JARINGAN LISTRIK PADA KAWASAN PERUMAHAN DI KOTA PANGKAL PINANG

ANALISIS PELUANG PENGHEMATAN EKONOMI SISTEM FOTOVOLTAIK TERHUBUNG JARINGAN LISTRIK PADA KAWASAN PERUMAHAN DI KOTA PANGKAL PINANG ANALISIS PELUANG PENGHEMATAN EKONOMI SISTEM FOTOVOLTAIK TERHUBUNG JARINGAN LISTRIK PADA KAWASAN PERUMAHAN DI KOTA PANGKAL PINANG Wahri Sunanda, Rika Favoria Gusa Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

ANALISIS TEKNIK DAN EKONOMI POWER HIBRIDA (PHOTOVOLTAIC-PLN) DI JURUSAN ELEKTRO FAKULTAS TEKNIK BRAWIJAYA MALANG

ANALISIS TEKNIK DAN EKONOMI POWER HIBRIDA (PHOTOVOLTAIC-PLN) DI JURUSAN ELEKTRO FAKULTAS TEKNIK BRAWIJAYA MALANG ANALISIS TEKNIK DAN EKONOMI POWER HIBRIDA (PHOTOVOLTAIC-PLN) DI JURUSAN ELEKTRO FAKULTAS TEKNIK BRAWIJAYA MALANG Liky Saputra Mulia¹, Ir. Mahfud Shidiq, MT.², Ir. Soeprapto, MT.³ ¹Mahasiswa Teknik Elektro,

Lebih terperinci

BAB I PENDAHULUAN. kebijakan dan target untuk mendukung pengembangan dan penyebaran teknologi

BAB I PENDAHULUAN. kebijakan dan target untuk mendukung pengembangan dan penyebaran teknologi BAB I PENDAHULUAN I.1 Latar Belakang Pengembangan dan pemanfaatan energi terbarukan masih sangat bergantung pada iklim kebijakan yang kuat. Di tahun 2013 terdapat sejumlah peningkatan kebijakan dan target

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pembangkit-pembangkit tenaga listrik yang ada saat ini sebagian besar masih mengandalkan kepada sumber energi yang tidak terbarukan dalam arti untuk mendapatkannya

Lebih terperinci

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR

PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR PENINGKATAN EFISIENSI MODUL SURYA 50 WP DENGAN PENAMBAHAN REFLEKTOR Muchammad dan Hendri Setiawan Jurusan Teknik Mesin Fakultas Teknik Universitas Diponegoro Kampus Undip Tembalang, Semarang 50275, Indonesia

Lebih terperinci

STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL

STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL STUDI ORIENTASI PEMASANGAN PANEL SURYA POLY CRYSTALLINE SILICON DI AREA UNIVERSITAS RIAU DENGAN RANGKAIAN SERI-PARALEL Ridho Ravita Wardy, Krisman, Cahyo Budi Nugroho Mahasiswa Program Studi S1 Fisika

Lebih terperinci

PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN

PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN PENGUJIAN PANEL FOTOVOLTAIK DENGAN VARIASI SUDUT KEMIRINGAN Dohardo P.H. Simanullang 1, Azriyenni Azhari Zakri 2 1 TeknikElektro S1, FakultasTeknik, Universitas Riau 2 Dosen JurusanTeknik Elektro, FakultasTeknik,

Lebih terperinci

BAB V KESIMPULAN DAN SARAN. Hasil analisa deskriptif kualitatif ketujuh aspek yang diteliti terhadap

BAB V KESIMPULAN DAN SARAN. Hasil analisa deskriptif kualitatif ketujuh aspek yang diteliti terhadap BAB V KESIMPULAN DAN SARAN V.I Kesimpulan Hasil analisa deskriptif kualitatif ketujuh aspek yang diteliti terhadap industri manufaktur fotovoltaik di China dapat disimpulkan bahwa China sangat maju dalam

Lebih terperinci

ReOn. [residential on-grid photovoltaic system] aplikasi: rumah, perumahan, gedung komersial, fasilitas umum

ReOn. [residential on-grid photovoltaic system] aplikasi: rumah, perumahan, gedung komersial, fasilitas umum image source : www.pvsolarreport.com ReOn [residential on-grid photovoltaic system] pembangkit listrik tenaga surya on-grid (terkoneksi jala-jala) solusi alternatif sumber energi listrik ramah lingkungan

Lebih terperinci

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP MAKALAH SEMINAR KERJA PRAKTEK SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Novio Mahendra Purnomo (L2F008070) 1, DR. Ir. Joko Windarto,MT. 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik

Lebih terperinci

Latar Belakang dan Permasalahan!

Latar Belakang dan Permasalahan! Latar Belakang dan Permasalahan!! Sumber energi terbarukan sangat bergantung pada input yang fluktuatif sehingga perilaku sistem tersebut tidak mudah diprediksi!! Profil output PV dan Load yang jauh berbeda

Lebih terperinci

ANALISIS KEEKONOMIAN PENERAPAN PEMBANGKIT LISTRIK TENAGA SURYA PADA SISTEM KETENAGALISTRIKAN NIAS

ANALISIS KEEKONOMIAN PENERAPAN PEMBANGKIT LISTRIK TENAGA SURYA PADA SISTEM KETENAGALISTRIKAN NIAS ISSN 1978-2365 ANALISIS KEEKONOMIAN PENERAPAN PEMBANGKIT LISTRIK TENAGA SURYA PADA SISTEM KETENAGALISTRIKAN NIAS THE ECONOMIC ANALYSIS OF SOLAR SYSTEM POWER PLANT IMPLEMENTATION IN NIAS ELECTRICAL SYSTEM

Lebih terperinci

Perancangan dan Realisasi Kebutuhan Kapasitas Baterai untuk Beban Pompa Air 125 Watt Menggunakan Pembangkit Listrik Tenaga Surya

Perancangan dan Realisasi Kebutuhan Kapasitas Baterai untuk Beban Pompa Air 125 Watt Menggunakan Pembangkit Listrik Tenaga Surya Jurnal Reka Elkomika 2337-439X Juli 2015 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.3 No.2 Perancangan dan Realisasi Kebutuhan Kapasitas Baterai untuk Beban Pompa Air 125 Watt

Lebih terperinci

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2

ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK. Subandi 1, Slamet Hani 2 ENERGI TERBARUKAN DENGAN MEMANFAATKAN SINAR MATAHARI UNTUK PENYIRAMAN KEBUN SALAK Subandi 1, Slamet Hani 2 1,2 Jurusan Teknik Elektro Institut Sains & Teknologi AKPRIND Yogyakarta Kampus ISTA Jl. Kalisahak

Lebih terperinci

Aspek Ekonomi dan Keuangan. Pertemuan 11

Aspek Ekonomi dan Keuangan. Pertemuan 11 Aspek Ekonomi dan Keuangan Pertemuan 11 Aspek Ekonomi dan Keuangan Aspek ekonomi dan keuangan membahas tentang kebutuhan modal dan investasi yang diperlukan dalam pendirian dan pengembangan usaha yang

Lebih terperinci

DESAIN SISTEM PEMBANGKIT LISTRIK TENAGA HYBRID MICROHYDRO PV ARRAY (STUDI KASUS DUSUN SADAP BANGKA TENGAH)

DESAIN SISTEM PEMBANGKIT LISTRIK TENAGA HYBRID MICROHYDRO PV ARRAY (STUDI KASUS DUSUN SADAP BANGKA TENGAH) DESAIN SISTEM PEMBANGKIT LISTRIK TENAGA HYBRID MICROHYDRO PV ARRAY (STUDI KASUS DUSUN SADAP BANGKA TENGAH) Rizki Malindo@Akie Iskandar akieiskandar93@gmail.com Teknik Elektro, Universitas Bangka Belitung,

Lebih terperinci

Tulisan ini adalah catatan yang dapat dibagikan dari hasil pertemuan tersebut.

Tulisan ini adalah catatan yang dapat dibagikan dari hasil pertemuan tersebut. Transisi energi Indonesia untuk pencapaian target energi baru dan terbarukan dalam bauran energi primer tahun 2025: belajar dari program Energiewende di Jerman Oleh: Erina Mursanti. Ditulis September 2015.

Lebih terperinci

BAB II TINJAUAN UMUM

BAB II TINJAUAN UMUM BAB II TINJAUAN UMUM 2.1 Solar Cell Solar Cell atau panel surya adalah suatu komponen pembangkit listrik yang mampu mengkonversi sinar matahari menjadi arus listrik atas dasar efek fotovoltaik. untuk mendapatkan

Lebih terperinci

BAB I PENDAHULUAN. Dengan semakin meningkatnya penggunaan energi sejalan dengan

BAB I PENDAHULUAN. Dengan semakin meningkatnya penggunaan energi sejalan dengan BAB I PENDAHULUAN 1.1. LATAR BELAKANG PERMASALAHAN Dengan semakin meningkatnya penggunaan energi sejalan dengan berkembangnya perekonomian dan industri, maka disadari pula pentingnya penghematan energi

Lebih terperinci

STUDI KELAYAKAN PEMBANGKIT LISTRIK TENAGA HIBRIDA DI PULAU PANJANG

STUDI KELAYAKAN PEMBANGKIT LISTRIK TENAGA HIBRIDA DI PULAU PANJANG http://jurnal.untirta.ac.id/index.php/gravity ISSN 2442-515x, e-issn 2528-1976 GRAVITY Vol. 3 No. 1 (2017) STUDI KELAYAKAN PEMBANGKIT LISTRIK TENAGA HIBRIDA DI PULAU PANJANG Andri Suherman 1*, Widia Tri

Lebih terperinci

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP

PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP PERANCANGAN ALAT PENYEMPROT HAMA TANAMAN TIPE KNAPSACK BERBASIS SOLAR PANEL 20 WP Efrizal, Johan Sainima Program Studi Teknik mesin, Fakultas teknik, Universitas Muhammadiyah Tangerang, Jl. Perintis Kemerdekaan

Lebih terperinci

JOBSHEET SENSOR CAHAYA (SOLAR CELL)

JOBSHEET SENSOR CAHAYA (SOLAR CELL) JOBSHEET SENSOR CAHAYA (SOLAR CELL) A. TUJUAN 1. Merancang sensor sel surya terhadap besaran fisis. 2. Menguji sensor sel surya terhadap besaran fisis. 3. Menganalisis karakteristik sel surya. B. DASAR

Lebih terperinci

Bab 6 Teknik Penganggaran Modal (Bagian 1)

Bab 6 Teknik Penganggaran Modal (Bagian 1) M a n a j e m e n K e u a n g a n 96 Bab 6 Teknik Penganggaran Modal (Bagian 1) Mahasiswa diharapkan dapat memahami, menghitung, dan menjelaskan mengenai penggunaan teknik penganggaran modal yaitu Payback

Lebih terperinci

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya BAB IV HASIL DAN ANALISIS 4.1. Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya 4.1.1. Analisis Radiasi Matahari Analisis dilakukan dengan menggunakan data yang

Lebih terperinci

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA Ricko Mahindra*, Awitdrus, Usman Malik Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini, penelitian mengenai sumber energi terbarukan sangat gencar dilakukan. Sumber-sumber energi terbarukan yang banyak dikembangkan antara lain sumber energi tenaga

Lebih terperinci

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar

Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Analisis Performa Modul Solar Cell Dengan Penambahan Reflector Cermin Datar Made Sucipta1,a*, Faizal Ahmad2,b dan Ketut Astawa3,c 1,2,3 Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana,

Lebih terperinci

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid

Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit Tenaga Hybrid 208 Satwiko S / Uji Karakteristik Sel Surya Pada Sistem 24 Volt Dc Sebagai Catudaya Pada Sistem Pembangkit Tenaga Uji Karakteristik Sel Surya pada Sistem 24 Volt DC sebagai Catudaya pada Sistem Pembangkit

Lebih terperinci

II. Tinjauan Pustaka. A. State of the Art Review

II. Tinjauan Pustaka. A. State of the Art Review Perbandingan Penggunaan Motor DC Dengan AC Sebagai Penggerak Pompa Air Yang Disuplai Oleh Sistem Pembangkit Listrik Tenaga Surya (PLTS) Agus Teja Ariawan* Tjok. Indra. P, I. W. Arta. Wijaya. Jurusan Teknik

Lebih terperinci

Pelatihan Sistem PLTS Maret 2015 PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI. Rabu, 25 Maret Oleh: Nelly Malik Lande

Pelatihan Sistem PLTS Maret 2015 PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI. Rabu, 25 Maret Oleh: Nelly Malik Lande PELATIHAN SISTEM PLTS INVERTER DAN JARINGAN DISTRIBUSI Rabu, 25 Maret 2015 Oleh: Nelly Malik Lande POKOK BAHASAN TUJUAN DAN SASARAN PENDAHULUAN PENGERTIAN, PRINSIP KERJA, JENIS-JENIS INVERTER TEKNOLOGI

Lebih terperinci

ANALISIS TEKNO-EKONOMI TERHADAP DESAIN SISTEM PLTS PADA BANGUNAN KOMERSIAL DI SURABAYA, INDONESIA

ANALISIS TEKNO-EKONOMI TERHADAP DESAIN SISTEM PLTS PADA BANGUNAN KOMERSIAL DI SURABAYA, INDONESIA . TUGAS AKHIR TF141581 ANALISIS TEKNO-EKONOMI TERHADAP DESAIN SISTEM PLTS PADA BANGUNAN KOMERSIAL DI SURABAYA, INDONESIA HALAMAN JUDUL KIKI YONATA NRP. 2412 100 026 Dosen Pembimbing : 1. Harsono Hadi,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA

BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA BAB IV HASIL DAN PEMBAHASAN 4.1 ALAT PRAKTIKUM PEMBANGKIT LISTRIK TENAGA SURYA Sesuai pembahasan pada bab sebelumnya, dan dengan mengikuti tahapantahapan yang telah dicantumkan hasil akhir alat yang di

Lebih terperinci

DESAIN SISTIM ENERGI ALTERNATIF SEBAGAI SUMBER ENERGI LISTRIK LABORATORIUM LISTRIK DASAR

DESAIN SISTIM ENERGI ALTERNATIF SEBAGAI SUMBER ENERGI LISTRIK LABORATORIUM LISTRIK DASAR 97, Inovtek, Volume 3, Nomor 1, Juni 2013, hlm. 97-24 DESAIN SISTIM ENERGI ALTERNATIF SEBAGAI SUMBER ENERGI LISTRIK LABORATORIUM LISTRIK DASAR Zainal Abidin, Johny Custer Jurusan Teknik Elektro Politeknik

Lebih terperinci

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT

Muhamad Fahri Iskandar Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT ANALISIS INTENSITAS CAHAYA MATAHARI DENGAN SUDUT KEMIRINGAN PANEL SURYA PADA SOLAR WATER PUMP Muhamad Fahri Iskandar 24411654 Teknik Mesin Dr. RR. Sri Poernomo Sari, ST., MT Latar Belakang Konversi energi

Lebih terperinci

MAKALAH OPTIMALISASI PERANCANGAN SOLAR HOME SYSTEM MENGGUNAKAN HOMER. Disusun oleh: Muhibbur Rohman D

MAKALAH OPTIMALISASI PERANCANGAN SOLAR HOME SYSTEM MENGGUNAKAN HOMER. Disusun oleh: Muhibbur Rohman D MAKALAH OPTIMALISASI PERANCANGAN SOLAR HOME SYSTEM MENGGUNAKAN HOMER Disusun oleh: Muhibbur Rohman D 400 080 044 FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO UNIVERSITAS MUHAMMADIYAH SURAKARTA 2012 OPTIMALISASI

Lebih terperinci

OTOMATISASI PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) UNTUK PENINGKATAN KINERJA

OTOMATISASI PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) UNTUK PENINGKATAN KINERJA OTOMATISASI PEMBANGKIT LISTRIK TENAGA SURYA (PLTS) UNTUK PENINGKATAN KINERJA Mohamad Aman, Widhiatmaka, Tweeda Augusta Fitarto, Yohanes Gunawan, Guntur Tri Setiadanu Pusat Penelitan dan Pengembangan Teknologi

Lebih terperinci

KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE

KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE KOMPARASI ENERGI SURYA DENGAN LAMPU HALOGEN TERHADAP EFISIENSI MODUL PHOTOVOLTAIC TIPE MULTICRYSTALLINE Asrul, Reyhan Kyai Demak, Rustan Hatib Jurusan Teknik Mesin, Fakultas Teknik Universitas Tadulako

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Diagram Alir Penelitian Pada peneliatian ini langkah-langkah yang dilakukan mengacu pada diagram alir di bawah ini: Mulai Persiapan Alat dan Bahan Menentukan Sudut Deklinasi,

Lebih terperinci

Makalah Seminar Kerja Praktek SISTEM INSTALASI PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO UNDIP SEMARANG

Makalah Seminar Kerja Praktek SISTEM INSTALASI PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO UNDIP SEMARANG Makalah Seminar Kerja Praktek SISTEM INSTALASI PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO UNDIP SEMARANG Widianto Stevanus Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Abstrak - Sebagaimana

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu energi primer yang tidak dapat dilepaskan penggunaannya dalam kehidupan sehari-hari. Peningkatan jumlah penduduk dan pertumbuhan

Lebih terperinci

ANALISIS KEEKONOMIAN KOMPLEKS PERUMAHAN BERBASIS ENERGI SEL SURYA (STUDI KASUS: PERUMAHAN CYBER ORCHID TOWN HOUSES, DEPOK) SKRIPSI

ANALISIS KEEKONOMIAN KOMPLEKS PERUMAHAN BERBASIS ENERGI SEL SURYA (STUDI KASUS: PERUMAHAN CYBER ORCHID TOWN HOUSES, DEPOK) SKRIPSI UNIVERSITAS INDONESIA ANALISIS KEEKONOMIAN KOMPLEKS PERUMAHAN BERBASIS ENERGI SEL SURYA (STUDI KASUS: PERUMAHAN CYBER ORCHID TOWN HOUSES, DEPOK) SKRIPSI PATRICIA HANNA J 0806459002 PROGRAM SARJANA TEKNIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Mutakhir Sistem hibrida yang memadukan PLTS dengan pembangkit lain saat ini sudah banyak diteliti dan dikembangkan aplikasinya. Berikut adalah tinjauan mutakhir dari

Lebih terperinci

III. METODE PENELITIAN. Proses produksi kopi luwak adalah suatu proses perubahan berbagai faktor

III. METODE PENELITIAN. Proses produksi kopi luwak adalah suatu proses perubahan berbagai faktor III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan batasan operasional ini mencakup semua pengertian yang digunakan untuk memperoleh data yang akan dianalisis sesuai dengan

Lebih terperinci

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik BAB I 1. PENDAHULUAN 1.1 Latar Belakang Salah satu kebutuhan energi yang hampir tidak dapat dipisahkan lagi dalam kehidupan manusia pada saat ini adalah kebutuhan energi listrik. Banyak masyarakat aktifitasnya

Lebih terperinci

PERANCANGAN SISTEM MONITORING DAN OPTIMASI BERBASIS LABVIEW PADA PEMBANGKIT LISTRIK TENAGA SURYA DAN ANGIN. Irwan Fachrurrozi

PERANCANGAN SISTEM MONITORING DAN OPTIMASI BERBASIS LABVIEW PADA PEMBANGKIT LISTRIK TENAGA SURYA DAN ANGIN. Irwan Fachrurrozi 1 PERANCANGAN SISTEM MONITORING DAN OPTIMASI BERBASIS LABVIEW PADA PEMBANGKIT LISTRIK TENAGA SURYA DAN ANGIN Irwan Fachrurrozi 2206100084 Jurusan Teknik Elektro FTI, Istitut Teknologi Sepuluh Nopember

Lebih terperinci

BAB I PENDAHULUAN. daya yang berpotensi sebagai sumber energi. Potensi sumber daya energi

BAB I PENDAHULUAN. daya yang berpotensi sebagai sumber energi. Potensi sumber daya energi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia secara geografis terletak di daerah tropis yaitu 6 0 LU 11 0 LS dan 95 0 BT 141 0 BT. Indonesia dianugerahi berbagai jenis sumber daya yang berpotensi sebagai

Lebih terperinci

Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau

Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015 209 Sistem Pembangkit Listrik Alternative Menggunakan Panel Surya Untuk Penyiraman Kebun Salak Di Musim Kemarau Muhammad Suyanto*

Lebih terperinci

UNJUK KERJA PEMBANGKIT ENERGI LISTRIK TENAGA MATAHARI PADA JARINGAN LISTRIK MIKRO ARUS SEARAH Itmi Hidayat Kurniawan 1*, Latiful Hayat 2 1,2

UNJUK KERJA PEMBANGKIT ENERGI LISTRIK TENAGA MATAHARI PADA JARINGAN LISTRIK MIKRO ARUS SEARAH Itmi Hidayat Kurniawan 1*, Latiful Hayat 2 1,2 UNJUK KERJA PEMBANGKIT ENERGI LISTRIK TENAGA MATAHARI PADA JARINGAN LISTRIK MIKRO ARUS SEARAH Itmi Hidayat Kurniawan 1*, Latiful Hayat 2 1,2 Prodi Teknik Elekro, Fakultas Teknik, Universitas Muhammadiyah

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Terdapat beberapa penelitian yang mendukung Tugas Akhir ini, dimana pada penelitian tersebut dijadikan dasar acuan pada penelitian pada tugas akhir ini. Jurnal

Lebih terperinci

Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal

Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal Penerapan Teknologi Sel Surya dan Turbin Angin Untuk Meningkatkan Efisiensi Energi Listrik di Galangan Kapal MIZZA FAHRIZA RAHMAN 4107100082 DOSEN PEMBIMBING Ir. TRIWILASWANDIO WP., M.Sc. 19610914 198701

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini di bahas mengenai teori-teori dasar yang digunakan untuk menunjang perencanaan dan pembuatan alat. 2.1. Pembangkit Listrik Tenaga Surya Pembangkit Listrik Tenaga Surya

Lebih terperinci

DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL

DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL DAYA KELUARAN PANEL SURYA SILIKON POLI KRISTALIN PADA CUACA NORMAL DAN CUACA BERASAP DENGAN SUSUNAN ARRAY PARALEL 1 Andrian Budi Pratomo, 2 Erwin, 3 Awitdrus 1 Mahasiswa Jurusan Fisika 2 Bidang Medan Elektromagnetik

Lebih terperinci

Kata Kunci : Solar Cell, Modul Surya, Baterai Charger, Controller, Lampu LED, Lampu Penerangan Jalan Umum. 1. Pendahuluan. 2.

Kata Kunci : Solar Cell, Modul Surya, Baterai Charger, Controller, Lampu LED, Lampu Penerangan Jalan Umum. 1. Pendahuluan. 2. PERENCANAAN SISTEM PENERANGAN JALAN UMUM DAN TAMAN DI AREAL KAMPUS USU DENGAN MENGGUNAKAN TEKNOLOGI TENAGA SURYA (APLIKASI DI AREAL PENDOPO DAN LAPANGAN PARKIR) Donny T B Sihombing, Ir. Surya Tarmizi Kasim

Lebih terperinci

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA

NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA NASKAH PUBLIKASI EVALUASI PENGGUNAAN SEL SURYA DAN INTENSITAS CAHAYA MATAHARI PADA AREA GEDUNG K.H. MAS MANSYUR SURAKARTA Diajukan oleh : ANGGA AGUNG PRIHARTOMO D 400 060 067 JURUSAN ELEKTRO FAKULTAS TEKNIK

Lebih terperinci