Pengukuran Daya Keluaran Inverter Pada Pembangkit Listrik Mikrohidro Dengan Alternator DC

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengukuran Daya Keluaran Inverter Pada Pembangkit Listrik Mikrohidro Dengan Alternator DC"

Transkripsi

1 MediaTeknika Jurnal Teknologi Vol.10, No.1, Juni Pengukuran Daya Keluaran Inverter Pada Pembangkit Listrik Mikrohidro Dengan Alternator DC Muhammad Suyanto Teknik Elektro, Fakultas Teknologi Industri IST AKPRIND Jogjakarta Jl. Kalisahak No 28, Komplek Balapan Telp , Fax Penulis korespondensi, Abstract The development of renewable technologies, which are applied in the community will provide a variety of environmental impacts, both positive and negative, micro-hydro (MHP) is one of the applications of renewable technologies. Based on the results of research related to the measurement of installed capacity inverter 1000 watts, the small-scale power plant with DC 24 volt alternator, turns the inverter from load measurement results show 2,7A, voltage is 216 volts, 50Hz. While previous research with 1fasa AC generator power, the measurement results show the output current 1A, 92V voltage frequency of 29.5 Hz, the same load. The measurement results show that the power generated from each plant is, the inverter with DC alternator, showing the amount of power as of 583 watts, while the 1-phase AC generator by 92 watts. If seen from the measurement results, it can be concluded that alternaor DC inverter with 1000 watts, can generate a power of 583 watts, in this case that the power to the inverter has an output power six times greater than the generatoe AC generator Keywords: microhydro, inverter, ACCU, Electric Power 1. Pendahuluan Generator adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik, proses ini dikenal sebagai pembangkit listrik [1]. Walau generator dan motor punya banyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kawat lilitannya. Hal ini dapat dilogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Pengembangan pemasangan pembangkit listrik tenaga mikrohidro yang tentunya dengan bahan bakunya yang mudah didapat yaitu air, seperti saluran irigasi, sungai kecil yang ada didataran rendah, atau kepulauan yang tidak memiliki bukit-bukit tetapi air yang melimpah [2]. Dalam hal ini PLTMh dengan menggunakan sistem dimana air tidak tertahan pada sebuah bendungan, sebagian air sungai diarahkan ke saluran pembawa kemudian dialirkan menuju turbin. Selepas dari turbin, air dikembalikan lagi kealiran semula, sehingga hal ini tidak banyak mempengaruhi lingkungan atau mengurangi air yang keperluan pertanian. Air akan dialirkan kedalam turbin melalui sudu-sudu runner yang akan memutarkan poros turbin. Putaran inilah yang akan memutarkan generator untuk menghasilkan energi listrik. Suatu sistem tenaga listrik dikatakan dalam kondisi stabil bila seluruh variabel keadaannya stabil, baik tegangan bus, sudutgenarator atau frekuensi sistem. Bila sistem menjadi tidak stabil, maka ketidak stabilan tersebut bisa dimanifestasikan melalui cara-cara berbeda, tergantung pada sifat dari sistem, kondisi operasi serta pada sifat dan lokasi yang memulai gangguan. Ketidak stabilan sistem yang diwujudkan dalam bentuk tegangan di beberapa bus turun jauh di bawah kondisi normal dan memungkinkan terjadi gagal tegangan, peristiwa tersebut bisa dikatakan atau merupakan fenomena ketidak stabilan tegangan [3]. Diterima 25 Oktober 2013; Direvisi 20 Desember 2013; Disetujui 28 Desember 2013

2 52 ISSN: Cara membangkitkan medan magnet pada rotor diperlukan arus searah (DC) yang dialirkan ke kumparan rotor yang disebut penguat. Piranti yang berfungsi untuk memasok arus penguat ini disebut dengan eksiter. Pada prinsipnya terdapat dua macam sistem eksitasi yaitu sistem eksitasi brushless dan sistem eksitasi statis. PLTA 1 Banten menggunakan sistem eksitasi statis sehingga arus penguat dialirkan ke kumparan rotor melalui slipring [4]. Eksitasi adalah pemberian arus listrik untuk membuat kutub magnit pada generator. Dengan mengatur besar kecil arus listrik tersebut, kita dapat mengatur besar tegangan out put generator atau dapat juga mengatur besar daya reaktif yang diinginkan pada generator yang sedang paralel dengan sistem jaringan besar (infinite bus) [5]. Hampir setiap kegiatan yang dilakukan oleh manusia, berupa kegiatan teknik tidak lepas dari pemakaian daya listrik baik dalam skala besar maupun untuk skala kecil, seperti pemakaian mesin-mesin listrik pada pabrik, perkantoran, peralatan pada industri maupun untuk, keperluan peralatan rumah tangga dan kepentingan sosial lainnya. Setiap tahun kebutuhan akan energi listrik terus meningkat tetapi tidak diimbangi dengan penyediaan sumber-sumber energi listrik baru maupun terbarukan, bahkan masih ada saudara-saudara kita yang berada didaerah terpencil belum mendapatkan pasokan listrik dari PLN [3]. Padahal didaerah-daerah dimungkinkan masih banyak potensi sumber daya energi yang dapat dimanfaatkan sebagai pembangkit listrik berdaya kecil seperti mikrohidro. Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang mengunakan potensi energi air. Kondisi air yang bisa dimanfaatkan sebagai sumber daya (Rresources) penghasil listrik adalah memiliki kapasitas aliran dan ketinggian tertentu. Semakin besar kapasitas aliran maupun ketinggiannya, maka semakin besar energi listrik yang dapat dihasilkan [6]. Mikrohidro dibangun berdasarkan proses kenyataan bahwa dengan adanya air yang mengalir di suatu tempat dengan kapasitas dan ketinggian yang memadai. Istilah kapasitas mengacu kepada jumlah volume aliran air persatuan waktu (flow capacity) sedangan beda ketingglan daerah aliran sampai ke instalasi dikenal dengan istilah Head. Dikatakan demikian karena instalasi pembangkit listrik seperti ini mengunakan sumber daya yang telah disedikan oleh alam dan ramah lingkungan. Suatu kenyataan bah-wa alam memiliki air terjun atau jenis lainnya yang menjadi tempat air mengalir. Dengan teknologi sekarang maka energi aliran air beserta energi perbedaan ketinggiannya dengan daerah tertentu dimana (tempat instalasi akan dibangun) dapat diubah menjadi energi listrik [ 7]. Energi alternatif terbagi menjadi dua bagian, yakni energi terbarukan dan tidak ter-barukan. PLTMh merupakan salah satu energi yang dapat diperbaharui. Sehingga PLTMh merupakan salah satu energi yang semakin dikembangkan [8]. Pembangkit listri(pltmh) cara kerjanya sangat sederhana dan mudah dikerjakan, juga terbilang murah, mampu bekerja selama 24 jam, dapat diadopsi masyarakat dan yang terpenting adalah ramah lingkungan. Dengan adanya alasan tersebut maka disini akan dibahas hal pemanfaatan Alternator DC 24 volt digunakan sebagai pembangkit, karena jenis tersebut tidak membutuhkan kecepatan putaran yang tinggi [9]. Dengan memanfaatkan daya dari alternator DC 24 volt diharapkan dapat memenuhi kebutuhan energi listrik, yang diperlukan oleh masyarakat di dusun Singosaren Wukirsari. sehingga upaya peningkatan perekonomian masyarat setempat, dapat diupayakan melalui usaha bidang kerajinan, pertukangan dan usaha parut kelapa, disamping itu pada malam hari dapat digunakan sebagai perangan jalan umum antar RT dapat terpenuhi. Prinsip kerja alat, pembangkit listrik tenaga mikrohidro adalah bervariasi, tetapi prinsip kerjanya adalah Perubahan tenaga potensial air menjadi tenaga listrik, melalui alternator. Perubahan memang tidak langsung, tetapi berturut-turut melalui perubahan dari tenaga potensial diubah ke tenaga kinetik, kemudian tenaga kinetik ke tenaga mekanik, dari tenaga mekanik ke tenaga listrik. Sedangkan tenaga potensial adalah tenaga air karena berada pada ketinggian tertentu, tenaga kinetik adalah tenaga air karena mempunyai kecepatan. Tenaga MediaTeknika Vol. 10, No. 1, Juni 2015: 51 58

3 MediaTeknika ISSN: mekanik adalah tenaga kecepatan air yang terus memutar kincir/turbin. Tenaga listrik adalah hasil dari alternator yang berputar akibat berputarnya kincir/turbin [5]. Prinsip kerja PLTMh yang paling utama adalah memanfaatkan energi air semaksimal mungkin agar dapat ditangkap oleh peralatan utamanya yang disebut turbin/kincir air, efisiensi kincir air yang dipilih untuk menangkap energi air tersebut menentukan besarnya energi mekanik atau energi poros guna memutar alternator listrik. Gambaran PLTMh yang ada di dusun Singosaren, adalah atas dasar inisiatif masyarakat setempat untuk memanfaatkan saluran irigasi sebagai pemutar kincir untuk PLTMh, melihat kondisi saluran irigasi, baik dimusim penghujan maupun kemarau cukup kontinyu. 2. Metode Penelitian 2.1 Bahan Bahan-bahan yang digunakan dalam PLTMh tersebut, agar supaya dapat sampai membangkitkan daya listrik, tentu banyak bahan yang digunakan antara lain: Kincir dan pintu air sebagaimana diperlihatkan pada Gambar 1. Kemudian alternator DC sebagaimana diperlihatkan pada Gambar 2. Peralatan Inverter dan ACCU sebagai perubah dari DC to AC diperlihat pada Gambar 3. Panel kontrol sebagai pemantau besaran-besaran listrik yang dibangkitkan dan dalam hal ini akan mempermudah operator atau teknisi, selama PLTMh dijalankan. Adapun perleng-kapan yang dipasang pada panel control seperti: Voltmeter skala 0 s/d 500 VAC, Ampermeter dengan skala 0 s/d 10 ampere, dan Frekuensi meter dengan rentang skala 45 s/d 55 Hz, Indikator lampu, sakelar posisi on/off. Kemudian perlengkapan utama yaitu Alternator DC 24 volt dipasang sejajar lurus dengan pully penghubung dari kincir, dengan menggunakan vanbelt. Output dari alternator di hubungkan dengan ACCU 2 x 12 volt, 70A yang berfungsi menampung energi listrik yang dibangkitkan dari alternator. Untuk mendapatkan tegangan AC, perlu dipasang alat Inverter kapasitas 1000 watt yang berfungsi merubah dari DC ke AC [10]. Begitu pula fungsi dari panel kontrol untuk memantau naik dan turunnya masalah kelistrikan yang dibangkitkan oleh PLTMh, dalam hal ini yang harus selalu diperhatikan adalah besarnya Frekuensi yang dibangkitkan harus konstan pada posisi 50 HZ. Bentuk fisik dari turbin air pada PLTMh dapat dilihat pada Gambar 1. Gambar 1. Bentuk fisik kincir pada saluran irigasi. Pengujian Mekanis yang dilakukan dalam penelitian, dengan cara menjalankan pada putaran kincir mikrohidro sesuai dengan kerjanya, turbin/kincir diberi aliran air agar dapat berputar sehingga dapat menggerakkan bagian rotor alternator. Saat rotor magnet berputar maka akan timbul medan magnet, sehingga kumparan rotor akan menghasilkan tegangan. Semakin tinggi putaran turbin yang dihasilkan maka semakin besar pula tegangan yang dihasilkan. Analisis pada perangkat mekanis, adalah sangat sederhana, yaitu dengan menjalankan kincir yang diberi aliran air maka kincir akan berputar, sebelum menjalankan diukur terlebih Pengukuran daya keluaran, Muhammad Suyanto

4 54 ISSN: dahulu berapa tahanan kawat yang dihasilkan dari kumparan rotor, tahanan kawat yang ideal adalah 0,8 15 Ω. Setelah diukur tahanan kawat diperoleh dari kumparan rotor ini adalah 14 Ω, maka mikrohidro tak terdapat kesalahan. Apabila tahanan kawat yang didapat lebih atau kurang maka dapat diperiksa kembali pada kumparan rotor, apakah terjadi hubung singkat pada kawat kumparan atau terdapat salah satu kumparan yang putus [4]. Gambar 2. Alternator DC 24 V dapat menyesuaikan putaran pada PLTMh. 2.2 Metode Pengukuran Alternator itu berfungsi merubah dari energi mekanik menjadi energy listrik. Pada alternator terdapat sebuah komponen IC yang berfungsi mengatur pengisian accu secara otomatis. Tahap Pengujian Kapasitas Daya pada PLTMh, pada tahap ini pengujian di lapangan berdasarkan nameplat yang tertera pada Alternator. Adapun alat alat ukur yang digunakan untuk mengukur putaran pada pulli poros kincir ke Alternator, digunakan Tachometer hal ini diperlihatkan pada Gambar 2. Dengan berputarnya turbin/kincir ini maka mulailah terjadi proses pembangkitan energi listrik pada alternator. Besar energi yang dihasilkan dari proses pembangkitan apabila tampak adanya kesalahan (error) pada kinerja mikrohidro maka segera dilakukan tindakan perbaikan pada bagian sistem PLTMh yang mengalami kesalahan kerja. Jika tidak ada kesalahan dari sistem pada mikrohidro tersebut, maka dianggap telah selesai. Salah satu penunjukkan hasil pengukuran dari arus dan tegangan pada beban yang terpasang pada mikrohidro, diperlihatkan pada Gambar 4 dan 5. Hasil pengukuran dan implementasinya dengan menggunakan alat Osciloscope sebagai pengukur frekuensi untuk melihat tampilan gelombang berbentuk gelombang sinus utuh (tidak cacat) hal inilah masih belum stabil. Tegangan juga masih naik turun bersamaan dengan naiknya beban terpasang. Gambar 3. Pengukuran V dan I pada beban MediaTeknika Vol. 10, No. 1, Juni 2015: 51 58

5 MediaTeknika ISSN: Generator yang tersedia dipasaran biasanya berjenis high speed dimana pada generator jenis ini membutuhkan putaran tinggi dan juga membutuhkan energi listrik awal untuk membuat medan magnetnya. Pada putaran turbin untuk PLTMh biasanya dibutuhkan generator yang berjenis low speed dan tanpa energi listrik awal, selain itu generator yang menggunakan magnet permanen mampu bekerja dengan baik pada kecepatan putar yang rendah. Oleh karena itu sebagai upaya maka dalam penelitian ini digunakan Alternator DC sebagai pembangkit pengganti Generator AC, untuk memenuhi peningkatan daya yang sesuai dengan debit aliran adalah menggunakan alternator yang mudah perawatannya, serta bisa dikembang-kan pembangkitan energi listriknya. Desain seperti inilah yang sesuai digunakan, yaitu generator mini yang biasa digunakan pada mobil, alternator jenis ini tidak terlalu membutuhkan kecepatan putaran yang tinggi lihat Gambar 3. Dari data spesifik alternator yang ada diatas diketahui tegangan output yang dike-luarkan berupa tegangan DC, sebesar 24volt yaitu digunakan sebagai pensuplay arus dan tegangan yang sesuai sebagai pencatu baterai atau ACCU. Setelah seluruh sistem yang mendukung peningkatan daya mikrohidro(pltmh) ini selesai dikerjakan dan dihubungkan satu sama lain sehingga terbentuk sebuah sistem mikrohidro yang diharapkan, maka selanjutnya adalah tahap pengujian kerja dari sistem yang telah dirangkai. Hal ini bertujuan: (1) Untuk mengetahui apakah PLTMh yang diracang telah dapat bekerja sesuai dengan yang diharapkan. (2) Untuk mengetahui kemampuan kinerja dari turbin yang ada. (3) Untuk mengetahui seberapa besar energi listrik yang dihasilkan oleh sistem dari PLTMh tersebut. Jika dimungkinkan adanya kesalahan-kesalahan yang terjadi, dengan harapan dapat segera diperbaiki. Proses pengujian pada sistem pembangkit PLTMh sederhana yaitu dengan cara mengalirkan air supaya terkonsentrasi ke dalam satu aliran, yang dimana dipasang kincir air yang diletakkan kedalam suatu aliran irigasi, dimana dengan demikian tenaga potensial yang dimiliki aliran tersebut dapat memutar turbin perhatikan Gambar 1. Analisis output alternator, dimaksudkan agar dapat mengetahui keluaran tegangan, dan putarannya pada mikrohidro. Pada Tabel 1 memperlihatkan hasil input pada saluran irigasi dan Table 2, hasil output dari alternator pada pembangkit mikrohidro, yangmana saat dilakukan pengukuran beban berupa beban resistive, sehingga dapat diketahui berapa (rpm) putaran dari alternator dan tegangan dan arus ideal yang dihasilkan alternator. Mikrohidro merupakan sebuah istilah yang terdiri dari kata mikro yang berarti kecil dan hidro yang berarti air. Secara teknis, mikrohidro memiliki tiga komponen utama yaitu air sebagai (sumber energi), turbin dan alternator. Mikrohidro mendapatkan energi dari aliran air yang memiliki perbedaan ketinggian tertentu. Pada dasarnya, mikrohidro memanfaatkan energi potensial jatuhan air (head). Semakin tinggi jatuhan air maka semakin besar energi potensial air yang dapat diubah menjadi energi listrik. Di samping faktor geografis (tata letak sungai), tinggi jatuhan air dapat pula diperoleh dengan membendung aliran air sehingga permukaan air menjadi tinggi. Air dialirkan melalui sebuah pipa pesat kedalam rumah pembangkit yang pada umumnya dibagun di bagian tepi sungai untuk menggerakkan turbin atau kincir air mikrohidro. Energi mekanik yang berasal dari putaran poros turbin/kincir akan diubah menjadi energi listrik oleh sebuah generator atau alternator [6-7]. Dari hasil pengukuran yang telah diperoleh dilapangan, dapat diketahui data-data kincir yang ada di dusun singosaren imogiri, sudu merupakan bagian turbin/kincir yang berfungsi untuk menggerakan roda turbin akibat adanya fluida kerja dari air yang menggerakannya, atau mengubah energi potensial menjadi energi kinetic. Dimana bentuk sesuai dengan fluida yang menggerakkannya dengan dimensi air sesuai dengan kebutuhan untuk menggerakan kincir turbin. Jumlah sudu pada kincir adalah 20 sudu,lebar pada kincir tersebut 0,62 meter dan dia meter pada kincir 2,1 meter. Perhitungan jumlah sudu pada kincir: N: 20 sudu; D: 210cm; t: 62 cm, k: 0,13 (konstanta). Pengukuran daya keluaran, Muhammad Suyanto

6 56 ISSN: Pada pengujian arus dan tegangan, dilakukan untuk mengetahui apakah arus beban dan tegangan yang dihasilkan sudah maksimum sesuai dengan kemampuan hasil putaran dari kincir. Adapun pengujian dilakukan dengan menggunakan amperemeter dan voltmeter, berdasarkan dari hasil pengukuran saat peng ambilan data yang telah dilakukan, penulis mendapatkan hasil input saluran yang terdiri dari beberapa kriteria yang diperoleh pada Tabel Hasil dan Pembahasan Pengaturan besaran tegangan output alternator diatur melalui penyesuaian putaran dari kecepatan aliran air yang ditransmisikan melalui poros kincir, sehingga besarnya tegangan yang dihasilkan memalui inverter akan berpengaruh pada arus beban. Sedangkan inverter itu berfungsi sebagai alat yang digunakan untuk mengubah daya DC (Dirrect Current) ke daya AC (Alternating Current). Dalam penentuan kapasitas daya inverter disesuaikan dengan kapasitas daya yang digunakan pada beban. Biasanya kapasitas yang tertera dalam alternator dan inverter berupa kapasitas daya dalam watt. Tidak ada suatu rumusan untuk menentukan kapasitas kebutuhan alternator terhadap inverter, yang jelas semakin besar kapasitas daya yang digunakan maka semakin baik untuk pengembangan kedepannya. Namun dalam penelitian dipilih inverter 1000 watt, karena mengindikasikan frekuensi dan tegangan yang lebih stabil. Perubahan tersebut jelas sangat mempengaruhi hasil keluaran daya yang dihasilkan pembangkit dengan generator dibandingkan alternator yang menggunakan inverter sebagaimana diperlihatkan pada Tabel 1 dan 2. Dari data yang telah diuji pada tegangan generator 1 fasa dengan tegangan inverter alternator DC, dapat diketahui berapa perbandingan arus beban bila tegangan generator dan inverter pada beban maksimal, dapat ditampilkan dalam sebuah grafik untuk mengetahui fenomena yang terjadi pada perbandingan tegangan generator dengan tegangan inverter pada beban sama dapat dilihat pada Gambar 4. Tabel 1. Pengukuran Tegangan Frekuensi dan Arus pada Generator 1 fasa Pengukuran Pada Generator Beban Sinkron 1 fasa Terpasang Arus (A) Frekuensi (Hz) Tegangan (V) Beban Beban beban Beban Beban Gambar 4. Perubahan Arus dan Tegangan pada Generator dan Tegangan Inverter MediaTeknika Vol. 10, No. 1, Juni 2015: 51 58

7 MediaTeknika ISSN: Hasil pengukuran tegangan pada inverter yang dihasilkan sedikit mengalami penurunan dibandingkan tegangan pada generator sinkron 1 fasa yang terukur banyak mengalami penurunan tegangan diperlihatkan pada Tabel 1. Analisis antara generator dan inverter dapat diketahui dari arus dan frekuensi yang terukur. Sedangkan hasil pengukuran pada inverter dengan daya 1000 watt dapat dilihat pada Tabel 2. Tabel 2. Perbandingan hasil pengukuran arus, frekuensi dan tegangan pada Inverter Beban terpasang Inverter pada Alternator DC Daya 1000 watt Arus (A) Frekuensi (Hz) Tegangan (V) Beban 0 0, Beban beban Beban Beban Dari Tabel 1 dan 2 dapat dianalisis bahwa tegangan generator yang dihasilkan mengalami penurunan 92 Volt, sedangakan pada tegangan inverter alternator DC mengalami sedikit kenaikkan pada pengukuran arus beban 0,6 amper sebesar 230 Volt. Hubungan perbandingan frekuensi dengan tegangan pada inverter alternator DC, terhadap adanya pengukuran pada beban, dapat dilihat pada Gambar 5. Hubungan perbandingan tegangan dengan arus pada inverter terhadap adanya pengukuran pada beban, dapat dilihat pada Gambar 6. Tegangan (Volt) y = x R² = y = x R² = Arus (ampere) Tegangan (volt) Frekuensi(Hz) Gambar 5. Perbandingan frekuensi dengan tegangan pada inverter. Dari Gambar 5 dapat dianalisis bahwa pengukuran frekuensi terhadap tegangan memperlihatkan, bahwa jika beban dinaikkan maka frekuensi semakin menurun. Gambar 6. Hubungan tegangan terhadap arus beban pada inverter Pengukuran daya keluaran, Muhammad Suyanto

8 58 ISSN: Terlihat bahwa pada hasil pengukuran tegangan mengalami penurunan sampai 216 Volt dan frekuensi 50 Hz pada arus beban 2.7 amper, semakin besar kenaikkan pada beban yang diberikan, maka frekuensi pada inverter alternator akan semakin menurun bila ditambahkan beban. Dari perbandingan Gambar 5 dan 6, sangat jelas perbandingan antara frekuensi dengan tegangan terhadap generator dan inverter. Dimana hasil dari generator mengalami penurunan tegangan 92 Volt dari frekuensi 29.5 Hz apada arus beban 1 amper, arus beban dibandingakan dengan hasil dari inverter alternator yang hampir setabil tegangan dan frekunsinya hanya mengalami kenaikan sebesar 50 Hz pada arus 1,6A s/d 2,3 ampere. 4. Kesimpulan Berdasarkan dari pengukuran pada pembangkit listrik (PLTMh). Sesuai dengan perancangan alat yang terpasang, dilakukan analisis data, dan hasil pengukuran yang telah dilakukan, maka dapat ditarik kesimpulan sebagai berikut: 1. Daya yang dihasilkan inverter dengan alternator DC, menunjukkan tegangan terukur 216 Volt, arus 2,7 ampere dan frekuensi 50 Hz. Dalam hal ini inverter masih dapat dioperasikan dengan beban diatas 2,7 A, artinya inverter mempunyai kemampuan lebih baik dibandingkan dengan generator 1 fasa yang ada. 2. Hasil pengukuran inverter 1000 watt besarnya arus terukur 2,7 A, tegangan 216 volt, frekuensi 50 Hz, sehingga daya yang dinagkitkan 583 watt dan pada generator 1 fasa diperoleh arus 1A pada tegangan 92V frekuensi 29,5 Hz, daya yang dibangkitkan 92 watt. Dalam hal ini daya yang dibangkitkan inverter, enam kali lebih besar jika dibandingkan dengan generator 1 fasa pada pembebanan yang sama. 3. Dari hasil pengukuran dilapangan, berdasarkan kesimpulan satu dan dua, inverter 1000 watt dengan alternator DC lebih baik daya yang dibangkitkan dibandingkan dengan daya yang dihasilkan oleh generator 1 fasa. Dalam hal ini masih dapat ditingkatkan daya maksimumnya, dengan cara memperbaiki kecepatan aliran air yang melewati muka kincir. Daftar Pustaka [1] Assafat, Luqman, Simulasi kinerja Generator Sinkron Berbasis Metode Kerangka Referensi, Tugas akhir Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro, [2] Satriyo,Puguh Adi, pemanfaatan pembangkit listrik tenaga mikrohidro untuk daerah terpencil. Puslitbang Iptekhan Balitbang Dephan. [3] Djojonegoro,W.,1992, Pengembangan dan penerapan energi baru dan terbarukan, Lokakarya "Bio Mature Unit" (BMU) untuk pengembangan masyarakat pedesaan, BPPT, Jakarta. [4] Sumanto, 1996, Mesin Sinkron. Andi Jogja-karta [5] Zuhal,1995, Policy & Development Pro-grams on Rural Electri Scation for next 10 years, Ditjen.Listrik & Pengembangan Energi, Departemen Pertambangan dan Energi, Jakarta. [6] Donianto., D Pembangkit Listrik Tenaga Mikro Hidro. donianto. multiply.com/ [7] Sutisna, Nanang, 2004, Departemen Energi Kembangkan Sis-tem Mikrohidro. (17 April 2004). [8] Abdulkadir, E. 1995, Energi. Universitas Indonesia Press, Jakarta [9] Suyanto., M Peningkatan daya pada pembangkit listrik mikrohidro (PLTMh) di daerah Imogiri Bantul Jogjakarta, Jurnal Teknologi Technoscientia, Vol. 5 No 1, Agustus. [11] Suyanto. M; Widyastuti.N 2014 Prosiding Seminar Nasional Sains dan Pendidikan Sains ke IX di Universitas Kristen Satya Wacana Sala Tiga, ISSN: , Vol.5, No 1 Juni, MediaTeknika Vol. 10, No. 1, Juni 2015: 51 58

PEMANFAATAN ALTERNATOR DC DENGAN INVERTER PADA (PLTMh) SEBAGAI PENYEDIA DAYA LISTRIK PRODUKTIF DI DUSUN SINGOSAREN IMOGIRI YOGYAKARTA

PEMANFAATAN ALTERNATOR DC DENGAN INVERTER PADA (PLTMh) SEBAGAI PENYEDIA DAYA LISTRIK PRODUKTIF DI DUSUN SINGOSAREN IMOGIRI YOGYAKARTA 233 Prosiding Seminar Nasional Sains dan Pendidikan Sains IX, Fakultas Sains dan Matematika, UKSW PEMANFAATAN ALTERNATOR DC DENGAN INVERTER PADA (PLTMh) SEBAGAI PENYEDIA DAYA LISTRIK PRODUKTIF DI DUSUN

Lebih terperinci

PERBANDINGAN PENINGKATAN DAYA TERPASANG PADA PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DI DAERAH WUKIRSARI IMOGIRI BANTUL JOGJAKARTA. Muhammad Suyanto 1

PERBANDINGAN PENINGKATAN DAYA TERPASANG PADA PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DI DAERAH WUKIRSARI IMOGIRI BANTUL JOGJAKARTA. Muhammad Suyanto 1 PERBANDINGAN PENINGKATAN DAYA TERPASANG PADA PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DI DAERAH WUKIRSARI IMOGIRI BANTUL JOGJAKARTA Muhammad Suyanto 1 1 Jurusan Teknik Elektro, Fakultas Teknologi Industri

Lebih terperinci

PEMANFAATAN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

PEMANFAATAN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO NASKAH PUBLIKASI PEMANFAATAN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMh) MENGGUNAKAN KINCIR TIPE OVERSHOT Disusun untuk Melengkapi Tugas Akhir dan Memenuhi

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

PENGARUH KECEPATAN PUTAR PENGGERAK MULA MIKROHIDRO TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE 4 KUTUB ABSTRAKSI

PENGARUH KECEPATAN PUTAR PENGGERAK MULA MIKROHIDRO TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE 4 KUTUB ABSTRAKSI Jurnal Emitor Vol. 15 No. 01 ISSN 1411-8890 PENGARUH KECEPATAN PUTAR PENGGERAK MULA MIKROHIDRO TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE 4 KUTUB Agus Supardi, Ardhiya Faris Rachmawan Jurusan Teknik Elektro

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

BAB I PENDAHULUAN. mengalir melalui sungai-sungai. Ketinggian aliran sungai tersebut dapat

BAB I PENDAHULUAN. mengalir melalui sungai-sungai. Ketinggian aliran sungai tersebut dapat BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia memiliki topografi pegunungan yang tersebar hampir di seluruh wilayah. Sebagian besar pegunungan bertekstur terjal dengan jumlah penduduk yang relatif sedikit.

Lebih terperinci

IHFAZH NURDIN EKA NUGRAHA, WALUYO, SYAHRIAL Jurusan Teknik Elektro Institut Teknologi Nasional (ITENAS), Bandung

IHFAZH NURDIN EKA NUGRAHA, WALUYO, SYAHRIAL Jurusan Teknik Elektro Institut Teknologi Nasional (ITENAS), Bandung Jurnal Reka Elkomika 2337-439X Oktober 2013 Jurnal Online Institut Teknologi Nasional TeknikElektro Itenas Vol.1 No.4 Penerapan dan Analisis Pembangkit Listrik Tenaga Pikohidro dengan Turbin Propeller

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik NASKAH PUBLIKASI APLIKASI GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) MENGGUNAKAN KINCIR AIR TIPE PELTON Disusun untuk Memenuhi Tugas dan Syarat-syarat

Lebih terperinci

SIMULATOR PEMBANGKIT LISTRIK TENAGA PIKO HIDRO UNTUK MODUL PRAKTIKUM DI LABORATORIUM KONVERSI ENERGI

SIMULATOR PEMBANGKIT LISTRIK TENAGA PIKO HIDRO UNTUK MODUL PRAKTIKUM DI LABORATORIUM KONVERSI ENERGI SIMULATOR PEMBANGKIT LISTRIK TENAGA PIKO HIDRO UNTUK MODUL PRAKTIKUM DI LABORATORIUM KONVERSI ENERGI Fulgensius Odi Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura

Lebih terperinci

Standby Power System (GENSET- Generating Set)

Standby Power System (GENSET- Generating Set) DTG1I1 Standby Power System (- Generating Set) By Dwi Andi Nurmantris 1. Rectifiers 2. Battery 3. Charge bus 4. Discharge bus 5. Primary Distribution systems 6. Secondary Distribution systems 7. Voltage

Lebih terperinci

PENGATURAN TEGANGAN PADA MOTOR INDUKSI TIGA FASA 1 HP SEBAGAI GENERATOR INDUKSI SATU FASA UNTUK PEMBANGKIT LISTRIK TENAGA PIKOHIDRO

PENGATURAN TEGANGAN PADA MOTOR INDUKSI TIGA FASA 1 HP SEBAGAI GENERATOR INDUKSI SATU FASA UNTUK PEMBANGKIT LISTRIK TENAGA PIKOHIDRO PENGATURAN TEGANGAN PADA MOTOR INDUKSI TIGA FASA 1 HP SEBAGAI GENERATOR INDUKSI SATU FASA UNTUK PEMBANGKIT LISTRIK TENAGA PIKOHIDRO Muhadi 1), Efrita Arfah Z 2), Ali Khomsah 3) Jurusan Teknik Elektro,

Lebih terperinci

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA

PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA Jurnal Dinamika, September 2016, halaman 42-48 P-ISSN: 2087 7889 E-ISSN: 2503 4863 Vol. 07. No.2 PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA Idawati Supu,

Lebih terperinci

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 5 No. 1 Agustus 2012

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 5 No. 1 Agustus 2012 PENINGKATAN DAYA PADA PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DI DAERAH IMOGIRI BANTUL JOGJAKARTA Muhammad Suyanto 1 1 Jurusan Teknik Elektro, Institut Sains & Teknologi AKPRIND Yogyakarta. Masuk: 4 Maret

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

Bambang Sri Kaloko Jurusan Elektro Universitas Jember

Bambang Sri Kaloko Jurusan Elektro Universitas Jember SISTEM PENGATURAN LAJU ALIRAN AIR PADA PLANT WATER TREATMENT DENGAN KONTROL FUZZY-PID M. Riski Ekocahya F. ivan.mref@gmail.com Jurusan Elektro Universitas Jember Bambang Sri Kaloko bambangsrikaloko@yahoo.com

Lebih terperinci

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

BAB I PENDAHULUAN. Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi

BAB I PENDAHULUAN. Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi listrik melalui pembangkit listrik tenaga air. Banyaknya sungai dan danau air

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN ALTERNATOR BEKAS

SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN ALTERNATOR BEKAS Jurnal Edukasi Elektro, Vol. 1, No. 2, November 2017 http://journal.uny.ac.id/index.php/jee/ ISSN 2548-8260 (Media Online) SEPEDA STATIS SEBAGAI PEMBANGKIT ENERGI LISTRIK ALTERNATIF DENGAN PEMANFAATAN

Lebih terperinci

DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO

DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO Sunardi 1*, Wahyu Sapto Aji 2*, Hernawan Aji Nugroho 3 1,2,3 Teknik Elektro Universitas Ahmad Dahlan Jl. Prof. Soepomo Janturan Yogyakarta * Email: sunargm@gmail.com

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN FLYWHEEL MAGNET SEPEDA MOTOR DENGAN 8 RUMAH BELITAN SEBAGAI GENERATOR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

NASKAH PUBLIKASI PEMANFAATAN FLYWHEEL MAGNET SEPEDA MOTOR DENGAN 8 RUMAH BELITAN SEBAGAI GENERATOR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO NASKAH PUBLIKASI PEMANFAATAN FLYWHEEL MAGNET SEPEDA MOTOR DENGAN 8 RUMAH BELITAN SEBAGAI GENERATOR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Diajukan oleh : ARI WIJAYANTO D 400 100 014 JURUSAN TEKNIK ELEKTRO

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

BAB I PENDAHULUAN. manusia dapat menikmati listrik. Akibat sulitnya lokasi yang tidak dapat

BAB I PENDAHULUAN. manusia dapat menikmati listrik. Akibat sulitnya lokasi yang tidak dapat BAB I PENDAHULUAN 1.1 LATAR BELAKANG Indonesia adalah negara kepulauan dengan jumlah pulau yang mencapai ribuan. Dari sekian banyak pulau tersebut belum semua pulau yang dihuni manusia dapat menikmati

Lebih terperinci

BAB III PENGUMPULAN DATA DAN PEMBUATAN RANCANG BANGUN SIMULATOR PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)

BAB III PENGUMPULAN DATA DAN PEMBUATAN RANCANG BANGUN SIMULATOR PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) BAB III PENGUMPULAN DATA DAN PEMBUATAN RANCANG BANGUN SIMULATOR PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) 3.1. PLTMH Cinta Mekar Gambar 3.1 Ilustrasi PLTMH Cinta Mekar (Sumber IBEKA) PLTMH Cinta Mekar

Lebih terperinci

Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar

Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar Jurnal Kompetensi Teknik Vol.1, No. 2, Mei 2010 57 Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar Isdiyarto Jurusan Teknik Elektro, Universitas Negeri Semarang

Lebih terperinci

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Krisis energi yang melanda dunia khususnya di Indonesia, telah membuat berbagai pihak mencari solusi dan melakukan penelitian untuk mencari sumber energi

Lebih terperinci

OKTOBER 2011. KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq

OKTOBER 2011. KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq OKTOBER 2011 KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq KLASIFIKASI PEMBANGKIT LISTRIK TENAGA AIR A. KAPASITAS MICRO-HYDRO SD 100 KW MINI-HYDRO 100 KW 1 MW SMALL-HYDRO 1

Lebih terperinci

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL Purnomo 1 Efrita Arfah Z 2 Edi Suryanto 3 Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya Jl.

Lebih terperinci

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang 7 BAB II LANDASAN TEORI A. LANDASAN TEORI 1. Pembebanan Suatu mobil dalam memenuhi kebutuhan tenaga listrik selalu dilengkapi dengan alat pembangkit listrik berupa generator yang berfungsi memberikan tenaga

Lebih terperinci

Air menyelimuti lebih dari ¾ luas permukaan bumi kita,dengan luas dan volumenya yang besar air menyimpan energi yang sangat besar dan merupakan sumber

Air menyelimuti lebih dari ¾ luas permukaan bumi kita,dengan luas dan volumenya yang besar air menyimpan energi yang sangat besar dan merupakan sumber PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN DINAMO SEPEDA YOGI SAHFRIL PRAMUDYA PEMBIMBING 1. Dr. NUR SULTAN SALAHUDDIN 2. BAMBANG DWINANTO, ST.,MT Jurusan Teknik Elektro, Fakultas Teknologi Industri,

Lebih terperinci

PERANCANGAN DAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO

PERANCANGAN DAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Vol. 3, No. 2, Desember 2017 36 PERANCANGAN DAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Hernawan Aji Nugroho, Sunardi Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas Ahmad

Lebih terperinci

ABSTRAK. Kata kunci : PLTMH, Prosedur Praktikum, Sudu Turbin, Efisiensi.

ABSTRAK. Kata kunci : PLTMH, Prosedur Praktikum, Sudu Turbin, Efisiensi. ABSTRAK Penelitian ini bertujuan untuk merancang suatu modul praktikum PLTMH kemudian mengimplementasikan modul tersebut dengan menyusun suatu petunjuk-petunjuk praktikum serta melakukan pengukuran pada

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 PENDAHULUAN Sistem Pengisian Konvensional Pembangkit listrik pada alternator menggunakan prinsip induksi yaitu perpotongan antara penghantar dengan garis-garis gaya magnet.

Lebih terperinci

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi

MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz. M. Rodhi Faiz, Hafit Afandi TEKNO, Vol : 19 Maret 2013, ISSN : 1693-8739 MODIFIKASI ALTERNATOR MOBIL MENJADI GENERATOR SINKRON 3 FASA PENGUAT LUAR 220V/380V, 50Hz M. Rodhi Faiz, Hafit Afandi Abstrak : Metode yang digunakan dalam

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik dan pembuatan mekanik turbin. Sedangkan untuk pembuatan media putar untuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian Alat dan bahan yang digunakan dalam penelitian ini adalah sebagai berikut : a. Generator Sinkron Satu Fasa Pabrik Pembuat : General Negara Pembuat

Lebih terperinci

PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO

PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO Techno, ISSN 141-867 Volume 15 No. 2 Oktober 214 Hal. 3 36 PROTOTIPE GENERATOR MAGNET PERMANEN AXIAL AC 1 FASA PUTARAN RENDAH SEBAGAI KOMPONEN PEMBANGKIT LISTRIK TENAGA PIKO HIDRO Prototype of 1-Phase

Lebih terperinci

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM

NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM NASKAH PUBLIKASI DESAIN GENERATOR AXIAL KECEPATAN RENDAH MENGGUNAKAN 8 BUAH MAGNET PERMANEN DENGAN DIMENSI 10 X 10 X 1 CM Disusun untuk Melengkapi Tugas Akhir dan Memenuhi Syarat-syarat untuk Mencapai

Lebih terperinci

DESAIN SEPEDA STATIS DAN GENERATOR MAGNET PERMANEN SEBAGAI PENGHASIL ENERGI LISTRIK TERBARUKAN

DESAIN SEPEDA STATIS DAN GENERATOR MAGNET PERMANEN SEBAGAI PENGHASIL ENERGI LISTRIK TERBARUKAN Jurnal Emitor Vol. 14 No. 02 ISSN 1411-8890 DESAIN SEPEDA STATIS DAN GENERATOR MAGNET PERMANEN SEBAGAI PENGHASIL ENERGI LISTRIK TERBARUKAN Hasyim Asy ari, Muhammad, Aris Budiman Jurusan Teknik Elektro

Lebih terperinci

BAB III METODE PEMBAHASAN

BAB III METODE PEMBAHASAN BAB III METODE PEMBAHASAN 3.1. Metode Pembahasan Metode penelitian yang digunakan dalam penyusunan tugas akhir ini antara lain, yaitu : 1. Metode Literatur Metode literature yaitu, metode dengan mengumpulkan,

Lebih terperinci

ANALISIS MOTOR INDUKSI SATU FASA DENGAN METODE CYCLOCONVERTER BERBASIS MIKROKONTROLER AT89C51

ANALISIS MOTOR INDUKSI SATU FASA DENGAN METODE CYCLOCONVERTER BERBASIS MIKROKONTROLER AT89C51 ISSN: 693-6930 ANALISIS MOTOR INDUKSI SATU FASA DENGAN METODE CYCLOCONVERTER BERBASIS MIKROKONTROLER AT89C5 Muhammad Andang Novianta Jurusan Teknik Elektro Institut Sains dan Teknologi AKPRIND Yogyakarta

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang mengunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai sumber daya (resources)

Lebih terperinci

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang BAB III PENGUMPULAN DAN PENGOLAHAN DATA 3.1 Daya 3.1.1 Daya motor Secara umum, daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam system tenaga listrik, daya merupakan jumlah energy listrik

Lebih terperinci

BAB III METODOLOGI DAN PENGUMPULAN DATA

BAB III METODOLOGI DAN PENGUMPULAN DATA BAB III METODOLOGI DAN PENGUMPULAN DATA 3.1 Bendungan Gambar 3.1 Ilustrasi PLTMH cinta mekar (sumber,ibeka, 2007) PLTMH Cinta Mekar memanfaatkan aliran air irigasi dari sungai Ciasem yang berhulu di Gunung

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

RANCANG BANGUN MINIATUR PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) SECARA TIDAK KONTINU KAPASITAS 334 WATT LAPORAN TUGAS AKHIR

RANCANG BANGUN MINIATUR PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) SECARA TIDAK KONTINU KAPASITAS 334 WATT LAPORAN TUGAS AKHIR RANCANG BANGUN MINIATUR PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) SECARA TIDAK KONTINU KAPASITAS 334 WATT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program

Lebih terperinci

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan. BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan suatu kebutuhan utama yang sangat dibutuhkan pada zaman modern ini. Jika dilihat dari kebutuhan energi listrik tiap negara, maka semakin maju

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA AIR

PEMBANGKIT LISTRIK TENAGA AIR PEMBANGKIT LISTRIK TENAGA AIR Kompleks Pinus Asri Jl. Lidah Harapan 7 Blok G no. 2A Surabaya, Jawa Timur 081 252 777 363 (031) 7521 808 21EABBC3 www.belangaanaknegeri.com info@belangaanaknegeri.com RENCANA

Lebih terperinci

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK Jones Victor Tuapetel 1), Diyan Poerwoko 2) 1, 2) Program Studi Teknik Mesin Institut Teknologi Indonesia E-mail: jvictor_tuapetel@yahoo.com,

Lebih terperinci

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR Oleh : Dr Suhartono S.Si M.Kom 1 Deskrisi LINTASAN RANTAI BERBENTUK

Lebih terperinci

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa BAB I PENDAHULUAN 1.1 Latar Belakang Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut

Lebih terperinci

PEMANFAATAN PEMANDIAN UMUM UNTUK PEMBANGKIT TENAGA LISTRIK MIKROHIDRO ( PLTMh ) MENGGUNAKAN KINCIR TIPE OVERSHOT

PEMANFAATAN PEMANDIAN UMUM UNTUK PEMBANGKIT TENAGA LISTRIK MIKROHIDRO ( PLTMh ) MENGGUNAKAN KINCIR TIPE OVERSHOT Jurnal Emitor Vol. 1 No. 01 ISSN 1411-8890 PEMANFAATAN PEMANDIAN UMUM UNTUK PEMBANGKIT TENAGA LISTRIK MIKROHIDRO ( PLTMh ) MENGGUNAKAN KINCIR TIPE OVERSHOT Jatmiko, Hasyim Asy ari, Aryo Hendarto P Jurusan

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Perancangan Alat Perancangan merupakan suatu tahap yang sangat penting dalam pembuatan suatu alat, sebab dengan menganalisa komponen yang digunakan maka alat yang akan dibuat

Lebih terperinci

PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH

PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH PEMBUATAN DAN PENGUJIAN AWAL GENERATOR AXIAL MAGNET PERMANEN KECEPATAN RENDAH Aris Budiman, Dhanar Yuwono Aji, Hasyim Asy'ari Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Surakarta

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kebutuhan akan energi hampir semua negara meningkat secara sinigfikan. Tetapi jika dilihat dari energi yang dapat dihasilkan sangat terbatas dan juga masih sangat mahal

Lebih terperinci

Pengelolaan Air sebagai Sumber Energi Listrik Mandiri melalui Teknologi Pembangkit Listrik Tenaga Mikrohidro (PLTMH) di Desa Segorogunung.

Pengelolaan Air sebagai Sumber Energi Listrik Mandiri melalui Teknologi Pembangkit Listrik Tenaga Mikrohidro (PLTMH) di Desa Segorogunung. A. Judul Program Pengelolaan Air sebagai Sumber Energi Listrik Mandiri melalui Teknologi Pembangkit Listrik Tenaga Mikrohidro (PLTMH) di Desa Segorogunung. B. LATAR BELAKANG MASALAH Segorogunung adalah

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Generator fluks radial yang telah dirancang kemudian dilanjutkan dengan pembuatan dan perakitan alat. Pada stator terdapat enam buah kumparan dengan lilitan sebanyak 650 lilitan.

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang 1BAB I PENDAHULUAN 1.1 LatarBelakang Dewasa ini penggunaan energi listrik berubah dari energi listrik yang statis (berasal dari pembangkitan) menjadi energi listrik yang dapat dibawa kemana saja, contohnya

Lebih terperinci

RANCANG BANGUN MODEL PENYEIMBANG BEBAN PADA GENERATOR INDUKSI

RANCANG BANGUN MODEL PENYEIMBANG BEBAN PADA GENERATOR INDUKSI RANCANG BANGUN MODEL PENYEIMBANG BEBAN PADA GENERATOR INDUKSI Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang Abstrak. Pada pembangunan pembangkit listrik skala kecil, misalnya pembangkit

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Air merupakan sumber kehidupan bagi manusia. Kita tidak dapat dipisahkan dari

BAB I PENDAHULUAN. 1.1 Latar Belakang. Air merupakan sumber kehidupan bagi manusia. Kita tidak dapat dipisahkan dari BAB I PENDAHULUAN 1.1 Latar Belakang Air merupakan sumber kehidupan bagi manusia. Kita tidak dapat dipisahkan dari senyawa kimia ini dalam kehidupan sehari-hari. Manfaat air bagi kehidupan kita antara

Lebih terperinci

I. PENDAHULUAN. Kebutuhan tenaga listrik dari waktu ke waktu semakin bertambah. Sampai saat

I. PENDAHULUAN. Kebutuhan tenaga listrik dari waktu ke waktu semakin bertambah. Sampai saat 1 I. PENDAHULUAN A. Latar Belakang Kebutuhan tenaga listrik dari waktu ke waktu semakin bertambah. Sampai saat ini pembangkit listrik dengan tenaga air merupakan pembangkit yang ramah lingkungan, sehingga

Lebih terperinci

Jl. Banda Aceh-Medan Km. 280 Buketrata - Lhokseumawe Abstrak

Jl. Banda Aceh-Medan Km. 280 Buketrata - Lhokseumawe   Abstrak Pengembangan dan Penerapan Teknologi Turbin Air Propeller Dalam Mendukung Penyediaan Energi Listrik Alternative Di Desa Darul Makmur Kotamadya Subulussalam Provinsi Aceh Pribadyo 1, Dailami 2 1) Jurusan

Lebih terperinci

PENGARUH KAPASITOR BANK TERHADAP OUTPUT DARI GENERATOR INDUKSI 1 FASA

PENGARUH KAPASITOR BANK TERHADAP OUTPUT DARI GENERATOR INDUKSI 1 FASA PENGARUH KAPASITOR BANK TERHADAP OUTPUT DARI GENERATOR INDUKSI 1 FASA TUGAS AKHIR Disusun untuk Melengkapi Tugas Akhir dan Syarat-syarat untuk Mencapai Gelar Sarjana Teknik Jurusan Teknik Elektro Fakultas

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Bab ini meliputi waktu dan tempat penelitian, alat dan bahan, rancangan alat, metode penelitian, dan prosedur penelitian. Pada prosedur penelitian akan dilakukan beberapa

Lebih terperinci

Rancang Bangun Prototype PLTPH Menggunakan Turbin Open Flume

Rancang Bangun Prototype PLTPH Menggunakan Turbin Open Flume Rancang Bangun Prototype PLTPH Menggunakan Turbin Open Flume Afryantima Siregar, Mahdi Syukri, Ira Devi Sara, Syahrizal, dan Mansur Gapy Jurusan Teknik Elektro, Fakultas Teknik, Universitas Syiah Kuala

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH NASKAH PUBLIKASI Diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PERANCANGAN GENERATOR INDUKSI MAGNET PERMANEN SATU FASE KECEPATAN RENDAH

PERANCANGAN GENERATOR INDUKSI MAGNET PERMANEN SATU FASE KECEPATAN RENDAH Simposium Nasional Teknologi Terapan (SNTT) 4 16 ISSN : 2339-028X PERANCANGAN GENERATOR INDUKSI MAGNET PERMANEN SATU FASE KECEPATAN RENDAH Agus Supardi, Aris Budiman, Sahid Sholihin Jurusan Teknik Elektro

Lebih terperinci

II. Tinjauan Pustaka. A. State of the Art Review

II. Tinjauan Pustaka. A. State of the Art Review Perbandingan Penggunaan Motor DC Dengan AC Sebagai Penggerak Pompa Air Yang Disuplai Oleh Sistem Pembangkit Listrik Tenaga Surya (PLTS) Agus Teja Ariawan* Tjok. Indra. P, I. W. Arta. Wijaya. Jurusan Teknik

Lebih terperinci

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 Sahran Fauji, Suryadimal, M.T 1), Burmawi, M.Si 2) Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah Mada No.19

Lebih terperinci

PENGARUH KECEPATAN PUTAR DAN BEBAN TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE KECEPATAN RENDAH

PENGARUH KECEPATAN PUTAR DAN BEBAN TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE KECEPATAN RENDAH Jurnal Emitor Vol.16 No. 01 ISSN 1411-8890 PENGARUH KECEPATAN PUTAR DAN BEBAN TERHADAP KELUARAN GENERATOR INDUKSI 1 FASE KECEPATAN RENDAH Agus Supardi, Aris Budiman, Nor Rahman Khairudin Jurusan Teknik

Lebih terperinci

Studi Pengaturan Arus Eksitasi untuk Mengatur Tegangan Keluaran Generator di PT Indonesia Power UBP Kamojang Unit 2

Studi Pengaturan Arus Eksitasi untuk Mengatur Tegangan Keluaran Generator di PT Indonesia Power UBP Kamojang Unit 2 Jurnal Reka Elkomika 2337-439X Januari 2016 Jurnal Online Institut Teknologi Nasional Teknik Elektro Itenas Vol.4 No.1 Studi Pengaturan Arus Eksitasi untuk Mengatur Tegangan Keluaran Generator di PT Indonesia

Lebih terperinci

DESAIN PROTOTIPE MOTOR INDUKSI 3 FASA ABSTRAKSI

DESAIN PROTOTIPE MOTOR INDUKSI 3 FASA ABSTRAKSI Jumanto, Hasyim Asy ari, Agus Supardi, Desain Prototipe Motor Induksi 3 Fasa DESAIN PROTOTIPE MOTOR INDUKSI 3 FASA Jumanto, Hasyim Asy ari, Agus Supardi Jurusan Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

PEMBANGKIT LISTRIK TENAGA AIR (PLTA) PEMBANGKIT LISTRIK TENAGA AIR (PLTA) Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit listrik yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Anak Tangga I Anak Tangga II Anak

Lebih terperinci

DRAFT PATEN (HKI) Judul Invensi: PEMBANGKIT LISTRIK TENAGA PIKOHIDRO PORTABLE. Inventor : Dr. Ramadoni Syahputra, S.T.,M.T. Syahrial Shaddiq, S.T.

DRAFT PATEN (HKI) Judul Invensi: PEMBANGKIT LISTRIK TENAGA PIKOHIDRO PORTABLE. Inventor : Dr. Ramadoni Syahputra, S.T.,M.T. Syahrial Shaddiq, S.T. 0 DRAFT PATEN (HKI) Judul Invensi: PEMBANGKIT LISTRIK TENAGA PIKOHIDRO PORTABLE Inventor : Dr. Ramadoni Syahputra, S.T.,M.T. Syahrial Shaddiq, S.T. Institusi Pengusul: UNIVERSITAS MUHAMMADIYAH YOGYAKARTA

Lebih terperinci

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO Anggi Muhammad Sabri Saragih 13204200 / Teknik Tenaga Elektrik Sekolah Teknik Elektro dan Informatika

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

Pemanfaatan Energi Angin Pada Sepeda Motor Bergerak Untuk Menyalakan Lampu

Pemanfaatan Energi Angin Pada Sepeda Motor Bergerak Untuk Menyalakan Lampu JURNAL Teori dan Aplikasi Fisika Vol 4, No 02,Juli Tahun 2016 Pemanfaatan Energi Angin Pada Sepeda Motor Bergerak Untuk Menyalakan Lampu Fitri Anggraini, Arif Surtono, dan Gurum Ahmad Pauzi Jurusan Fisika

Lebih terperinci

BAB III PEMILIHAN TURBIN DAN PERANCANGAN TEMPAT PLTMH. Pemilihan jenis turbin ditentukan berdasarkan kelebihan dan kekurangan dari

BAB III PEMILIHAN TURBIN DAN PERANCANGAN TEMPAT PLTMH. Pemilihan jenis turbin ditentukan berdasarkan kelebihan dan kekurangan dari BAB III PEMILIHAN TURBIN DAN PERANCANGAN TEMPAT PLTMH 3.1 Kriteria Pemilihan Jenis Turbin Pemilihan jenis turbin ditentukan berdasarkan kelebihan dan kekurangan dari jenis-jenis turbin, khususnya untuk

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data yang diperoleh dari eksperimen yaitu berupa tegangan out put

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data yang diperoleh dari eksperimen yaitu berupa tegangan out put 36 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian Data yang diperoleh dari eksperimen yaitu berupa tegangan out put alternator dan drop putaran mesin. Berikut ini adalah hasil penelitian dari

Lebih terperinci

LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH

LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH LAPORAN PRAKTIKUM MESIN LISTRIK MESIN DC MOTOR DC PENGUATAN TERPISAH Kelompok : 1 Nama Praktikan : Ainun Nidhar Nama Anggota Kelompok : 1. Adi Putra Utama 8. Faisal Azhari 2. Adri Pribagusdri 9. Fajry

Lebih terperinci

Optimasi Energi Terbarukan (Mikrohidro)

Optimasi Energi Terbarukan (Mikrohidro) Optimasi Energi Terbarukan (Mikrohidro) Oleh: ASROFUL ANAM, ST., MT. Jurusan Teknik Mesin S-1 Institut Teknologi Nasional Malang Hydropower klasifikasi Pembangkit Listrik Tenaga Hidro (PLTH) Big Dam Small

Lebih terperinci

Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel

Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel 48 Teknologi Elektro, Vol. 16, No. 2, Mei - Agustus 217 Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel I Wayan Budiarsana Saputra 1, Antonius Ibi

Lebih terperinci

BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN

BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN 26 BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN 4.1 Pengujian Generator Pengujian ini dilakukan untuk dapat memastikan generator bekerja dengan semestinya. pengujian ini akan dilakukan pada keluaran yang dihasilakan

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

RANCANG BANGUN SIMULASI SAFETY STARTING SYSTEM PADA MOBIL L300 ABSTRAK

RANCANG BANGUN SIMULASI SAFETY STARTING SYSTEM PADA MOBIL L300 ABSTRAK RANCANG BANGUN SIMULASI SAFETY STARTING SYSTEM PADA MOBIL L300 Muhammad Hafidz Anshori 1 dan Misbachudin 1 1) Program Studi D3 Teknik Otomotif Politeknik Hasnur Banjarmasin ABSTRAK Tingkat pencurian mobil

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN SEPEDA STATIS SEBAGAI SUMBER ENERGI ALTERNATIF MENGGUNAKAN SEPUL SEPEDA MOTOR

NASKAH PUBLIKASI PEMANFAATAN SEPEDA STATIS SEBAGAI SUMBER ENERGI ALTERNATIF MENGGUNAKAN SEPUL SEPEDA MOTOR NASKAH PUBLIKASI PEMANFAATAN SEPEDA STATIS SEBAGAI SUMBER ENERGI ALTERNATIF MENGGUNAKAN SEPUL SEPEDA MOTOR TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Program Studi Strata 1 Jurusan Teknik

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT USU

Lebih terperinci

DESAIN GENERATOR TIPE AXIAL KECEPATAN RENDAH DENGAN MAGNET PERMANEN

DESAIN GENERATOR TIPE AXIAL KECEPATAN RENDAH DENGAN MAGNET PERMANEN DESAIN GENERATOR TIPE AXIAL KECEPATAN RENDAH DENGAN MAGNET PERMANEN Hasyim Asy ari, Dhanar Yuwono Aji, Fahrur Septian Candra Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Surakarta Jl.

Lebih terperinci