KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32

Ukuran: px
Mulai penontonan dengan halaman:

Download "KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32"

Transkripsi

1 KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 Sahran Fauji, Suryadimal, M.T 1), Burmawi, M.Si 2) Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah Mada No.19 Olo Nanggalo Padang Telp Fax fj_ozie@yahoo.co.id Suryadimal2004@yahoo.com Burmawi_koto@yahoo.com ABSTRAK Turbin Pelton adalah turbin reaksi di mana pancaran air menumbuk roda yang terdapat sejumlah mangkok atau sudu - sudu. Pancaran air keluar dari nozzle dengan valve untuk mengatur aliran air. Nozzel turbin berada searah dengan piringan ranner. Air yang memutar sudu akan diteruskan menuju transmisi. Dari transmisi kemudian diteruskan menuju alternator DC. Dari alternator DC inilah akan dihasilkan energi listrik. Tujuan yang ingin di capai dalam penelitian ini adalah untuk menentukan performansi pada alat peraga turbin pelton type FM 32 modifikasi. Dari hasil percobaan yang di dapat, pada putaran pertama 3150 rpm dan debit 0,00038 mengalami kenaikan pada putaran kedua 3299 rpm dan debit 0,00042, pada putaran ketiga 3275 rpm dan debit 0,00032 mengalami penurunan. Jika debit aliran menggunakan watermeter semakin meningkat, maka putaran rata rata turbin mengalami peningkatan. Dan jika debit aliran semakin menurun, maka putaran rata rata turbin mengalami penurunan.!.pendahuluan Kondisi air yang bisa dimanfaatkan sebagai sumber daya (Resources) penghasil listrik adalah memiliki kapasitas aliran dan ketinggian tertentu dan instalasi. Semakin besar kapasitas aliran maupun ketinggian dari instalasi maka semakin besar energi yang bisa dimanfaatkan untuk menghasilkan energi listrik. Biasanya pembangkit listrik tenaga air yang dibangun berdasarkan kenyataan bahwa adanya air yang mengalir di suatu daerah dengan kapasitas dan ketinggian yang memadai. Istilah kapasitas mengacu kepada jumlah volume aliran air persatuan waktu (Flow Capacity), sedangkan beda ketinggian daerah aliran sampai ke instalasi dikenal dengan istilah heed. Air maupun energi air dapat di manfaatkan sebagai penggerak mula yang ekonomis pada suatu pembangkit listrik. Pembangkit listrik jenis ini dapat digolongkan atas: Hidro electrik power (PLTA),Thermal power (PLTU),Atomic power (PLTN) PLTU dan PLTN memanfaatkan tenaga uap air untuk menggerakkan mesin penggerak mula suatu pembangkit, sedangkan PLTA memanfaatkan energi potensial atau energi kinetik air.

2 Untuk merubah energi potensial maupun kinetik air dibutuhkan peralatan misalnya turbin Pelton.Energi Potensial air dipengaruhi oleh ketinggiannya, sedangkan energi kinetik dipengaruhi oleh kecepatan air tersebut. Turbin Pelton merupakan turbin impuls, yaitu turbin yang digerakkan oleh energi kinetik air. Semprotan (jet) air yang berkecepatan tinggi mengenai buket runner dan setelah menggerakkan runner air keluar pada kecepatan rendah, yang berarti sebagian energinya tidak diserap oleh runner. Tekanan air masuk dan keluar sudu adalah tekanan atmosfir. Turbin pelton adalah merupakan contoh terbaik dari turbin impuls. Turbin tersebut dioperasikan oleh satu atau lebih jet (nozzle) air yang masuk ke center bucket pada sekeliling parameter dari runner. Tenaga berasal dari gaya air dari tekanan tinggi yang menumbuk buckets sehingga dinamai impuls turbin. Turbin type FM 32 di beli pada tahun 2005 sampai pada tahun 2013 tidak pernah digunakan dalam praktikum.sehingga turbin mengalami kerusakan pada komponen dan tidak dapat di fungsikan kembali.dari kendala tersebut maka dilakukan perbaikan pada turbin pelton type FM 32 dan modifikasi sehingga mendapatkan performansi turbin. I. TINJAUAN PUSTAKA 2.1 Tinjauan Umum Sistem Pembangkit Pembangkitan listrik tenaga air adalah suatu bentuk perubahan energi dari air dengan ketinggian dan debit tertentu (energi potensial menjadi energi mekanik) dengan bantuan turbin. Dengan bantuan turbin air dan generator daya yang di hasilkan adalah suatu persentase hasil perkalian tinggi terjun air dan debit air. Oleh karena itu keberhasilan dalam perencanaan sistim pembangkitan listrik tenaga air tergantung dari debit dan tinggi jatuhnya potensi air sebagai pembangkit secara produktif. Sebagai perbandingan dengan memanfaatkan potensi yang ada maka sebuah sungai pada umumnya kemiringan di hulu sungai lebih curam dan memiliki tinggi terjun yang besar, sedangkan di hilir sungai tinggi terjun rendah dan memiliki debit yang besar. Adapun faktor yang menentukan ukuran, dimensi dan peralatan mesin adalah debit air. Sedangkan untuk tinggi terjun air tinggi dan debit kecil memerlukan peralatan, permesinan dan dimensi yang kecil pula, dan untuk tinggi terjun air yang rendah dan debit besar memerlukan peralatan, permesinan dan dimensi yang besar. Maka dari itu bagian hulu sungai merupakan lokasi yang efektif dan ekonomis dibandingkan hilir sungai. 2.2 Komponen Komponen utama pengujian turbin pelton type FM 32 Kompresor 1) Sudu Turbin 2) Nozzel 3) Rumah Turbin 4) Poros Penghubung 5) Generator 6) Pompa

3 II. Metodologi Penelitian 2.1 Diagram Alir Penelitian tersebut di bagi menjadi tiga bagian yaitu : Prosedur Pengujian 1.Pemeriksaan keadaan turbin 2.Hidupkan motor listrik 3.Buka katup 4.Buka katup nozzel 5.Catat pressure guage A 6.Catat pressure guage B 7.Catat arus(ampere meter) 8.Catat tegangan(volt meter) 9.Catat putaran poros turbin 10.Catat putaran poros generator mini arus searah (DC) 11.Hidupkan lampu yang dibutuhkan 12.Ulangi prosedur percobaan no.4 hingga Ulangi prosedur percobaan no.3 hingga 11 Catatan : Jika Ampere Meter dan Volt Meter tidak berfungsi dengan maksimal gunakan Multimeter. 3.1 Diagram Alir Penelitian 2.2 Data Alat Ukur Alat yang digunakan dalam pengujian yaitu : a) Ampere Meter Arus Searah b) Pressure Gauge c) Ampermeter d) Water Meter PDAM e) Stopwatch f) Slang Fleksibel g) Multi Meter 2.3 Pengolahan Data Setelah menentukan peralatan yang di butuhkan dalam eksperiment perancangan alat uji turbin pelton type FM 32 yang telah di tentukan,maka dilanjutkan ke tahap perencanaan,perencanaan 3.4 Waktu Dan Tempat Penlitian Waktu : Bulan Mai Juli 2014 Tempat : Penelitian dilakukan pada laboratoruim Prestasi Mesin Jurusan Teknik Mesin Fakultas Teknologi Industri Kampus III Universitas Bung Hatta.

4 = 1,030.(2.3, )/60 III. Analisa data. = 1, / Tabel Percobaan 4.3 Pengolahan Data Turbin Debit Aliran Air 0,00038 m3/s Bukaan Katup 1 Nozzel 1 Efisiensi = 339,59 Energi Air = (1,4-0,7).0,05m.9,81m/s² = 0,343 Nm Momen Puntir = (1,4 + 0,7).0,05m.9,81m/s² =1,030Nm Putaran Poros Rata Rata (N) = 99,005% Debit Aliran Air 0,00042 m3/24s Bukaan Katup 1 Nozzel 1/4 Energi Air = (1,9-0,8).0,05m.9,81m/s² = 0,539 Nm Momen Puntir = (1,9 + 0,8).0,05m.9,81m/s² = 1,324 Nm Putaran Poros Rata Rata (N) N = 3150 rpm Daya Poros

5 N = 3299,75 rpm Daya Poros = 1,324.(2.3, ,75)/60 = 457,27 Efisiensi N = 3275 rpm Daya Poros = 1,324.(2.3, )/60 = 453,854 Efisiensi = 84,836% Debit Aliran Air 0,00032 m3/s Bukaan Katup 1 Nozzel 1/2 Energi Air = (1,7-1).0,05m.9,81m/s² = 0,343 Nm Momen Puntir = (1,7 + 1).0,05m.9,81m/s² = 1,324 Nm Putaran Poros Rata Rata (N) = 132,316% Debit Aliran Air 0,00018 m3/s Bukaan Katup 1 Nozzel 3/4 Energi Air = (1 0,4).0,05m.9,81m/s² = 0,294 Nm Momen Puntir = (1 + 0,4).0,05m.9,81m/s² = 0,686 Nm

6 (N) Putaran Poros Rata Rata = (1,8+ 1,2).0,05m.9,81m/s² = 1,471 Nm Putaran Poros Rata Rata (N) N = 2937,25 rpm Daya Poros = 0,686.(2.3, ,25)/60 N = 2651,5 rpm = 210,898 Daya Poros Efisiensi = 1,471.(2.3, ,5)/60 = 408,237 Efisiensi = 71,734% Debit Aliran Air 0,00033 m3/s Bukaan Katup 1/2 Nozzel 1 Energi Air = 138,856% = (1,8 1,2).0,05m.9,81m/s² Debit Aliran Air 0,00034 m3/s Bukaan Katup 1/2 Nozzel 1/4 = 0,294 Nm Energi Air Momen Puntir

7 = (1,4 0,8).0,05m.9,81m/s² = 0,294 m/s² Momen Puntir Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2 Energi Air = (1,4+ 0,8).0,05m.9,81m/s² = 1,079 Nm = (1,4 0,8).0,05m.9,81m/s² = 0,294 Nm (N) Putaran Poros Rata Rata Momen Puntir = (1,4+ 0,8).0,05m.9,81m/s² = 1,079 Nm Putaran Poros Rata Rata (N) N = 2837 rpm Daya Poros = 1,079.(2.3, )/60 = 320,397 Efisiensi = 108,978% N = 2932,5 rpm Daya Poros = 1,079.(2.3, ,5)/60 = 331,182 Efisiensi

8 = 112,646% Debit Aliran Air 0, m3/s Bukaan Katup 1/2 Nozzel 3/4 Energi Air = (1 0,4).0,05m.9,81m/s² = 0,196 Nm Momen Puntir = 104,459% 4.3 Pengolahan Data Dinamo DC 12 Volt Debit Aliran Air 0,00038 m3/s Bukaan Katup 1 Nozzel 1 Putaran Poros Rata Rata (N) = (1,4+ 0,8).0,05m.9,81m/s² = 0,686 Nm Putaran Poros Rata Rata (N) N = 5497,75 rpm Daya Dinamo N = 2851,5 rpm P = 4,3.0,04.0,8 =0,1376 Daya Poros = 0,686.(2.3, ,5)/60 = 204, Debit Aliran Air 0,00042 m3/s Bukaan Katup 1 Nozzel 1/4 Putaran Poros Rata Rata (N) Efisiensi

9 4.3.4 Debit Aliran Air 0,00018 m3/s Bukaan Katup 1 Nozzel 3/4 Putaran Poros Rata Rata (N) N = 6379,25 rpm Daya Dinamo P = 4,4.0,04.0,8 =0,1408 N = 5704,25 rpm Daya Dinamo Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2 Putaran Poros Rata Rata (N) P = 4,1.0,04.0,8 =0, Debit Aliran Air 0,00033 m3/s Bukaan Katup 1/2 Nozzel 1 Putaran Poros Rata Rata (N) N = 6242,5 rpm Daya Dinamo P = 4,4.0,04.0,8 =0,1408 Daya Dinamo N = 4882,75 rpm

10 P = 3,9.0,03.0,8 =0, Debit Aliran Air 0,00034 m3/s Bukaan Katup 1/2 Nozzel 1/4 Putaran Poros Rata Rata (N) P = 3,9.0,03.0,8 =0, Debit Aliran Air 0,00017 m3/s Bukaan Katup 1/2 Nozzel 3/4 Putaran Poros Rata Rata (N) N = 5383 rpm Daya Dinamo N = 5532,75 rpm P = 4,0.0,04.0,8 Daya Dinamo =0, Debit Aliran Air 0,00025 m3/s Bukaan Katup 1/2 Nozzel 1/2 Putaran Poros Rata Rata (N) P = 3,9.0,03.0,8 =0, Grafik dan analisa hasil percobaan N = 5417,25 rpm Daya Dinamo

11 turbin 1,324,dan pada putaran 3275 dan momen puntirnya tidak mengalami perubahan,pada grafik di atas dapat kita lihat bahwa jika putaran rata- rata tidak mengalami peningkatan yang signifikan maka momen puntirnya tidak akan mengalami perubahan. Grafik 4.1. Grafik terhadap debit dengan putaran. Dari hasil percobaan yang di dapat, dapat kita lihat pada putaran pertama 3150 rpm dan debit 0,00038 mengalami kenaikan pada putaran kedua 3299 rpm dan debit 0,00042, pada putaran ketiga 3275 rpm dan debit 0,00032 mengalami penurunan. Jika debit aliran menggunakan watermeter semakin meningkat, maka putaran rata rata turbin mengalami peningkatan. Dan jika debit aliran semakin menurun, maka putaran rata rata turbin mengalami penurunan. Grafik 4.3. hubungan antara daya poros dengan putaran. Dari hasil percobaan di dapatkan grafik hasil yang mana grafik di atas menunjukkan bahwa setiap pergantian besaran putaran maka daya poros mengalami perubahan daya. Grafik 4.2.hubungan antara moment puntir dengan putaran. Dari hasil percobaan yang dilakukan bahwa moment puntir pada putaran 3150 rpm dan momen puntir 1,03 mengalami kenaikan pada putaran 3299 dan momen puntir Grafik 4.4. hubungan efisiensi dengan putaran. Dari grafik diatas menunjukkan efisiensi dari turbin mengalami perubahan pada saat putaran poros semakin tinggi,terlihat dari mulai putaran 3150 rpm dan

12 efisiensi 99,005 sampai 3275 rpm dan efisiensi 132,316. mengalami kenaikan pada tekanan 1,324, maka dapat kita ketahui semakin besar debit aliran air maka terhadap tekanan pada air juga mengalami peningkatan, begitu juga pada debit aliran jika turun maka tekanan air juga mengalami penurunan. 4.6.Grafik Dan Analisa Hasil Percobaan Dinamo 12 Volt Grafik 4.5. hubungan antara daya air dengan putaran. Dari grafik diatas didapat di lihat dari putaran rata rata turbin pertama 3299 rpm dan daya air 0,539 terjadi penurunan pada putaran rata rata turbin kedua 3275 dan daya air 0,343 dan pada putaran rata rata turbin ketiga 2937,25 dan daya air 0,294 juga mengalami penurunan, maka dapat kita lihat jika putaran rata rata turbin mengalami penurunan maka daya air juga mengalami penurunan. Grafik 4.6.hubungan debit IV. aliran dengan tekanan air. Dari grafik di atas dapat di lihat dari tekanan air 1,030 Grafik 4.7. hubungan antara debit aliran terhadap putaran dynamo. Dari hasil percobaan yang di dapat, grafik menunjukan bahwa pada putaran rata- rata dinamo mengalami peningkatan yang signifikan, terlihat pada putaran rata rata dinammo 5383 rpm dan debit 0,00034 Q=m3/s. jika putaran rata rata dynamo meningkat seperti pada putaran 5417,25 terjadi penurunan pada debit aliran air yaitu 0,00025, apabila putaran rata rata dinamo meningkat maka debit aliran air akan mengalami penurunan. Kesimpulan dan saran. 4.1 Kesimpulan. Dari hasil percobaan turbin pelton type FM 32 disimpulkan sebagai berikut:

13 Semakin tinggi putaran rata rata turbin 3299 rpm membuat debit aliran semakin menurun,begitu juga pada momen puntir. Setiap pergantian putaran poros rpm maka daya poros mengalami perubahan daya. Efisiensi turbin mengalami perubahan pada saat putaran poros semakin tinggi. Semakin tinggi putaran poros maka terjadi penurunan daya air. 5.2.Saran Dari pengujian turbin pelton type FM 32 daya arus yang dihasilkan masih belum mendapatkan hasil yang maksimal,karena generator yang di gunakan yaitu generator arus searah (DC) 12 volt.untuk mendapatkan hasil yang lebih maksimal generator yang digunakan harus generator voltase yang lebih besar. air.htmlhttp:// /PRINSIP_KERJA_GENERA TOR_SINKRON Sumber Sumber /03/turbin- Sumber :Turbin Pompa dan Kompresor. Fritz Dietzel Sumber : t-for-all/page/2/ Sumber :Pedoman Study Kelayakan Sipil Dirjen ESDM 2009 DAFTAR PUSTAKA Buku Penuntun Praktikum Prestasi Mesin,Jurusan Teknik Mesin,Fakultas Teknologi Industri,Universitas Bung Hatta,Padang 2005

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA Hadimi, Supandi dan Agus Rohermanto Dosen Jurusan Teknik Mesin Politeknik Negeri

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

BAB I PENDAHULUAN. energi tanpa mengeluarkan biaya yang relatif banyak dibanding dengan

BAB I PENDAHULUAN. energi tanpa mengeluarkan biaya yang relatif banyak dibanding dengan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Salah satu contoh adanya persaingan di dalam bidang teknologi adalah adanya persaingan teknologi pembangkit listrik. Dengan melihat adanya perkembangan

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON

PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON PENGARUH JARAK SEMPROT NOZZLE TERHADAP PUTARAN POROS TURBIN DAN DAYA LISTRIK YANGDIHASILKAN PADA PROTOTYPE TURBIN PELTON Mulyadi 1) Ir. Margianto, M.T 2) Ena Marlina, S.T, M.T 3) Program Strata Satu Teknik

Lebih terperinci

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar

Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Pengaruh Variasi Tebal Sudu Terhadap Kinerja Kincir Air Tipe Sudu Datar Slamet Wahyudi, Dhimas Nur Cahyadi, Purnami Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jl. MT. Haryono 167, Malang

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 MSUDUT SUDU JALAN 45º DENGAN VARIABEL PERUBAHANDEBIT (Q) DAN SUDUT SUDU PENGARAH NASKAH PUBLIKASI Diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DONALD SUPRI

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI RANCANG BANGUN PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN TURBIN PELTON

LAPORAN TUGAS AKHIR MODIFIKASI RANCANG BANGUN PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN TURBIN PELTON LAPORAN TUGAS AKHIR MODIFIKASI RANCANG BANGUN PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN TURBIN PELTON Diajukan sebagai salah satu tugas dan syarat untuk memperoleh gelar Ahli Madya ( AMd ) Program

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Dalam melaksanakan pengujian ini penulis menggunakan metode pengujian dan prosedur pengujian. Sehingga langkah-langkah serta tujuan dari pengujian yang dilakukan dapat sesuai

Lebih terperinci

PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI

PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI PENGUJIAN PRESTASI KINCIR AIR TIPE OVERSHOT DI IRIGASI KAMPUS UNIVERSITAS RIAU DENGAN PENSTOCK BERVARIASI T Harismandri 1, Asral 2 Laboratorium, Jurusan Teknik Mesin, Fakultas Teknik Universitas Riau Kampus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR

LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR Disusun Oleh: ADITYA YOGA PRATAMA 20110130082 Telah Depertahankan Di Depan Tim Penguji

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

PENGARUH VARIASI UKURAN DIAMETER NOZZLE TERHADAP DAYA DAN EFISIENSI KINCIR AIR SUDU DATAR

PENGARUH VARIASI UKURAN DIAMETER NOZZLE TERHADAP DAYA DAN EFISIENSI KINCIR AIR SUDU DATAR PENGARUH VARIASI UKURAN DIAMETER NOZZLE TERHADAP DAYA DAN EFISIENSI KINCIR AIR SUDU DATAR Hangga Putra Prabawa 1*, Dan Mugisidi 2, Moh. Yusuf D 3, Oktarina Heriyani 4 *1234 Program Studi Teknik Mesin,

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu

I. PENDAHULUAN Saat ini Negara berkembang di dunia, khususnya Indonesia telah membuat turbin air jenis mini dan mikro hydro yang merupakan salah satu DISTRIBUSI TEKANAN FLUIDA PADA NOZEL TURBIN PELTON BERSKALA MIKRO DENGAN MENGGUNAKAN PERANGKAT LUNAK SOLIDWORKS Dr. Rr. Sri Poernomo Sari ST., MT. *), Muharom Firmanzah **) *) Dosen Teknik Mesin Universitas

Lebih terperinci

PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA

PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA Jurnal Dinamika, September 2016, halaman 42-48 P-ISSN: 2087 7889 E-ISSN: 2503 4863 Vol. 07. No.2 PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA Idawati Supu,

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR Adi Ramadhani Muhammad Arief, G. D. Soplanit, I Nyoman Gede Fakultas Teknik, Jurusan Teknik Mesin, Universitas Sam Ratulangi Manado

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

keuntungan dan kelebihan. Pemanfaatan energi tenaga air atau hydropower di Indonesia juga sangat minim [1]. digunakan adalah plat besi dan sekat sekat

keuntungan dan kelebihan. Pemanfaatan energi tenaga air atau hydropower di Indonesia juga sangat minim [1]. digunakan adalah plat besi dan sekat sekat PENGARUH JARAK DAN UKURAN NOZZLE PADA PUTARAN SUDU TERHADAP DAYA LISTRIK TURBIN PELTON Dr. Sri Purnomo Sari, ST., MT. *), Rendi Yusuf **) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa Teknik

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

PEMBANGKIT LISTRIK TENAGA AIR (PLTA) PEMBANGKIT LISTRIK TENAGA AIR (PLTA) Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit listrik yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik NASKAH PUBLIKASI APLIKASI GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) MENGGUNAKAN KINCIR AIR TIPE PELTON Disusun untuk Memenuhi Tugas dan Syarat-syarat

Lebih terperinci

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT.

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT. PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON Dr. Sri Poernomo Sari, ST., MT.*), Ryan Fasha**) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kebutuhan akan energi hampir semua negara meningkat secara sinigfikan. Tetapi jika dilihat dari energi yang dapat dihasilkan sangat terbatas dan juga masih sangat mahal

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan kebutuhan yang sangat penting bagi manusia dalam berbagai sektor, baik dalam rumah tangga maupun dalam perindustrian. Di Indonesia, penggunaan

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

2. TINJAUAN LITERATUR

2. TINJAUAN LITERATUR 2. TINJAUAN LITERATUR 2.1. Pemodelan Sistem Model merupakan representasi suatu sistem dan dipergunakan sebagai alat peramalan dan pengendalian. Fungsi utama suatu model adalah kemampuannya untuk menjelaskan

Lebih terperinci

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT

ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT ANALISIS UNJUK KERJA TURBIN AIR KAPASITAS 81,1 MW UNIT 1 PADA BEBAN NORMAL DAN BEBAN PUNCAK DI PT INDONESIA ASAHAN ALUMINIUM POWER PLANT LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG Dwi Irawan Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara No. 116 Kota Metro (0725) 42445-42454 Email

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER STUDI EKSPERIMENTAL PENGARUH PERUBAHAN KECEPATAN ANGIN TERHADAP EFISIENSI DAYA & PUTARAN KRITIS PADA MINI WIND CATCHER Oleh : Bernadie Ridwan 2105100081 Dosen Pembimbing : Prof. Ir. I Nyoman Sutantra,

Lebih terperinci

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Ilyas Rochani, Sahid, Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Sudarto, SH

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

PEMBANGKIT LISTRIK METODE PUMP AS TURBINES (PATs)

PEMBANGKIT LISTRIK METODE PUMP AS TURBINES (PATs) PEMBANGKIT LISTRIK METODE PUMP AS TURBINES (PATs) Asep Rachmat, Ali Hamdani Teknik Mesin, Fakultas Teknik Universitas Majalengka Email: asep18rachmat75@gmail.com ABSTRACK Pump As Turbines (PATs) merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

PENGARUH VARIASI JUMLAH SUDU TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON

PENGARUH VARIASI JUMLAH SUDU TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON PENGARUH VARIASI JUMLAH SUDU TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON Mohammad Ulinnuha 1) Ir. Margianto, M.T 2) EnaMarlina, S.T, M.T 3) Program Strata SatuTeknikMesinUniversitas

Lebih terperinci

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR

DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR DRAFT PATENT LINTASAN RANTAI BERBENTUK SEGITIGA PYTHAGORAS PADA ALAT PEMBANGKIT ENERGI MEKANIK DENGAN MENGGUNAKAN ENERGI POTENSIAL AIR Oleh : Dr Suhartono S.Si M.Kom 1 Deskrisi LINTASAN RANTAI BERBENTUK

Lebih terperinci

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE

UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE UJI EKSPERIMENTAL TURBIN KAPLAN DENGAN 5 RUNNER BLADE DAN ANALISA PERBANDINGAN VARIASI SUDUT GUIDE VANE SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik JAN SIMALUNGUN PURBA NIM.

Lebih terperinci

DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO

DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO Sunardi 1*, Wahyu Sapto Aji 2*, Hernawan Aji Nugroho 3 1,2,3 Teknik Elektro Universitas Ahmad Dahlan Jl. Prof. Soepomo Janturan Yogyakarta * Email: sunargm@gmail.com

Lebih terperinci

Gambar 1.1. Proses kerja dalam PLTU

Gambar 1.1. Proses kerja dalam PLTU BAB I PENDAHULUAN 1.1. Latar Belakang Tenaga listrik merupakan salah satu faktor yang sangat penting dalam kehidupan umat manusia. Hal ini karena hampir semua peralatan dalam kehidupan sehari-hari membutuhkan

Lebih terperinci

JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL

JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL JURNAL ANALISA PENGARUH SUDUT PENGARAH ALIRAN DAN DEBIT ALIRAN TERHADAP KINERJA TURBIN KINETIK TIPE POROS VERTIKAL THE INFLUENCE ANALYSIS OF CURRENT STEERING ANGLE AND THE CURRENT RATE OF FLOW TOWARD KINETIC

Lebih terperinci

SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO TUGAS AKHIR BIDANG KONVERSI ENERGI SIMULASI PERANCANGAN TURBIN PROPELLER SUMBU VERTIKAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Diajukan Sebagai Salah Satu Syarat Untuk Menyelesaikan Pendidikan Tahap

Lebih terperinci

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH SUDUT SUDU DAN DEBIT ALIRAN TERHDAP PERFORMA TURBIN KAPLAN Frisca Anugra Putra 421204243

Lebih terperinci

UNJUK KERJA POMPA AIR SHIMIZU TYPE PS-128 BIT YANG DIFUNGSIKAN SEBAGAI TURBIN AIR

UNJUK KERJA POMPA AIR SHIMIZU TYPE PS-128 BIT YANG DIFUNGSIKAN SEBAGAI TURBIN AIR UNJUK KERJA POMPA AIR SHIMIZU TYPE PS-128 BIT YANG DIFUNGSIKAN SEBAGAI TURBIN AIR Harison B. Situmorang 1), Gerrits D. Soplanit 2), I Nyoman Gede 3). Jurusan Teknik Mesin Universitas Sam Ratulangi ABSTRACT

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah :

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah : BAB III METODE PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian Bahan yang digunakan pada penelitian ini adalah : Air 3.1.2. Alat Penelitian Alat yang digunakan dalam penelitian ini dapat dilihat

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

PENGARUH JUMLAH DAN DIAMETER NOZZLE TERHADAP PUTARAN DAN DAYA PADA TURBIN PELTON SKRIPSI

PENGARUH JUMLAH DAN DIAMETER NOZZLE TERHADAP PUTARAN DAN DAYA PADA TURBIN PELTON SKRIPSI PENGARUH JUMLAH DAN DIAMETER NOZZLE TERHADAP PUTARAN DAN DAYA PADA TURBIN PELTON SKRIPSI Diajukan Dan Disusun Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Jenjang Strata Satu (S1) Pada Program

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

BAB I PENDAHULUAN. Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi

BAB I PENDAHULUAN. Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi listrik melalui pembangkit listrik tenaga air. Banyaknya sungai dan danau air

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF

KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF KAJI EKSPERIMENTAL TURBIN ANGIN PEMBANGKIT LISTRIK TIPE SAVONIUS JENIS SPLIT S DENGAN SISTEM MAGNETIC LEVITATION SEBAGAI SUMBER ENERGI ALTERNATIF Miftahur Rahmat 1,Kaidir 1,Edi Septe S 1 1 Jurusan Teknik

Lebih terperinci

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L

SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L SISTEM PERENCANAAN DAN PERANCANGAN TURBIN ANGIN SUMBU VERTIKAL SAVONIUS DENGAN BLADE TIPE L Oleh Hendriansyah 23410220 Pembimbing : Dr. Ridwan, MT. Latar Belakang Energi angin merupakan salah satu energi

Lebih terperinci

Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel

Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel 48 Teknologi Elektro, Vol. 16, No. 2, Mei - Agustus 217 Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel I Wayan Budiarsana Saputra 1, Antonius Ibi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

LAPORAN TUGAS AKHIR. Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air

LAPORAN TUGAS AKHIR. Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air LAPORAN TUGAS AKHIR Pembuatan dan Pengujian Turbin Pelton Diameter 20cm pada Sistem Simulator Sirkulasi Air Manufacturing and Testing of Turbine Pelton Diameter of 20 cm on the simulation of water circulation

Lebih terperinci

PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON

PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON PENGARUH VARIASI JUMLAH NOZZLE TERHADAP DAYA LISTRIK YANG DIHASILKAN PADA PROTOTYPE TURBIN PELTON Sufyan Assauri 1) Ir. Margianto, M.T 2) Ena Marlina, S.T, M.T 3) Program Strata Satu Teknik Mesin Universitas

Lebih terperinci

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO. 2.2 Klasifikasi Pembangkit Listrik Tenaga Hidro

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO. 2.2 Klasifikasi Pembangkit Listrik Tenaga Hidro BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO 2.1 Pembangkit Listrik Tenaga Air Pembangkit listrik tenaga air (PLTA) adalah pembangkit yang menggunakan energi potensial dan kinetik dari air untuk

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB.

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. Mekanika Jurnal Teknik Mesin, Volume 1 No. 1, 2015 KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. FLUIDA Supardi 1,Moh.

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro II. TINJAUAN PUSTAKA A. Tinjauan Umum PLTMH Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro artinya air. Dalam prakteknya istilah ini tidak merupakan sesuatu yang baku namun Mikro

Lebih terperinci

BAB I PENDAHULUAN. masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah

BAB I PENDAHULUAN. masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah BAB I PENDAHULUAN 1.1. LATAR BELAKANG Kebutuhan akan energi listrik amat vital dalam kehidupan masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah diamati listrik sangat diperlukan dalam kehidupan

Lebih terperinci