BAB II TINJAUAN PUSTAKA. atmosfer ke bumi dan kembali ke atmosfer melalui kondensasi, presipitasi,

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. atmosfer ke bumi dan kembali ke atmosfer melalui kondensasi, presipitasi,"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfer melalui kondensasi, presipitasi, evaporasi dan transpirasi. Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut. Gambar 2.1. Siklus Hidrologi ( Untuk menjaga siklus hidrologi agar komponen utamanya dapat bekerja sebagaimana mestinya, maka perlu dipertahankan kesetimbangan melalui proses pengisian air hujan dengan meresapkannya ke dalam pori-pori/rongga tanah, batuan atau yang disebut dengan upaya konservasi air.

2 Prinsip dasar konservasi air adalah mencegah atau meminimalkan air yang hilang sebagai aliran permukaan dan menyimpannya semaksimal mungkin ke dalam tubuh bumi. Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda: a) Evaporasi/ transpirasi - Air yang ada di laut, di daratan, di sungai, di tanaman, dsb. kemudian akan menguap ke angkasa (atmosfer) dan kemudian akan menjadi awan. Pada keadaan jenuh uap air (awan) itu akan menjadi bintikbintik air yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es. b) Infiltrasi/ Perkolasi ke dalam tanah - Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan. c) Air Permukaan - Air bergerak di atas permukaan tanah dekat dengan aliran utama dan danau; makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat biasanya pada daerah urban. Sungai-sungai bergabung satu sama lain dan membentuk sungai utama yang membawa seluruh air permukaan disekitar daerah aliran sungai menuju laut.air permukaan, baik yang mengalir maupun yang tergenang (danau, waduk, rawa), dan sebagian air bawah permukaan

3 akan terkumpul dan mengalir membentuk sungai dan berakhir ke laut. Proses perjalanan air di daratan itu terjadi dalam komponen-komponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS). Jumlah air di bumi secara keseluruhan relatif tetap, yang berubah adalah wujud dan tempatnya. Gambar 2.2. Posisi Sumur Resapan dalam Siklus Hidrologi ( 2.2 Konsep Laju Infiltrasi Infiltrasi dimaksudkan sebagai proses masuknya air ke permukaan tanah. Ini merupakan bagian yang sangat penting dalam daur hidrologi maupun dalam proses pengalihragaman hujan menjadi aliran sungai. Pada saat air hujan jatuh kepermukaan tanah, sebagian air tersebut tertahan di cekungan-cekungan, sebagian air mengalir sebagai aliran permukaan (surface run off) dan sebagian lainnya meresap kedalam tanah. Saat hujan mencapai permukaan lahan maka akan terdapat bagian hujan yang mengisi ruang kosong (void) dalam tanah yang terisi udara sampai mencapai kapasitas lapang (field capacity) dan berikutnya bergerak ke bawah secara

4 gravitasi akibat berat sendiri dan bergerak terus ke bawah (perlocation) ke dalamdaerah jenuh (saturated zone) yang terdapat di bawah permukaan air tanah (Rusli, 2008) Pengertian Infiltrasi Secara umum peresapan air merupakan proses masuknya air hujan ke dalam tanah sebagai akibat adanya gaya kapiler dan gaya gravitasi dengan cara infiltrasi maupun perkolasi ke lapisan tanah yang lebih dalam. Infiltrasi merupakan cara air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan. Dengan pengaruh gaya gravitasi air hujan akan masuk ke dalam tanah melalui pori-pori tanah dan gaya kapiler akan mengalirkan air tersebut ke atas ke bawah dan ke arah horizontal. Sedangkan laju peresapan air adalah kecepatan masuknya air hujan ke dalam tanah selama hujan berlangsung karena faktor alam maupun berkat adanya campur tangan manusia. Laju peresapan air dipengaruhi oleh beberapa faktor yaitu : tekstur tanah, bahan organik tanah, kepadatan tanah, jenis dan jumlah. Pengertian infiltrasi (infiltration) sering dicampurkan-adukkan untuk kepentingan praktis dengan pengertian perkolasi (percolation). Yang terakhir ini merupakan proses aliran air dalam tanah secara vertical akibat gaya berat. Memang keduanya saling berpengaruh akan tetapi hendaknya secara teoretik pengertian keduanya dibedakan.

5 Dalam kaitan ini terdapat dua pengertian tentang kuantitas infiltrasi, yaitu kapasitas infiltrasi, dan laju infiltrasi. a) Kapasitas infiltrasi adalah laju infiltrasi maksimum untuk suatu jenis tanah tertentu, Kapasitas infiltrasi terjadi ketika intensitas hujan melebihi kemampuan tanah dalam menyerap kelembaban tanah. Sebaliknya apabila intensitas hujan lebih kecil dari pada kapasitas infiltrasi, maka laju infiltrasi sama dengan laju curah hujan. b) Laju infiltrasi adalah laju infiltrasi nyata suatu jenis tanah tertentu. Laju infiltrasi umumnya dinyatakan dalam satuan yang sama dengan satuan intensitascurah hujan, yaitu millimeter per jam (mm/jam). Air infiltrasi yang tidak kembali lagi ke atmosfer melalui proses evapotranspirasi akan menjadi air tanah untuk seterusnya mengalir ke sungai disekitar. (a) (b) Gambar 2. 3 Skema Infiltrasi dan Perlokasi pada Dua Lapis Tanah ( a) Infiltrasi Besar dengan Perlokasi Kecil. b) Infiltrasi Kecil dengan Perlokasi Besar. Secara fisik terdapat faktor yang berpengaruh, yaitu: jenis tanah, kepadatan tanah, kelembaban tanah, tutup tumbuhan (vegetation cover), kemiringan suatu daerah, penambahan zat kimia pada tanah dan menutup areal permukaan tanah (top soil). Setiap jenis tanah mempunyai laju infiltrasi

6 karakteristik yang berbeda, yang bervariasi dari yang sangat tinggi sampai yang sangat rendah. Jenis tanah berpasir umumnya cenderung mempunyai laju infiltrasi yang tinggi, akan tetapi tanah liat sebaliknya, cenderung mempunyai laju infiltrasi yang rendah. Untuk satu jenis tanah yang sama dengan kepadatan yang berbeda mempunyai laju infiltrasi yang berbeda pula. Makin padat suatu kondisi tanah, maka makin kecil pula laju infiltrasinya, begitu juga sebaliknya, makin renggang suatu kondisi butir-butir tanah, maka laju infiltrasinya akan semakin besar pula. Kelembaban tanah yang selalu berubah-ubah setiap saat juga berpengaruh terhadap laju infiltrasi. Makin tinggi kadar air dalam tanah, maka laju infiltrasi tanah tersebut makin kecil. Pengaruh tanaman diatas permukaan tanah terdapat dua pengaruh, yaitu berfungsi sebagai penghambat aliran di permukaan tanah sehingga kesempatan untuk berinfiltrasi akan semakin besar, sedangkan yang kedua adalah, sistem akar-akaran yang dapat lebih menggemburkan struktur tanahnya sehingga laju infiltrasi dapat menjadi cepat. Maka makin baik tutup tanaman yang ada, laju infiltrasi cenderung lebih tinggi. Kemiringan lahan memberikan pengaruh yang kecil terhadap infiltrasi, walaupun begitu, terdapat perbedaan infiltrasi antara lahan datar dengan lahan miring. Infiltrasi pada lahan datar akan lebih besar daripada lahan miring. Penambahan bahan kimia dalam tanah ada dua jenis. Yang pertama dimaksudkan untuk memperkuat formasi agregate tanah, sehingga struktur tanah menjadi diperbaiki. Akibatnya bukan saja infiltrasi yang meningkat, tetapi juga pergerakan air di dalam tanah (perkolasi). Apabila permukaan tanah tertutup oleh suatu bahan seperti beton, batako, dan sebagainya, maka areal tanah tersebut tidak bisa berinfiltrasi sama sekali.

7 2.2.2 Proses Infiltrasi Salah satu proses yang berkaitan dengan distribusi air hujan yang jatuh ke permukaan bumi adalah infiltrasi. Infiltrasi merupakan proses masuk atau meresapnya air dari atas permukaan tanah ke dalam bumi. Jika air hujan meresap ke dalam tanah maka kadar lengas tanah meningkat hingga mencapai kapasitas lapang. Pada kondisi kapasitas lapang air yang masuk menjadi perkolasi dan mengisi daerah yang lebih rendah energi potensialnya sehingga mendorong terjadinya aliran antara (interflow) dan aliran bawah permukaan lainnya (base flow). Air yang berada pada lapisan air tanah jenuh dapat pula bergerak ke segala arah (ke samping dan ke atas) dengan gaya kapiler atau dengan bantuan penyerapan oleh tanaman melalui tudung akar. Proses infiltrasi sangat ditentukan oleh waktu. Jumlah air yang masuk kedalam tanah dalam suatu periode waktu disebut laju infiltrasi. Laju infiltrasi pada suatu tempat akan semakin kecil seiring kejenuhan tanah oleh air. Pada saat tertentu laju infiltrasi menjadi tetap. Nilai laju inilah yang kemudian disebut laju perkolasi. Ketika air hujan jatuh di atas permukaan tanah, tergantung pada kondisi biofisik permukaan tanah, sebagian atau seluruh air hujan tersebut akan mengalir masuk ke dalam tanah melalui pori-pori permukaan tanah. Proses mengalirnya air hujan ke dalam tanah disebabkan oleh tarikan gaya gravitasi dan gaya kapiler tanah. Di bawah pengaruh gaya gravitasi air hujan mengalir vertikal kedalam tanah, sedangkan pada gaya kapiler bersifat mengalirkan air tersebut tegak lurus keatas, ke bawah, dan kearah horizontal (lateral). Gaya kapiler bekerja nyata pada tanah dengan pori-pori yang relativ kecil.

8 2.2.3 Faktor yang Mempengaruhi Infiltrasi Perpindahan air dari atas ke dalam permukaan tanah baik secara vertikal maupun secara horizontal disebut infiltrasi. Banyaknya air yang terinfiltrasi dalam satuan waktu disebut laju infiltrasi. Besarnya laju infiltrasi (f ) dinyatakan dalam mm/jam atau mm/hari. Laju infiltrasi akan sama dengan intensitas hujan (I), bila laju infiltrasi tersebut lebih kecil dari daya infiltrasinya. Jadi f fp dan f I (Seyhan, 1990). Infiltrasi berubah-ubah sesuai dengan intensitas curah hujan. Akan tetapi setelah mencapai limitnya, banyaknya infiltrasi akan berlangsung terus sesuai dengan kecepatan absorbsi setiap tanah. Pada tanah yang sama kapasitas infiltrasinya berbeda-beda, tergantung dari kondisi permukaan tanah, struktur tanah, tumbuh-tumbuhan dan lain-lain. Di samping intensitas curah hujan, infiltrasi berubah-ubah karena dipengaruhi oleh kelembaban tanah dan udara yang terdapat dalam tanah. Beberapa faktor internal dan eksternal yang mempengaruhi laju infiltrasi adalah sebagai berikut: 1. Tinggi genangan air di atas permukaan tanah dan tebal lapisan tanah yang jenuh. 2. Kadar air atau lengas tanah. 3. Pemadatan tanah oleh curah hujan. 4. Penyumbatan pori tanah mikro oleh partikel tanah halus seperti bahan endapan dari partikel liat. 5. Pemadatan tanah oleh manusia dan hewan akibat traffic line oleh alat olah. 6. Struktur tanah.

9 7. Kondisi perakaran tumbuhan baik akar aktif maupun akar mati (bahan organik). 8. Proporsi udara yang terdapat dalam tanah. 9. Topografi atau kemiringan lahan Intensitas hujan. 10. Kekasaran permukaan tanah. 11. Kualitas air yang akan terinfiltrasi. 12. Suhu udara tanah dan udara sekitar Apabila semua faktor-faktor di atas dikelompokkan, maka dapat dikategorikan menjadi dua faktor utama yaitu: 1. Faktor yang mempengaruhi air untuk tinggal di suatu tempat sehingga air mendapat kesempatan untuk terinfiltrasi (oppurtunity time). 2. Faktor yang mempengaruhi proses masuknya air ke dalam tanah. Oleh karena itu, infiltrasi juga biasanya disebut sebagai aliran air yang masuk ke dalam tanah sebagai akibat gaya kapiler dan gravitasi. Laju air infiltrasi yang dipengaruhi oleh gaya gravitasi dibatasi oleh besarnya diameter pori-pori tanah. Tanah dengan pori-pori jenuh air mempunyai kapasitas lebih kecil dibandingkan dengan tanah dalam keadaan kering (Asdak, 2007). Dengan demikian, mekanisme infiltrasi melibatkan tiga proses yang tidak saling mempengaruhi (Asdak, 2007): 1. Proses masuknya air hujan melalui pori-pori permukaan tanah. 2. Tertampungnya air hujan tersebut di dalam tanah. 3. Proses mengalirnya air tersebut ke tempat lain (bawah, samping dan atas). Pengukuran laju infiltrasi dapat dilakukan pada permukaan tanah, pada kedalam tertentu, pada lahan kosong atau pada lahan bervegetasi. Walaupun satuan infiltrasi serupa dengan konduktivitas hidraulik, terdapat perbedaan antara

10 keduanya. Laju infiltrasi memiliki kegunaan seperti studi pembuangan limbah cair, evaluasi potensi lahan tanki septik, efisiensi pencucian dan drainase, kebutuhan irigasi, penyebaran air dan imbuhan air tanah, dan kebocoran saluran atau bendungan dan kegunaan lainnya Pengaruh Tekstur/Bentuk Tanah Terhadap Laju Infiltrasi Jumlah dan ukuran pori yang menentukan adalah jumlah pori-pori yang berukuran besar. Makin banyak pori-pori besar maka kapasitas infiltrasi makin besar pula. Atas dasar ukuran pori tersebut, liat kaya akan pori halus dan miskin akan pori besar. Sebaliknya fraksi pasir banyak mengandung pori besar dan sedikit pori halus. Dengan demikian kapasitas infiltrasi pada tanah-tanah pasir jauh lebih besar daripada tanah liat. Tanah-tanah yang bertekstur kasar menciptakan struktur tanah yang ringan. Sebaliknya tanah-tanah yang terbentuk atau tersusun dari tekstur tanah yang halus menyebabkan terbentuknya tanah-tanah yang bertekstur berat. Tanah dengan struktur tanah yang berat mempunyai jumlah pori halus yang banyak dan miskin akan pori besar. Sebaliknya tanah yang ringan mengandung banyak pori besar dan sedikit pori halus. Dengan demikian kapasitas infiltrasi dari kedua jenis tanah tanah tersebut akan berbeda pula, yaitu tanah yang berstruktur ringan kapasitas infiltrasinya akan lebih besar dibandingkan dengan tanah-tanah yang berstruktur berat. Menurut Kusnaedi (2002), laju infiltrasi berbeda menurut jenis tanahnya seperti pada Tabel berikut ini.

11 Tabel 2. 1 Tekstur Tanah dengan Kecepatan Infiltrasi Kecepatan Infiltrasi Kriteria (cm/jam) Sangat Cepat Cepat Sedang Lambat < 0.50 Sangat Lambat Sumber : Kusnaedi, Arti Penting dari Infiltrasi. Infiltrasi mempunyai arti penting terhadap beberapa hal berikut : a) Proses limpasan (run off) Daya infiltrasi menentukan banyaknya air hujan yang dapat diserap kedalam tanah. Makin besar daya infiltrasi, perbedaan antara intensitas hujan dengan daya infiltrasi menjadi makin kecil. Akibatnya limpasan permukaannya makin kecil, sehingga debit puncaknya juga akan lebih kecil. b) Pengisian lengas tanah (soil moisture) dan air tanah Pengisian lengas tanah dan air tanah penting untuk tujuan pertanian. Akar tanaman menembus zone tidak jenuh dan menyerap air yang diperlukan untuk evapotranspirasi dari zona tidak jenuh. Pengisian kembali lengas tanah sama dengan selisih antara infiltrasi dan perkolasi (jika ada). Pada permukaan air tanah yang dangkal dalam lapisan tanah yang berbutir tidak begitu besar, pengisian kembali lengas tanah ini dapat pula diperoleh dari kenaikan kapiler air tanah.

12 2.2.6 Pengukuran Infiltrasi di Lapangan Pada penelitian ini dijelaskan cara mengukur laju infiltrasi di lapangan dengan menggunakan alat single ring infiltrometer. Single ring infiltrometer dalam bentuk yang paling sederhana terdiri atas tabung baja yang ditekankan ke dalam tanah. Permukaan tanah di dalam tabung diisi air. Tinggi air dalam tabung akan menurun, karena proses infiltrasi. Kemudian banyaknya air yang ditambahkan untuk mempertahankan tinggi air dalam tabung tersebut harus diukur.makin kecil diameter tabung makin besar gangguan akibat aliran ke samping di bawah tabung. Dengan cara ini infiltrasinya dapat dihitung dari banyaknya air yang ditambahkan kedalam tabung sebelah dalam per satuan waktu. Gambar 2.4 Single Ring Infitrometer ( Selain menggunakan alat single ring infiltrometer, pengukuran laju infiltrasi di lapangan dapat juga diukur dengan cara berikut:

13 A. Testplot Pengukuran infiltrasi dengan infiltrometer hanya dapat dilakukan terhadap luasan yang kecil saja, sehingga sukar untuk mengambil kesimpulan terhadap besarnya infiltrasi bagi daerah yang lebih luas. Untuk mengatasi hal ini dipilih tanah datar yang dikelilingi tanggul dan digenangi air. Daya infiltrasinya didapat dari banyaknya air yang ditambahkan agar permukaannya konstan. Jadi testplot sebenarnya adalah infiltrometer yang berskala besar. B. Lysimeter Lysimeter merupakan alat pengukur berupa tangki beton yang ditanam dalam tanah diisi tanah dan tanaman yang sama dengan sekelilingnya, dilengkapi dengan fasilitas drainage dan pemberian air. Setelah data-data pengukuran infiltrasi di lapangan menggunakan alat single ring infiltrometer telah didapatkan, selanjutnya pengolahan data dilakukan dengan menggunakan rumus metode Horton Metode Horton Metode Horton adalah salah satu model infiltrasi yang terkenal dalam hidrologi. Horton mengakui bahwa kapasitas infiltrasi berkurang seiring dengan bertambahnya waktu hingga mendekati nilai yang konstan. Ia menyatakan pandangannya bahwa penurunan kapasitas infiltrasi lebih dikontrol oleh faktor yang beroperasi di permukaan tanah dibanding dengan proses aliran di dalam tanah. Faktor yang berperan untuk pengurangan laju infiltrasi seperti penutupan retakan tanah oleh koloid tanah dan pembentukan kerak tanah, penghancuran struktur permukaan lahan dan pengangkutan partikel halus dipermukaan tanah

14 oleh tetesan air hujan. Metode Horton dapat dinyatakan secara matematis mengikuti persamaan berikut: f(t) = fc + (fo fc ) e -kt di mana: f(t) = Laju infiltrasi nyata (cm/jam), fc = Laju infiltrasi tetap (cm/jam), fo = Laju infiltrasi awal (cm/jam), k = Konstanta geofisik, t = Waktu (jam). Model ini sangat simpel dan lebih cocok untuk data percobaan. Parameter fo, fc dan k didapat dari pengukuran di lapangan dengan menggunakan single ring infitrometer. Rumus Horton di atas ditransposisikan sebagai berikut: f(t) - fc = (fo - fc) e -kt Kemudian persamaan tersebut di log kan menjadi: Log ( f(t) - fc ) = log (fo - fc) kt log e atau Log (f(t) - fc ) - log (fo - fc) = kt log e log (f(t) fc log(fo fc) Atau log (f(t) fc - log (f(t) fc) Persamaan diatas sama dengan : m = - Y = t

15 x = Log ( f(t) f(c) C = Log ( f(t) f(c) Dengan demikian persamaan ini dapat diwakilkan dalam sebuah garis lurus yang mempunyai nilai m =. 2.3 Klasifikasi Tanah Sistem klasifikasi tanah adalah suatu sistem pengaturan beberapa jenis tanah yang berbeda tetapi mempunyai sifat yang serupa ke dalam kelompokkelompok dan subkelompok berdasarkan pemakaiannya. Sistem klasifikasi memberikan suatu bahasan yang mudah untuk menjelaskan secara singkat sifatsifat umum tanah yang sangat bervariasi tanpa penjelasan yang terperinci. Sebagian besar sistem klasifikasi tanah yang telah dikembangkan untuk tujuan rekayasa didasarkan pada sifat-sifat indeks tanah yang sederhana seperti distribusi ukuran butiran dan plastisitas. Walaupun saat ini terdapat berbagai sistem klasifikasi tanah, tetapi tidak ada satupun dari sistem-sistem tersebut yang benar benar memberikan penjelasan yang tegas segala kemungkinan pemakaiannya. Hal ini disebabkan karena sifat-sifat tanah yang sangat bervariasi Klasifikasi Tanah Berdasarkan Tekstur/Bentuk Dalam arti umum, yang dimaksud dengan tekstur tanah adalah keadaan permukaan tanah yang bersangkutan. Tekstur tanah dipengaruhi oleh ukuran tiaptiap butir yang yang ada di dalam tanah. Tanah dibagi dalam beberapa kelompok antara lain; kerikil (gravel), pasir (sand), lanau (silt), dan lempung (clay), atas dasar ukuran butir-butirnya.

16 Pada umumnya tanah asli merupakan campuran dari butir-butir yang merupakan ukuran yang berbeda-beda. Dalam sistem klasifikasi tanah berdasarkan tekstur, tanah diberi nama atas dasar komponen utama yang dikandungnya, misalnya lempung berpasir (sand clay), lempung berlanau (silt clay) dan seterusnya. Beberapa sistem klasifikasi berdasarkan tekstur tanah telah dikembangkan sejak dulu oleh berbagai organisasi guna memenuhi kebutuhan mereka sendiri, beberapa dari sistem-sistem tersebut masih dipakai hingga saat ini, sistem klasifikasi berdasar tekstur tanah yang dikembangkan oleh departemen pertanian amerika (USDA). Sistem ini didasarkan pada ukuran batas dari butiran tanah seperti diterangkan oleh sistem USDA, yaitu: Pasir : butiran dengan diameter 2,0-0,05 mm. Lanau : butiran dengan diameter 0,05-0,002 mm. Lempung : butiran dengan diameter lebih kecil dari 0,002 mm. 2.4 Koefisien Permeabilitas Permeabilitas adalah tanah yang dapat menunjukkan kemampuan tanah meloloskan air. Tanah dengan permeabilitas tinggi dapat menaikkan laju infiltrasi sehingga menurunkan laju air larian. Pada ilmu tanah, permeabilitas didefenisikan secara kualitatif sebagai pengurangan gas-gas, cairan-cairan atau penetrasi akar tanaman atau lewat. Proses pengisian air pada sumur resapan untuk mengalami peresapan merupakan imbuhan buatan (artificial recharge). Oleh karena dalam proses itu semata-mata karena pengaruh gravitasi bumi, maka sifat tanah sebagai media peresap akan memiliki arti yang sangat penting. Sifat fisik tanah untuk

17 mengalirkan air dalam bentuk rembesan itu ditunjukan dengan koefisien permeabilitas. Koefesien permeabilitas (coefficient of permeability) mempunyai satuan yang sama seperti kecepatan. Isilah koefesien permebilitas sebagian besar digunakan oleh para ahli teknik tanah (geoteknik). Koefisien permeabilitas tanah tergantung pada beberapa faktor, yaitu kekentalan cairan, distribusi ukuran poripori, distribusi ukuran butir, angka pori, kekasaran permukaan butiran tanah dan derajat kejenuhan tanah. Pada tanah lempung, struktur tanah memegang peranan penting dalam menentukan koefisien permeabilitas. Faktor-faktor lain yang mempengaruhi sifat rembesan tanah lempung adalah konsentrasi ion dan ketebalan lapisan air yang menempel pada butiran lempung. Harga koefisien permeabilitas (K) untuk tiap-tiap tanah adalah berbeda beda. Tabel 2. 2 Harga Koefisien Permeabilitas pada Umumnya Jenis tanah (cm/detik) K (ft/menit) Kerikil bersih Pasir kasar Pasir halus Lanau Lempung Kurang dari Kurang dari Sumber: Buku Mekanika Tanahh Jilid I (Das, 1985) Penentuan harga koefisien permeabilitas (k) suatu tanah bisa didapat dari pengujian laboratorium ataupun pengujian di lapangan. Untuk menentukan koefisien permeabilitas di laboratorium dapat dilakukan dengan: a) Pengujian tinggi energy tetap (constant head permeability test). b) Pengujian tinggi energy jatuh (falling head permeability test). Sedangkan untuk menentukan koefisien permeabilitas di lapangan dapat dilakukan dengan:

18 a) Uji pemompaan (pumping test) b) Uji perlokasi (auger hoole test) Uji koefisien permeabilitas tanah dapat dilaksanakan di laboratorium Mekanika Tanah, yaitu: Constant Head Permeability Test Percobaan ini dilakukan dengan pemberian tegangan tetap. Sampel tanah yang di pakai adalah tanah yang memiliki daya rembes besar, misalnya pasir. Untuk menentukan nilai k, kita langsung mengukur banyaknya air yang masuk dan keluar dari tanah tersebut dalam jangka waktu tertentu. Setelah data-data hasil percobaan dicatat, kemudian koefisien rembesan dihitung dengan turunan rumus: Qmasuk = Qkeluar Qmasuk = A.V.k Qkluar = * T A(ki).t Maka : K = di mana: Q = Volume air yang dikumpulkan (cm 3 ), As = Luas penampang sampel tanah (cm 2 ), t = waktu (detik), h = i.(l)

19 2.4.2 Falling Head Permeability Test Untuk percobaan ini, tegangan yang diberikan terhadap contoh tanah tidak tetap. Sampel yang dipakai adalah tanah yang daya rembesnya kecil, misalnya lempung. Pada cara ini, air yang masuk ke sampel tanah melalui pipa berdiameter kecil. Untuk menentukan nilai (k) dilakukan dengan mengukur penurunan ketinggian air pada pipa tersebut sehingga tegangan air tidak tetap Gambar 2. 5 Skema Proses Alat Falling Head Permeability Test ( Jumlah air yang mengali melalui contoh tanah pada waktu (T) yaitu: Q =

20 Debit masuk (Qi) = Debit keluar (Qo) = -a (tinggi air berkurang ) dt = (- dt = h h h t = (ln (h 1 h 2 ) t = t = 2,303 K = 2,303 di mana : K = Koefisien permeabilitas tanah (cm/detik), a = Luas penampang pipa (cm 2 ), L = Panjang sampel tanah (cm 2 ), A = Luas penampang sampel tanah(cm ), t = Interval penurunan h 1 ke h 2 (detik), h 1 = Ketinggian mula-mula air pada interval waktu tertentu (cm), dan h 2 = Ketinggian akhir air pada interval waktu tertentu (cm) 2.5 Analisis Hidrologi Hidrologi merupakan bidang ilmu pengetahuan yang mempelajari kejadiankejadian serta penyebaran/distribusi air secara alami di bumi. Unsur hidrologi yang dominan disuatu wilayah adalah curah hujan, oleh sebab itu data

21 curah hujan suatu daerah merupakan data utama dalam menentukan besarnya debit banjir rencana maupun debit andalan yang terjadi pada daerah tersebut Perhitungan Parameter Statistik Adapun parameter statistik yang digunakan untuk menentukan jenis distribusi data ialah sebagai berikut: a. Harga Rata-rata (X) Rumus: X = di mana X= Curah hujan rata rata (mm), Xi= Curah hujan di stasiun hujan ke-i (mm) n = Jumlah data. b. Standar Deviasi ( Sd) Rumus: di mana Sd= Standar deviasi, X = Curah hujan rata rata (mm), Xi = Curahhujan di stasiun hujan ke i (mm), dan n = Jumlah data. c. Koefisien Skewness (Cs ) Kemencengan (Skewness) adalah suatu nilai yang menunjukan derajat ketidaksimetrisan dari suatu bentuk distribusi.

22 Rumus: Cs = di mana = :Cs = Koefisien Skewness, Sd = Standar deviasi, X= Curah hujan rata-rata (mm), Xi= Curah hujan di stasiun hujan ke i (mm), n = Jumlah data. d. Koefisien Kurtosis (Ck) Pengukuran kurtosis dimaksud untuk mengukur keruncingan dari bentuk kurva distribusi, yang umumnya dibandingkan dengan distribusi normal. Rumus: di mana : Ck= Koefisien Kurtosis, Sd = Standar deviasi, X = Curah hujan rata rata (mm), Xi = Curah hujan di stasiun hujan ke i (mm), n = Jumlah data. e. Koefisien Variasi (Cv) Koefisien variasi adalah nilai perbandingan antara deviasi standar dengan nilai rata-rata hitung suatu distribusi. Rumus:

23 di mana : Cv= Koefisien variasi, Sd = Standar deviasi, X = Curah hujan ratarata(mm) Penentuan Jenis Distribusi Data Untuk menentukan jenis distribusi data, digunakan beberapa pendekatan yang bertujuan agar jenis distribusi data yang dipilih sesuai dengan keadaan data yang ada. Adapun beberapa pendekatan yang dilakukan, yaitu: 1. Berdasarkan hasil perhitungan parameter statistik. Hasil perhitungan parameter statistik ditunjukan oleh Tabel 2. 3 berikut ini: Tabel 2.3 Berdasarkan Hasil Perhitungan Parameter Statistik NO Jenis Distribusi Syarat 1 Normal Cs 0 dan Ck 3 2 Log Normal Cs 3Cv + Cv³ dan Ck Cv8 + 6Cv6 + 15Cv4 + 16Cv Gumbel Tipe I Cs = 1,1396 dan Ck = 5, Log Person Tipe III Selain dari nilai di atas Sumber: Buku Hidrologi Terapan (Triatmodjo, 2008). 2. Berdasarkan plotting terhadap kertas probabilitas. Jenis distribusi data dapat diamati dari garis yang terbentuk oleh titik-titik hasil plotting data pada kertas probabilitas. Apabila plotting titik-titik pada kertas probabilitas tersebut mendekati garis lurus, berarti pemilihan distribusinya semakin mendekati benar Curah Hujan Rencana Perhitungan curah hujan rencana digunakan untuk memperkirakan besarnya hujan dengan periode ulang tertentu. Berdasarkan curah hujan rencana tersebut kemudian dicari intensitas hujan yang digunakan untuk mencari debit banjir rencana. Untuk memperkirakan curah hujan rencana dilakukan dengan

24 analisis frekuensi data hujan. Ada beberapa metode yang dapat digunakan dalam menghitung analisis frekuensi data hujan, yaitu: a. Metode Normal (Cara Analitis) Adapun persamaan-persamaan yang digunakan pada perhitungan dengan Metode Normal atau disebut pula distribusi Gauss ialah sebagai berikut: X T =X + (K.Sd ) di mana: X T = Curah hujan dengan periode ulang T tahun (mm), Periode Ulang T (Tahun) X = Harga ratarata curah hujan (mm), Sd = Standar deviasi (simpangan baku), k = Nilai variabel reduksi Gauss periode ulang T tahun. Tabel 2. 4 Nilai Variabel Reduksi Gauss (K) Periode Peluang K Ulang T Peluang (Tahun) 1,001 0,999-3,05 2,5 0,400 0,25 1,005 0,995-2,58 3,3 0,300 0,52 1,010 0,990-2,33 4 0,250 0,67 1,050 0,950-1,64 5 0,200 0,84 1,110 0,900-1, ,100 1,28 1,250 0,800-0, ,050 1,64 1,330 0,750-0, ,020 2,05 1,430 0,700-0, ,010 2,33 1,670 0,600-0, ,005 2,58 2 0, ,002 2, ,001 3,09 Sumber: Buku Hidrologi Terapan (Harto, 1981) k b. Metode Gumbel Tipe I Untuk menghitung curah hujan rencana dengan metode distribusi Gumble Tipe I digunakan persamaan distribusi frekuensi empiris sebagai berikut (Soewarno, 1995):

25 X T = X + di mana X T = Curah hujan dengan periode ulang T tahun (mm), X = Harga ratarata curah hujan (mm). Sd = Standar deviasi (simpangan baku). X T = Nilai reduksi variasi dari variabel yang diharapkan terjadi pada periode ulang tertentu, hubungan antara periode ulang T dengan Y dapat dilihat pada Tabel 2.8. (untuk T 20, maka = ln T) = Nilai rata-rata dari reduksi variasi (mean of reduce variate) nilainya tergantung dari jumlah data (n), seperti yang ditunjukan pada Tabel 2. 6 S n = Standar deviasi dari reduksi cariasi (mean of reduced) nilainya tergantung dari jumlah data (n), seperti yang ditunjukan pada Tabel Tabel 2.5 Nilai Rata-rata dari Reduksi (Yn) N ,4952 0,4996 0,5070 0,5070 0,5157 0,5128 0,5180 0,5202 0, ,5236 0,5252 0,5283 0,5283 0,5300 0,5820 0,5882 0,5343 0, ,5363 0,5371 0,5388 0,5388 0,5400 0,5410 0,5418 0,5424 0, ,5463 0,5442 0,5453 0,5458 0,5468 0,5468 0,5473 0,5477 0, ,5485 0,5489 0,5497 0,5501 0,5504 0,5508 0,5511 0,5515 0, ,5521 0,5524 0,5530 0,5533 0,5535 0,5538 0,5540 0,5543 0, ,5548 0,5550 0,5555 0,5557 0,5559 0,5561 0,5563 0,5565 0, ,5569 0,5570 0,5574 0,5576 0,5578 0,5580 0,5581 0,5583 0, ,5586 0,5587 0,5591 0,5592 0,5593 0,5595 0,5596 0,5596 0, ,5600 Sumber: Soemarto, 1999 Tabel 2. 6 Standar Deviasi dari Reduksi Variasi (Sn) N ,9496 0,9676 0,9633 0,9971 1,0097 1,0206 1,0316 1,0411 1,0493 1, ,0626 1,0696 1,0754 1,0811 1,0864 1,0315 1,0961 1,1004 1,1047 1, ,1124 1,1159 1,1193 1,1226 1,1255 1,1285 1,1313 1,1339 1,1363 1, ,1413 1,1436 1,1458 1,1480 1,1499 1,1597 1,1538 1,1557 1,1574 1, ,1607 1,1923 1,1638 1,1658 1,1667 1,1687 1,1696 1,1708 1,1721 1,1734 Sumber: Soemarto, 1999

26 Tabel 2. 7 Nilai Reduksi Variasi (Yt) Periode Ulang (Tahun) Reduced Variated 2 0, , , , , , , , , , , ,9210 Sumber: Soemarto, 1999 c. Metode Log Pearson Tipe III Metode Log Pearson Tipe III apabila digambarkan pada kertas peluang logaritmik akan merupakan persamaan garis lurus, sehingga dapat dinyatakan sebagai model matematik dangan persamaan sebagai berikut (Soewarno, 1995). Log X T = Log X + K * Sd di mana: Log X T = Nilai logaritma curah hujan dengan periode ulang tertentu, Log X = Nilai logaritma rata-rata curah hujan Sd = Standar deviasi dan K =Karakteristik distribusi peluang Log Pearson Tipe III Langkah-langkah perhitungan kurva distribusi Log Pearson Tipe III adalah: a) Tentukan logaritma dari semua nilai X b) Hitung nilai rata-ratanya:

27 c) Hitung nilai deviasi standarnya dari log X d) Hitung nilai koefisien kemencengan (CS): e) Sehingga persamaanya dapat ditulis: f) Tentukan anti log dari log XT, untuk mendapatkan nilai X yang diharapkan terjadi pada tingkat peluang atau periode ulang tertentu sesuai dengan nilai koefisien kemencengan (Cs). d. Metode Log Normal. Metode Log Normal apabila digambarkan pada kertas peluang logaritmik akan merupakan persamaan garis lurus, sehingga dapat dinyatakan sebagai model matematik dengan persamaan sebagai berikut (Soewarno, 1995): X T = X+ K.Sd di mana: X T = Besarnya curah hujan yang diharapkan terjadi pada periode ulang X = Harga rata-rata curah hujan (mm), Sd = Standar deviasi (simpangan baku). K = Karakteristik distribusi peluang log-normal 3 parameter yang merupakan fungsi dari koefisien kemencengan (Cs).

28 2.5.4 Analisis Intensitas Curah Hujan. Intensitas hujan adalah tinggi atau kedalaman air hujan per satuan waktu. Sifat umum hujan adalah makin singkat hujan berlangsung intensitasnya cenderung makin tinggi dan makin tinggi dan makin besar periode ulangnya makin tinggi pula intensitasnya. Langkah pertama dalam perencanaan sumur resapan yaitu menentukan debit yang harus diperhitungkan. Besarnya debit (banjir) perencanaan ditentukan oleh intensitas hujan yang terjadi pada suatu kurun waktu di mana air tersebut berkonsentrasi. Analisis intensitas curah hujan ini dapat diproses dari data curah hujan yang telah terjadi pada masa lampau. Intensitas curah hujan yang dinyatakan dengan (I) menyatakan besarnya curah hujan dalam jangka pendek yang memberikan gambaran derasnya hujan per jam. Untuk mengubah curah hujan menjadi intensitas curah hujan dapat digunakan 2 metode sebagai berikut : 1. Metode Van Breen. Metode ini beranggapan bahwa besarnya atau lama durasi hujan harian adalah berpusat selama 4 jam dengan hujan efektif sebesar 90% dari hujan selama 24 jam (Kamiana, 2011). Rumus: I = di mana I= Intensitas hujan (mm/jam) R24 = Curah hujan harian maksimum (mm/24jam).

29 Berdasarkan rumus di atas, maka dapat dibuat suatu kurva durasi intensitas hujan. Dimana Van Breen mengambil bentuk kurva kota Jakarta sebagai kurva basis. Kurva basis tersebut dapat memberikan kecendrungan bentuk kurva untuk daerah-daerah lain di Indonesia pada umumnya. Berdasarkan pada kurva pola Van Breen kota Jakarta, besarnya intensitas hujan dapat didekati dengan persamaan: di mana I T = Intensitas hujan (mm/jam) pada PUH, t = Durasi waktu hujan (menit), dan R T = Curah hujan harian maksimum PUH T (mm/24jam). 2. Metode Hasfer Der Weduwen. Metode ini merupakan hasil penyelidikan di Indonesia yang dilakukan oleh Hasfer dan Weduwen. Penurunan rumus diproleh berdasarkan kecenderungan curah hujan harian yang dikelompokkan atas dasar anggapan bahwa hujan mempunyai distribusi yang simetris dengan durasi hujan (t) lebih kecil dari 1 jam dan durasi hujan sampai 24 jam (Kamiana, 2011). Persamaan yang digunakan adalah: Setelah mendapatkan nilai dari persamaan diatas kemudian hitung intensitas curah hujan dengan persamaan berikut ini:

30 di mana :I = Intensitas hujan (mm/jam) dan R = Curah hujan (mm) Analisis Penentuan Metode Perhitungan Intensitas Curah Hujan Setelah kedua metode tersebut dilakukan maka selanjutnya dilakukan perhitungan penentuan/pendekatan intensitas hujan. Curah ini dimaksudkan untuk menentukan persamaan intensitas yang paling mendekati untuk daerah perencanaan. Metode yang digunakan adalah metode perhitungan dengan cara kuadrat terkecil. Menurut Suripin (2004), ada 3 metode yang dapat digunakan, yaitu: Metode Sherman (1905), menjelaskan bahwa intensitas curah hujan (I) sebagai berikut: di mana: I = Intensitas curah hujan (mm/jam), t = Lamanya curah hujan (menit), a,b = Konstanta yang tergantung pada lama curah hujan yang terjadi di daerah aliran, dan n = Banyaknya pasangan data i dan t Metode Ishiguro (1953), menentukan intensitas curah hujan (I) sebagai berikut:

31 di mana : I = Intensitas curah hujan (mm/jam), T = Lamanya curah hujan (menit) a,b = Konstanta yang tergantung pada lama curah hujan yang terjadi di daerah aliran n = Banyaknya pasangan data i dan t Metode Talbot (1881) rumus ini banyak digunakan karena mudah diterapkan dimana tetapan tetapan a dan b ditentukan dengan harga-harga yang di ukur. Untuk menentukan intensitas curah hujan (I) dapat menggunakan rumus sebagai berikut: di mana :I = Intensitas curah hujan (mm/jam), t = Lamanya curah hujan (menit), a,b = Konstanta yang tergantung pada lama curah hujan yang terjadi di daerah aliran, dan n = Banyaknya pasangan data i dan t. Untuk pemilihan rumus intensitas hujan dari ketiga rumus diatas, maka harus dicari selisih terkecil antara I asal dan I teoritis bedasarkan rumus di atas. Persamaan intensitas dengan selisih terkecil itulah yang dipakai untuk perhitungan debit. Kemudian dilakukan penggambaran kurva IDF yang dimaksud untuk menggambarkan persamaan-persamaan intensitas hujan yang dapat digunakan.

32 2.6 Sumur Resapan Pengertian Sumur resapan merupakan sumur atau lubang pada permukaan tanah yang dibuat untuk menampung air hujan agar dapat meresap ke dalam tanah. Sumur resapan ini kebalikan dari sumur air minum. Sumur resapan merupakan lubang untuk memasukkan air ke dalam tanah, sedangkan sumur air minum berfungsi untuk menaikkan air tanah ke permukaan. Dengan demikian, konstruksi dan kedalamannya berbeda. Sumur resapan digali dengan kedalaman di atas muka air tanah, sedangkan sumur air minum digali lebih dalam lagi atau di bawah muka air tanah Fungsi Sumur Resapan Gambar 2. 6 Sketsa Sumur Resapan ( Penerapan sumur resapan sangat dianjurkan dalam kehidupan sehari-hari. Beberapa fungsi sumur resapan bagi kehidupan manusia adalah sebagai

33 pengendali banjir, melindungi dan memperbaiki (konservasi) air tanah, serta menekan laju erosi. 1. Pengendali banjir Banjir sering kali menggenangi kawasan pemukiman ketika musim hujan tiba. Terjadinya banjir pada kawasan pemukiman dapat disebabkan oleh beberapa faktor di antaranya: a) Pengembangan rumah yang melewati batas garis sempadan bangunan (GSB). b) Sistem drainase yang tidak terencana dengan baik. c) Masih kurangnya kesadaran para penghuni kawasan permukiman terhadap pengelolaan sampah. Pada dasarnya pengembangan rumah merupakan suatu kebutuhan dari setiap penghuni kawasan pemukiman sejalan dengan penambahan jumlah anggota keluarga atau untuk kebutuhan lain. Proses pengembangan rumah-rumah pada suatu kawasan pemukiman biasanya berkisar 5-15 tahun atau dapat lebih cepat, tergantung dari lokasi perumahan serta fasilitas umum dan fasilitas sosial yang dimiliki perumahan tersebut. Pengembangan rumah atau penambahan jumlah ruangan terjadi hampir pada semua lokasi pemukiman. Rumah-rumah cenderung dikembangkan ke arah horisontal dengan pertimbangan biaya konstruksi akan lebih murah jika dibandingkan dengan pengembangan ke arah vertikal. Namun, hal tersebut justru sering mengakibatkan pengembangan rumah yang melewati batas garis sempadan bangunan (antara 3-4 m dari tepi jalan). Dengan demikian pada musim hujan, volume aliran air permukaan menjadi besar dan volume air yang meresap ke dalam tanah sangat sedikit

34 sehingga mengakibatkan genangan banjir. Banjir yang sering melanda beberapa kawasan perumahan telah berlangsung cukup lama, bahkan telah dianggap sebagai rutinitas yang terjadi setiap tahun. Upaya yang dapat dilakukan untuk mengatasi hal tersebut adalah dengan membangun sumur resapan air pada setiap rumah dalam suatu kawasan perumahan. Seperti yang telah dijelaskan sebelumnya, sumur resapan mampu memperkecil aliran permukaan sehingga dapat menghindari terjadinya genangan aliran permukaan secara berlebihan yang menyebabkan banjir. Banyaknya aliran permukaan yang dapat dikurangi melalui sumur resapan tergantung pada volume dan jumlah sumur resapan. Misalnya, sebuah kawasan yang jumlah rumahnya buah, jika masing-masing membuat sumur resapan dengan volume 2 berarti dapat mengurangi aliran permukaan sebesar air. 2. Konservasi air tanah Fungsi lain dari sumur resapan ini adalah memperbaiki kondisi air tanah atau mendangkalkan permukaan air sumur. Di sini diharapkan air hujan lebih banyak yang diresapkan ke dalam tanah menjadi air cadangan dalam tanah. Air yang tersimpan dalam tanah tersebut akan dapat dimanfaatkan melalui sumursumur atau mata air. Peresapan air melalui sumur resapan ke dalam tanah sangat penting mengingat adanya perubahan tata guna tanah di permukaan bumi sebagai konsekuensi dari perkembangan penduduk dan perekonomian masyarakat. Dengan adanya perubahan tata guna tanah tersebut akan menurunkan kemampuan tanah untuk meresapkan air. Hal ini mengingat semakin banyaknya tanah yang tertutupi tembok, beton, aspal, dan bangunan lainnya yang tidak meresapkan air.

35 Penurunan daya resap tanah terhadap air dapat juga terjadi karena hilangnya vegetasi penutup permukaan tanah. Penutupan permukaan tanah oleh pemukiman dan fasilitas umum berdampak besar terhadap kondisi air tanah. Seperti yang telah dijelaskan sebelumnya, sumur resapan mampu memperkecil aliran permukaan sehingga dapat menghindari terjadinya genangan aliran permukaan secara berlebihan yang menyebabkan banjir. 3. Menekan laju erosi Dengan adanya penurunan aliran permukaan maka laju erosi pun akan menurun. Bila aliran permukaan menurun, tanah-tanah yang tergerus dan terhanyut pun akan berkurang. Dampaknya, aliran permukaan air hujan kecil dan erosi pun akan kecil. Dengan demikian, adanya sumur resapan yang mampu menekan besarnya aliran permukaan berarti dapat menekan laju erosi Prinsip dan Teori Kerja Sumur Resapan. Prinsip kerja sumur resapan adalah menyalurkan dan menampung air hujan ke dalam lubang atau sumur agar air dapat memiliki waktu tinggal di permukaan tanah lebih lama sehingga sedikit demi sedikit air dapat meresap ke dalam tanah. Tujuan utama dari sumur resapan adalah memperbesar masuknya air ke dalam akuifer tanah sebagai air resapan (infiltrasi). Dengan demikian, air akan lebih banyak masuk ke dalam tanah dan sedikit yang mengalir sebagai aliran permukaan (run off). Di bawah tanah, air yang meresap ini akan merembes masuk ke dalam lapisan tanah yang disebut lapisan tidak jenuh di mana pada berbagai jenis tanah, lapisan ini masih bisa menyerap air. Dari lapisan tersebut, air akan

36 menembus kedalam permukaan tanah (water table) di mana dibawahnya ada air tanah (ground water) yang terperangkap dalam lapisan akuifer. Dengan demikian, masuknya air hujan ke dalam tanah akan membuat imbuhan air tanah akan menambah jumlah air tanah dalam lapisan akuifer. Sebagai media yang secara langsung berhubungan dengan lapisan tanah, dalam pengoperasiannya sumur resapan sesungguhnya mengandalkan kemampuan tanah dalam meresapkan air. Oleh karena itu, perencanaan dimensi sumur resapan berangkat dari sifat fisik tanah khususnya harus bertitik tolak pada keadaan daya rembes tanahnya. Dengan prinsip kerja dari sumur resapan tersebut, maka jika kita ingin membuat sumur resapan pada area halaman rumah kita, kita akan menyalurkan air hujan yang turun di area rumah kita menuju sumur resapan, termasuk air hujan yang turun pada genting atap rumah yang nantinya mengalir menuju talang air. Dari talang, air kita salurkan ke sumur resapan dengan menggunakan pipa (biasanya menggunakan pipa paralon). Sedangkan air hujan yang turun selain di area genteng atap rumah, dapat kita salurkan menuju sumur resapan dengan cara membuat semacam selokan atau got kecil di area rumah kita, yang dibuat dengan kemiringan tertentu, sehingga nantinya air yang masuk ke dalam selokan atau got tersebut dapat mengalir menuju sumur resapan. Untuk membuang kelebihan air yang masuk kedalam sumur resapan, kita bisa membuat pipa pembuangan, yang nantinya berfungsi mengalirkan kelebihan air di dalam sumur resapan menuju saluran drainase/saluran pembuangan didekat rumah kita.

37 Gambar 2. 7 Prinsip Kerja Sumur Resapan Penampungan Air Hujan ( Semakin banyak air yang mengalir ke dalam tanah berarti akan banyak tersimpan air tanah di bawah permukaan bumi. Air tersebut dapat dimanfaatkan kembali melalui sumur-sumur atau mata air yang dapat dieksplorasi setiap saat. Jumlah aliran permukaan akan menurun karena adanya sumur resapan. Pengaruh positifnya bahaya banjir dapat dihindari karena terkumpulnya air permukaan yang berlebihan di suatu tempat dapat dihindarkan. Menurunnya aliran permukaan ini juga akan menurunkan tingkat erosi tanah. Berikut ini disajikan rumus metode rasional untuk menghitung debit banjir pada suatu kawasan tertentu akibat limpasan air hujan dengan metode rasional (Suripin, 2004), yaitu: Q = k. C. I. A. di mana : Q = Debit banjir (cfs atau m³/detik), C = Koefisien pengaliran permukaan, yang besarnya < 1, I = Intensitas hujan (in./hr atau mm/jam), A = Luas bidang tangkapan hujan (ac atau ha) k = faktor konversi ( = 0,00278 faktor konversi ha-mm/jam ke m³/detik). Luasan bidang tangkapan hujan untuk bangunan tempat tinggal adalah berupa luas atap yang diukur secara horizontal. Untuk koefisien pengaliran (C),

38 apabila tidak diukur langsung pada medan pengaliran yang dimaksud, maka dapat digunakan perkiraan nilai koefisien (C) secara empiris berdasarkan hasil penelitian yang dilampirkan. Tabel 2. 8 Nilai Koefisien Aliran Permukaan (C) untuk Berbagai Permukaan NO Jenis Permukaan Koef. Aliran Permukaan 1. Bussines Daerah kota Daerah pinggiran Perumahan Daerah Single Family Multiunit terpisah-pisah Multiunit tertutup Sub Urban Daerah rumah-rumah Apartemen Kawasan Industri Daerah industri ringan Daerah industri berat Atap Pertamanan; kuburan Jalan Aspal Beton Batu Sumber: Suripin, Drainase Perkotaan yang Berkelanjutan, Perencanaan Dimensi Sumur Resapan Dimensi sumur resapan ditentukan oleh beberapa faktor yaitu tinggi muka air tanah, intensitas hujan, lama hujan, luas penampang tampungan dan koefisien permeabilitas tanah. Untuk lebih jelasnya dapat dilihat pada pembahasan di bawah ini:

39 a) Tinggi muka air tanah Dasar bangunan sumur resapan akan efektif apabila terletak di atas muka air tanah. Oleh karena itu diperlukan peta sebaran muka preatik daerah penelitian yang menggambarkan distribusi tinggi muka air tanah. b) Intensitas hujan Intensitas hujan sangat diperlukan untuk menghitung besarnya kapasitas sumur resapan untuk menampung air hujan yang jatuh pada penutupan lahan dengan luasan tertentu. Volume air tampungan adalah hasil kali intensitas hujan, luas daerah tampungan dan lama hujan. c) Durasi hujan Lama hujan adalah waktu terlama hujan itu terjadi setiap kejadian hujan. Lama hujan (durasi) sangat diperhitungkan dalam memprediksi daya tampung sumur serapan. d) Luas penampung tampungan Luas penampung tampungan ini merupakan jumlah total dari atap bangunan atau bidang pekerasan yang airnya dialirkan pada sumur resapan. Semakin besar luas tampungan maka semakin besar luas tampungan maka semakin besar volume tampungan. e) Koefisien permeabilitas tanah. Koefisien permeabilitas adalah kemampuan tanah dalam melewatkan air sebagai fungsi dari waktu. Kemampuan tanah dalam meresapkan air hujan yang di tampung ditentukan oleh koefisien permeabilitas ini.

40 Secara teoritis, volume dan efisiensi sumur resapan dapat dihitung berdasarkan keseimbangan air yang masuk ke dalam sumur dan air yang meresap ke dalam tanah dan dapat dituliskan sebagai berikut: Sumur Kosong Tampang Lingkaran Untuk konstruksi sumur resapan biasanya dengan dinding samping dan ruang tetap kosong maka dimensinya dihitung dengan: H = Sumur Kosong Tampang Rectangular Untuk konstruksi sumur resapan biasanya dengan dinding samping dan ruang tetap kosong maka dimensinya dihitung dengan: H = di mana :H = Tinggi muka air dalam sumur (m), F = Faktor Geometrik (m), f = faktor geometrik tampang rectangular (m), Q = Debit air masuk (m³/dtk), T = Waktu pengaliran (detik), K = Koefisien permeabilitas tanah (m/dtk), R =Jari-jari sumur (m) Metode PU Pusat penelitian dan pengembangan pemukiman Departemen Pekerjaan Umum (2002) telah menyusun standar tata cara perencanaan teknik umur resapan air hujan untuk pekarangan yang dituangkan dalam SNI

41 Metode PU menyatakan bahwa dimensi atau jumlah sumur resapan air hujan yang diperlukan pada suatu lahan pekarangan ditentukan oleh curah hujan maksimum. Permeabilitas tanah dan luas bidang tanah, yang dapat dirumuskan sebagai berikut: a) Volume andil banjir digunakan rumus: = 0,855 dimana: = Volume andil banjir yang akan di tamping sumur resapan ( ) = Koefisien limpasan dari bidang tadah (tanpa satuan) = Luas bidang tadah ( ) = Tinggi hujan harian rata-rata (L/ hari ) b) Volume air hujan yang meresap digunakan rumus: = dimana: = Volume air hujan yang meresap ( ) = durasi hujan efektif (jam) =0.9../60 (jam) = Luas dinding sumur + luas alas sumur ( ) = Koefisiensi permebilitas tanah (m/hari). c) Volume penampungan (storasi) air hujan: - d) Penentuan jumlah sumur resapan (n): = n = dimana: n = jumlah sumur resapan air hujan (buah) = kedalaman total sumur resapan air hujan (m) = kedalaman yang di rencanakan < kedalaman muka air tanah (m)

42 2.6.6 Persyaratan Umum dan Teknis Sumur Resapan Pada SNI No dijelaskan tentang persyaratan umum dan teknis sumur resapan, standar ini merupakan hasil revisi dari SNI No Persyaratan umum yang harus dipenuhi antara lain sebagai berikut: a) Sumur resapan air hujan di tempatkan pada lahan yang relatif datar. b) Air yang masuk kedalam sumur resapan adalah air hujan tidak tercemar. c) Penetapan sumur resapan air hujan harus mempertimbangkan keamanan bangunan sekitarnya. d) Harus memperhatikan peraturan daerah setempat. e) Hal-hal yang tidak memenuhi ketentuan ini harus disetujui instansi yang berwenang. Persyaratan teknis yang harus dipenuhi antara lain sebagai berikut: a) Kedalaman air tanah minimum 1.50 m pada musim hujan. b) Struktur tanah yang dapat digunakan harus mempunyai nilai permeabilitas tanah 2.0 cm/jam. c) Jarak penempatan sumur resapan air hujan terhadap bangunan, dapat dilihat pada Tabel di bawah ini. Tabel 2. 9 Jarak Minimum Sumur Resapan Air Hujan Terhadap Bangunan No Jenis Bangunan Jarak minimum dari sumur resapan air hujan (m) 1 Sumur resapan air hujan/ sumur air bersih 3 2 Pondasi bangunan 1 3 Bidang resapan/ sumur resapan tangki septik 5 Sumber: Kusnaedi, 2000

43 2.6.7 Konstruksi Sumur Resapan Jenis sumur resapan yang dibuat harus memenuhi syarat-syarat agar daya kerjanya dapat dipertanggung jawabkan serta tidak menimbulkan dampak baru terhadap lingkungan. Bagi kita yang tinggal di daerah perkotaan, berkurangnya daerah resapan air karena makin banyak permukaan tanah yang tertutup bangunan dan jalan berdampak pada berkurangnya daya serap tanah terhadap air. Pembuatan sumur resapan di lingkungan tempat tinggal menjadi salah satu solusi memperbaiki kualitas air tanah. Beberapa ketentuan umum untuk pembangunan konstruksi sumur resapan: a. Sumur resapan sebaiknya berada di atas elevasi/kawasan sumur-sumur gali biasa. b. Untuk menjaga pencemaran air di lapisan aquifer, kedalaman sumur resapan harus diatas kedalaman muka air tanah tidak tertekan (unconfined aquifer) yang ditandai oleh adanya mata air tanah. c. Pada daerah berkapur/karst perbukitan kapur dengan kedalaman/solum tanah yang dangkal, kedalaman air tanah pada umumnya sangatlah dalam sehingga pembuatan sumur resapan sangatlah tidak direkomendasikan. Demikian pula sebaliknya di lahan pertanian pasang surut yang berair tanah sangat dangkal. d. Untuk mendapatkan jumlah air yang memadai, sumur resapan harus memiliki tangkapan air hujan berupa suatu bentang lahan baik berupa lahan pertanian atau atap rumah. e. Sebelum air hujan yang berupa aliran permukaan masuk kedalam sumur melalui saluran air, sebaiknya dilakukan penyaringan air di bak kontrol terlebih dahulu.

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Peil Banjir Peil Banjir adalah acuan ketinggian tanah untuk pembangunan perumahan/ pemukiman yang umumnya di daerah pedataran dan dipakai sebagai pedoman pembuatan jaringan drainase

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

PENERAPAN SUMUR RESAPAN PADA PERENCANAAN DRAINASE WILAYAH DI KECAMATAN TARUTUNG (STUDI KASUS: KAWASAN PERMUKIMAN KELURAHAN HUTATORUAN VII) TUGAS AKHIR

PENERAPAN SUMUR RESAPAN PADA PERENCANAAN DRAINASE WILAYAH DI KECAMATAN TARUTUNG (STUDI KASUS: KAWASAN PERMUKIMAN KELURAHAN HUTATORUAN VII) TUGAS AKHIR PENERAPAN SUMUR RESAPAN PADA PERENCANAAN DRAINASE WILAYAH DI KECAMATAN TARUTUNG (STUDI KASUS: KAWASAN PERMUKIMAN KELURAHAN HUTATORUAN VII) TUGAS AKHIR Diajukan untuk memenuhi salah satu persyaratan dalam

Lebih terperinci

EFEKTIFITAS SUMUR RESAPAN DALAM MEMPERCEPAT PROSES LAJU INFILTRASI

EFEKTIFITAS SUMUR RESAPAN DALAM MEMPERCEPAT PROSES LAJU INFILTRASI EFEKTIFITAS SUMUR RESAPAN DALAM MEMPERCEPAT PROSES LAJU INFILTRASI Siswanto *, Lita Darmayanti *, Polo Tarigan** Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau, Pekanbaru 28293 Abstrak Tujuan

Lebih terperinci

ANALISA DAN PEMBAHASAN

ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 3.6 Analisa Debit Limpasan Permukaan Analisa ini bertujuan untuk mengetahui debit air pada kawasan kampus Kijang, Universitas Bina Nusantara, Kemanggisan, Jakarta Barat, pada

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Menurut (Triatmodjo, 2008:1).Hidrologi merupakan ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya. Penerapan ilmu hidrologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Umum merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan

Lebih terperinci

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya,

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifatsifatnya dan hubungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pengertian Sumur Resapan Sumur resapan merupakan sumur atau lubang pada permukaan tanah yang dibuat untuk menampung air hujan agar dapat meresap ke dalam tanah. Sumur resapan

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Metode Rasional di Kampus I Universitas Muhammadiyah Purwokerto.

BAB II TINJAUAN PUSTAKA. Metode Rasional di Kampus I Universitas Muhammadiyah Purwokerto. BAB II TINJAUAN PUSTAKA A. Penelitian Terdahulu Penelitian terdahulu yang dilakukan oleh Arkham Fajar Yulian (2015) dalam penelitiannya, Analisis Reduksi Limpasan Hujan Menggunakan Metode Rasional di Kampus

Lebih terperinci

BAB II TINJAUAN PUSTAKA. maupun debit andalan yang terjadi pada daerah tersebut.

BAB II TINJAUAN PUSTAKA. maupun debit andalan yang terjadi pada daerah tersebut. BAB II TINJAUAN PUSTAKA 2.1 Analisis Hidrologi Hidrologi merupakan bidang ilmu pengetahuan yang mempelajari kejadiankejadian serta penyebaran/distribusi air secara alami di bumi. Unsur hidrologi yang dominan

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat-sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. penelitian tentang Analisis Kapasitas Drainase Dengan Metode Rasional di

BAB 2 TINJAUAN PUSTAKA. penelitian tentang Analisis Kapasitas Drainase Dengan Metode Rasional di BAB 2 TINJAUAN PUSTAKA Penelitian ini menggunakan tinjauan pustaka dari penelitian-penelitian sebelumnya yang telah diterbitkan, dan dari buku-buku atau artikel-artikel yang ditulis para peneliti sebagai

Lebih terperinci

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di II. TINJAUAN PUSTAKA A. Embung Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di Daerah Pengaliran Sungai (DPS) yang berada di bagian hulu. Konstruksi embung pada umumnya merupakan

Lebih terperinci

DRAINASE PERKOTAAN SUMUR RESAPAN

DRAINASE PERKOTAAN SUMUR RESAPAN DAINASE PEKOTAAN SUMU ESAPAN Novitasari,ST.,MT. TIK Mampu merancang sistem drainase sumur resapan P E N G G A N T A Konsep dasar sumur resapan pada hakekatnya adalah memberikan kesempatan dan jalan pada

Lebih terperinci

Daur Siklus Dan Tahapan Proses Siklus Hidrologi

Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Hidrologi Siklus hidrologi adalah perputaran air dengan perubahan berbagai bentuk dan kembali pada bentuk awal. Hal ini menunjukkan bahwa volume

Lebih terperinci

HIDROSFER I. Tujuan Pembelajaran

HIDROSFER I. Tujuan Pembelajaran KTSP & K-13 Kelas X Geografi HIDROSFER I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut. 1. Memahami pengertian hidrosfer dan siklus hidrologi.

Lebih terperinci

BAB IV PEMBAHASAN. muka air di tempat tersebut turun atau berkurang sampai batas yang diinginkan.

BAB IV PEMBAHASAN. muka air di tempat tersebut turun atau berkurang sampai batas yang diinginkan. BAB IV PEMBAHASAN 4.1 Analisis Data Curah Hujan Drainase adalah ilmu atau cara untuk mengalirkan air dari suatu tempat, baik yang ada dipermukaan tanah ataupun air yang berada di dalam lapisan tanah, sehingga

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. hidrologi dengan panjang data minimal 10 tahun untuk masing-masing lokasi

BAB IV HASIL DAN PEMBAHASAN. hidrologi dengan panjang data minimal 10 tahun untuk masing-masing lokasi BAB IV HASIL DAN PEMBAHASAN 4.1 Penentuan Stasiun Pengamat Hujan Untuk melakukan analisa ini digunakan data curah hujan harian maksimum untuk tiap stasiun pengamat hujan yang akan digunakan dalam analisa

Lebih terperinci

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air BAB I PENDAHULUAN I. Umum Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air laut, 1,75% berbentuk es dan 0,73% berada di daratan sebagai air sungai, air danau, air tanah dan sebagainya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting

BAB II TINJAUAN PUSTAKA. sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting BAB II TINJAUAN PUSTAKA 2.1 Umum Drainase merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan

Lebih terperinci

BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA

BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA 4 BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA Dalam penyusunan Tugas Akhir ini ada beberapa langkah untuk menganalisis dan mengolah data dari awal perencanaan sampai selesai. 3.1.1 Permasalahan

Lebih terperinci

STUDI PENERAPAN SUMUR RESAPAN DANGKAL PADA SISTEM TATA AIR DI KOMPLEK PERUMAHAN

STUDI PENERAPAN SUMUR RESAPAN DANGKAL PADA SISTEM TATA AIR DI KOMPLEK PERUMAHAN STUDI PENERAPAN SUMUR RESAPAN DANGKAL PADA SISTEM TATA AIR DI KOMPLEK PERUMAHAN Sugeng Sutikno 1, Mutia Sophiani 2 1 Staf Pengajar pada Jurusan Teknik Sipil Fakultas Teknik Universitas Subang 2 Alumni

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bumi terdiri dari air, 97,5% adalah air laut, 1,75% adalah berbentuk es, 0,73% berada didaratan sebagai air sungai, air danau, air tanah, dan sebagainya. Hanya 0,001% berbentuk uap

Lebih terperinci

KAJIAN PENGEMBANGAN SUMUR RESAPAN AIR HUJAN

KAJIAN PENGEMBANGAN SUMUR RESAPAN AIR HUJAN Spectra Nomor 11 Volume VI Januari 008: 8-1 KAJIAN PENGEMBANGAN SUMUR RESAPAN AIR HUJAN Ibnu Hidayat P.J. Dosen Teknik Pengairan FTSP ITN Malang ABSTRAKSI Air hujan yang jatuh ke permukaan tanah sebagian

Lebih terperinci

Surface Runoff Flow Kuliah -3

Surface Runoff Flow Kuliah -3 Surface Runoff Flow Kuliah -3 Limpasan (runoff) gabungan antara aliran permukaan, aliran yang tertunda ada cekungan-cekungan dan aliran bawah permukaan (subsurface flow) Air hujan yang turun dari atmosfir

Lebih terperinci

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat 4 II. TINJAUAN PUSTAKA A. Jagung Jagung merupakan tanaman yang dapat hidup di daerah yang beriklim sedang sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat membutuhkan sinar matahari

Lebih terperinci

Pasal 6 Peraturan Menteri ini mulai berlaku pada tanggal ditetapkan.

Pasal 6 Peraturan Menteri ini mulai berlaku pada tanggal ditetapkan. SALINAN PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 12 TAHUN 2009 TENTANG PEMANFAATAN AIR HUJAN MENTERI NEGARA LINGKUNGAN HIDUP, Menimbang : a. bahwa air hujan merupakan sumber air yang dapat dimanfaatkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Menurut Soemarto (1999) infiltrasi adalah peristiwa masuknya air ke dalam tanah, umumnya (tetapi tidak pasti), melalui permukaan dan secara vertikal. Setelah beberapa waktu kemudian,

Lebih terperinci

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993).

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993). batas topografi yang berarti ditetapkan berdasarkan aliran air permukaan. Batas ini tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian

Lebih terperinci

KONSEP PENGEMBANGAN SUMUR RESAPAN DI KAMPUNG HIJAU KELURAHAN TLOGOMAS KOTA MALANG

KONSEP PENGEMBANGAN SUMUR RESAPAN DI KAMPUNG HIJAU KELURAHAN TLOGOMAS KOTA MALANG KONSEP PENGEMBANGAN SUMUR RESAPAN DI KAMPUNG HIJAU KELURAHAN TLOGOMAS KOTA MALANG Titik Poerwati Leonardus F. Dhari Program Studi Perencanaan Wilayah dan Kota Institut Teknologi Nasional Malang ABSTRAKSI

Lebih terperinci

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan PENDAHULUAN Latar Belakang Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan gletser (2,15%), air artesis (0,62%) dan air lainnya (0,03%). Air lainnya ini meliputi danau air tawar

Lebih terperinci

Analisis Potensi Air A I R

Analisis Potensi Air A I R Analisis Potensi Air A I R Sumber Daya habis terpakai tetapi dapat diperbaharui/di daur ulang Persediaan air bumi yang dapat diperbaharui diatur oleh siklus hydrologic (Siklus air), yaitu suatu sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Hidrologi merupakan salah satu cabang ilmu bumi (Geoscience atau

BAB II TINJAUAN PUSTAKA. Hidrologi merupakan salah satu cabang ilmu bumi (Geoscience atau BAB II TINJAUAN PUSTAKA A. Analisis Hidrologi Hidrologi merupakan salah satu cabang ilmu bumi (Geoscience atau Science de la Terre) yang secara khusus mempelajari tentang siklus hidrologi atau siklus air

Lebih terperinci

TINJAUAN PERENCANAAN DRAINASE KALI GAJAH PUTIH KODIA SURAKARTA

TINJAUAN PERENCANAAN DRAINASE KALI GAJAH PUTIH KODIA SURAKARTA TINJAUAN PERENCANAAN DRAINASE KALI GAJAH PUTIH KODIA SURAKARTA TUGAS AKHIR Diajukan sebagai salah satu syarat untuk memperoleh gelar Ahli Madya pada program D-III Teknik Sipil Infrastruktur Perkotaan Jurusan

Lebih terperinci

Universitas Gadjah Mada

Universitas Gadjah Mada II. DAUR HIDROLOGI A. Siklus Air di Bumi Air merupakan sumberdaya alam yang sangat melimpah yang tersebar di berbagai belahan bumi. Di bumi terdapat kurang lebih 1,3-1,4 milyard km 3 air yang terdistribusi

Lebih terperinci

UJI LABORATORIUM RESAPAN BERPORI SEBAGAI PENANGGULANGAN BANJIR DAERAH GENANGAN KOTA MAKASSAR

UJI LABORATORIUM RESAPAN BERPORI SEBAGAI PENANGGULANGAN BANJIR DAERAH GENANGAN KOTA MAKASSAR UJI LABORATORIUM RESAPAN BERPORI SEBAGAI PENANGGULANGAN BANJIR DAERAH GENANGAN KOTA MAKASSAR Johannes Patanduk, Achmad Bakri Muhiddin, Ezra Hartarto Pongtuluran Abstrak Hampir seluruh negara di dunia mengalami

Lebih terperinci

PENGARUH INFILTRASI DAN PERMEABILITAS TERHADAP SUMUR RESAPAN DI KAWASAN PERUMAHAN (STUDI KASUS: TAMAN SETIA BUDI INDAH II, MEDAN)

PENGARUH INFILTRASI DAN PERMEABILITAS TERHADAP SUMUR RESAPAN DI KAWASAN PERUMAHAN (STUDI KASUS: TAMAN SETIA BUDI INDAH II, MEDAN) PENGARUH INFILTRASI DAN PERMEABILITAS TERHADAP SUMUR RESAPAN DI KAWASAN PERUMAHAN (STUDI KASUS: TAMAN SETIA BUDI INDAH II, MEDAN) Azhar Fuadi 1 dan Terunajaya 1 Mahasiswa Departemen Teknik Sipil, Universitas

Lebih terperinci

BAB V ANALISA DATA. Analisa Data

BAB V ANALISA DATA. Analisa Data BAB V ANALISA DATA 5.1 UMUM Analisa data terhadap perencanaan jaringan drainase sub sistem terdiri dari beberapa tahapan untuk mencapai suatu hasil yang optimal. Sebelum tahapan analisa dilakukan, terlebih

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Menurut (Soemarto,1999). Infiltrasi adalah peristiwa masuknya air ke dalam tanah, umumnya (tetapi tidak pasti), melalui permukaan dan secara vertikal. Setelah beberapa waktu kemudian,

Lebih terperinci

SOLUSI MENGATASI BANJIR DAN MENURUNNYA PERMUKAAN AIR TANAH PADA KAWASAN PERUMAHAN

SOLUSI MENGATASI BANJIR DAN MENURUNNYA PERMUKAAN AIR TANAH PADA KAWASAN PERUMAHAN SOLUSI MENGATASI BANJIR DAN MENURUNNYA PERMUKAAN AIR TANAH PADA KAWASAN PERUMAHAN Oleh: Rachmat Mulyana P 062030031 E-mail : rachmatm2003@yahoo.com Abstrak Banjir dan menurunnya permukaan air tanah banyak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Pengertian Hidrologi Hidrologi merupakan cabang ilmu geografi yang mempelajari seputar pergerakan, distribusi, dan kualitas air yang ada dibumi. Hidrologi adalah ilmu yang membahas

Lebih terperinci

Lebih dari 70% permukaan bumi diliputi oleh perairan samudra yang merupakan reservoar utama di bumi.

Lebih dari 70% permukaan bumi diliputi oleh perairan samudra yang merupakan reservoar utama di bumi. Sekitar 396.000 kilometer kubik air masuk ke udara setiap tahun. Bagian yang terbesar sekitar 333.000 kilometer kubik naik dari samudera. Tetapi sebanyak 62.000 kilometer kubik ditarik dari darat, menguap

Lebih terperinci

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan sumber air yang dapat dipakai untuk keperluan makhluk hidup. Dalam siklus tersebut, secara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Analisis Hidrologi Hidrologi didefinisikan sebagai ilmu yang mempelajari sistem kejadian air di atas pada permukaan dan di dalam tanah. Definisi tersebut terbatas pada hidrologi

Lebih terperinci

TATA CARA PEMANFAATAN AIR HUJAN

TATA CARA PEMANFAATAN AIR HUJAN Lampiran Peraturan Menteri Negara Lingkungan Hidup Nomor : 12 Tahun 2009 Tanggal : 15 April 2009 TATA CARA PEMANFAATAN AIR HUJAN I. Pendahuluan Dalam siklus hidrologi, air hujan jatuh ke permukaan bumi,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan kawasan perkotaan yang terjadi seiring dengan semakin meningkatnya pertumbuhan penduduk pada

BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan kawasan perkotaan yang terjadi seiring dengan semakin meningkatnya pertumbuhan penduduk pada BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan kawasan perkotaan yang terjadi seiring dengan semakin meningkatnya pertumbuhan penduduk pada akhirnya berimplikasi pada pembangunan sarana dan prasarana

Lebih terperinci

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE TL 4001 Rekayasa Lingkungan 2009 Program Studi Teknik Lingkungan ITB Pendahuluan o Sekitar 80% air minum yang digunakan oleh manusia dibuang atau menjadi air limbah

Lebih terperinci

Pengukuran Nilai Infiltrasi Lapangan dalam Upaya Penerapan Sistem Drainase Berkelanjutan di Kampus UMY

Pengukuran Nilai Infiltrasi Lapangan dalam Upaya Penerapan Sistem Drainase Berkelanjutan di Kampus UMY Reka Racana Jurusan Teknik Sipil Itenas Vol. 3 No.1 Jurnal Online Institut Teknologi Nasional Maret 2017 Pengukuran Nilai Infiltrasi Lapangan dalam Upaya Penerapan Sistem Drainase Berkelanjutan di Kampus

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan Curah hujan adalah volume air yang jatuh pada suatu areal tertentu (Arsyad, 2010). Menurut Tjasyono (2004), curah hujan yaitu jumlah air hujan yang turun pada

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Banjir dan genangan air dapat mengganggu aktifitas suatu kawasan, sehingga mengurangi tingkat kenyamaan penghuninya. Dalam kondisi yang lebih parah, banjir dan genangan

Lebih terperinci

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air.

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. BAB I SIKLUS HIDROLOGI A. Pendahuluan Ceritakan proses terjadinya hujan! Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. Tujuan yang ingin dicapai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang terjadinya, pergerakan dan distribusi air di bumi, baik di atas maupun di bawah permukaan bumi, tentang sifat fisik,

Lebih terperinci

Sub Kompetensi. Pengenalan dan pemahaman pengembangan sumberdaya air tanah terkait dalam perencanaan dalam teknik sipil.

Sub Kompetensi. Pengenalan dan pemahaman pengembangan sumberdaya air tanah terkait dalam perencanaan dalam teknik sipil. PENGEMBANGAN AIR TANAH Sub Kompetensi Pengenalan dan pemahaman pengembangan sumberdaya air tanah terkait dalam perencanaan dalam teknik sipil. 1 PENDAHULUAN Dalam Undang-undang No 7 tahun 2004 : air tanah

Lebih terperinci

BAB II DASAR TEORI. Menurut Suripin (2004 ; 7) drainase mempunyai arti mengalirkan, menguras,

BAB II DASAR TEORI. Menurut Suripin (2004 ; 7) drainase mempunyai arti mengalirkan, menguras, BAB II DASAR TEORI 2.1. Drainase Menurut Suripin (2004 ; 7) drainase mempunyai arti mengalirkan, menguras, membuang, atau mengalihkan air. Secara umum, drainase didefinisikan sebagai serangkaian bangunan

Lebih terperinci

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir JURNAL ILMIAH SEMESTA TEKNIKA Vol. 16, No. 1, 57-64, Mei 2013 57 Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir (The Effect of Rain to the Change

Lebih terperinci

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE

SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE SISTEM PENYALURAN AIR LIMBAH DAN DRAINASE MI 3205 Pengetahuan Lingkungan 2013 D3 Metrologi ITB Pendahuluan o Sekitar 80% air minum yang digunakan oleh manusia dibuang atau menjadi air limbah o Air limbah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Siklus hidrologi (Gambar 2. 1) adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfer dengan matahari sebagai wali

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah drainase kota sudah menjadi permasalahan utama pada daerah perkotaan. Masalah tersebut sering terjadi terutama pada kota-kota yang sudah dan sedang berkembang

Lebih terperinci

PENGGUNAAN APLIKASI SISTEM PERESAPAN BIOPORI TERHADAP ALIRAN DRAINASE UNTUK MENGATASI BANJIR DI KECAMATAN BANDA SAKTI KABUPATEN ACEH UTARA MUAZZI

PENGGUNAAN APLIKASI SISTEM PERESAPAN BIOPORI TERHADAP ALIRAN DRAINASE UNTUK MENGATASI BANJIR DI KECAMATAN BANDA SAKTI KABUPATEN ACEH UTARA MUAZZI PENGGUNAAN APLIKASI SISTEM PERESAPAN BIOPORI TERHADAP ALIRAN DRAINASE UNTUK MENGATASI BANJIR DI KECAMATAN BANDA SAKTI KABUPATEN ACEH UTARA TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan

Lebih terperinci

ANALISIS CURAH HUJAN UNTUK MEMBUAT KURVA INTENSITY-DURATION-FREQUENCY (IDF) DI KAWASAN KOTA LHOKSEUMAWE

ANALISIS CURAH HUJAN UNTUK MEMBUAT KURVA INTENSITY-DURATION-FREQUENCY (IDF) DI KAWASAN KOTA LHOKSEUMAWE ANALISIS CURAH HUJAN UNTUK MEMBUAT KURVA INTENSITY-DURATION-FREQUENCY (IDF) DI KAWASAN KOTA LHOKSEUMAWE Fasdarsyah Dosen Jurusan Teknik Sipil, Universitas Malikussaleh Abstrak Rangkaian data hujan sangat

Lebih terperinci

STUDI SISTEM DRAINASE RESAPAN UNTUK PENANGGULANGAN BANJIR DI LINGKUNGAN III, PASAR III, PADANG BULAN, MEDAN.

STUDI SISTEM DRAINASE RESAPAN UNTUK PENANGGULANGAN BANJIR DI LINGKUNGAN III, PASAR III, PADANG BULAN, MEDAN. STUDI SISTEM DRAINASE RESAPAN UNTUK PENANGGULANGAN BANJIR DI LINGKUNGAN III, PASAR III, PADANG BULAN, MEDAN Maulidi Al Kahfi 1 dan Ahmad Perwira Mulia 2 1 Departemen Teknik Sipil, Universitas Sumatera

Lebih terperinci

ANALISA KAJIAN BANJIR DENGAN SUMUR RESAPAN DAN LUBANG BIOPORI PADA KAWASAN PERUMAHAN GRIYA INSAN MULIA, KECAMATAN MEDAN SUNGGAL

ANALISA KAJIAN BANJIR DENGAN SUMUR RESAPAN DAN LUBANG BIOPORI PADA KAWASAN PERUMAHAN GRIYA INSAN MULIA, KECAMATAN MEDAN SUNGGAL ANALISA KAJIAN BANJIR DENGAN SUMUR RESAPAN DAN LUBANG BIOPORI PADA KAWASAN PERUMAHAN GRIYA INSAN MULIA, KECAMATAN MEDAN SUNGGAL TUGAS AKHIR Diajukan untuk Melengkapi Syarat Penyelesaiaan Pendidikan Sarjana

Lebih terperinci

STUDI KAPASITAS INFILTRASI UNIVERSITAS BINA NUSANTARA DENGAN MENGGUNAKAN METODE HORTON

STUDI KAPASITAS INFILTRASI UNIVERSITAS BINA NUSANTARA DENGAN MENGGUNAKAN METODE HORTON STUDI KAPASITAS INFILTRASI UNIVERSITAS BINA NUSANTARA DENGAN MENGGUNAKAN METODE HORTON SKRIPSI Oleh Andyanto NSP 0700733154 Universitas Bina Nusantara Jakarta 2010 62 STUDI KAPASITAS INFILTRASI UNIVERSITAS

Lebih terperinci

I Dewa Gede Jaya Negara*, Anid Supriyadi*, Salehudin*

I Dewa Gede Jaya Negara*, Anid Supriyadi*, Salehudin* 144 Spektrum Sipil, ISSN 1858-4896 Vol. 3, No. 2 : 144-155, September 2016 ANALISIS KEMAMPUAN PERESAPAN LIMPASAN AIR HUJAN PADA MODEL EMBUNG LAHAN DIAGONAL (ELD) TERHADAP GRADASI LAPISAN TANAH DI LAHAN

Lebih terperinci

BAB III METODE ANALISIS

BAB III METODE ANALISIS BAB III Bab III Metode Analisis METODE ANALISIS 3.1 Dasar-dasar Perencanaan Drainase Di dalam pemilihan teknologi drainase, sebaiknya menggunakan teknologi sederhana yang dapat di pertanggung jawabkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Pendekatan Penelitian Seperti yang telah dijelaskan pada bab I dan II bahwa penelitian studi kapasitas infiltrasi menggunakan metode Horton hal ini disebabkan karena data

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh BAB II TINJAUAN PUSTAKA. Pengertian pengertian Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh penulis, adalah sebagai berikut :. Hujan adalah butiran yang jatuh dari gumpalan

Lebih terperinci

PERENCANAAN SISTEM DRAINASE KAWASAN KAMPUS UNIVERSITAS SAM RATULANGI

PERENCANAAN SISTEM DRAINASE KAWASAN KAMPUS UNIVERSITAS SAM RATULANGI PERENCANAAN SISTEM DRAINASE KAWASAN KAMPUS UNIVERSITAS SAM RATULANGI Heri Giovan Pania H. Tangkudung, L. Kawet, E.M. Wuisan Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi email: ivanpania@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan perumahan di perkotaan yang demikian pesatnya,

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan perumahan di perkotaan yang demikian pesatnya, BAB I PENDAHULUAN 1.1 Latar Belakang Pengembangan perumahan di perkotaan yang demikian pesatnya, mengakibatkan makin berkurangnya daerah resapan air hujan, karena meningkatnya luas daerah yang ditutupi

Lebih terperinci

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian TINJAUAN PUSTAKA Daerah Aliran Sungai Sungai merupakan jaringan alur-alur pada permukaan bumi yang terbentuk secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian hilir. Air hujan

Lebih terperinci

PERTEMUAN II SIKLUS HIDROLOGI

PERTEMUAN II SIKLUS HIDROLOGI PERTEMUAN II SIKLUS HIDROLOGI SIKLUS HIDROLOGI Siklus Hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi

Lebih terperinci

Limpasan (Run Off) adalah.

Limpasan (Run Off) adalah. Limpasan (Run Off) Rekayasa Hidrologi Universitas Indo Global Mandiri Limpasan (Run Off) adalah. Aliran air yang terjadi di permukaan tanah setelah jenuhnya tanah lapisan permukaan Faktor faktor yang mempengaruhi

Lebih terperinci

BAB II METODOLOGI PENELITIAN

BAB II METODOLOGI PENELITIAN BAB II METODOLOGI PENELITIAN Flow Chart Pengerjaan Tugas Akhir PERMASALAHAN Perlunya kajian mengenai permasalahan terkait dengan perubahan tata guna lahan, berkurangnya volume air tanah dan permasalahan

Lebih terperinci

DRAINASE BAWAH PERMUKAAN (SUB SURFACE)

DRAINASE BAWAH PERMUKAAN (SUB SURFACE) BAB 5 DRAINASE BAWAH PERMUKAAN (SUB SURFACE) Tujuan Untuk mengeringkan lahan agar tidak terjadi genangan air apabila terjadi hujan. Lahan pertanian, dampak Genangan di lahan: Akar busuk daun busuk tanaman

Lebih terperinci

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*)

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*) PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS Oleh: Suryana*) Abstrak Pengelolaan Daerah Aliran Sungai (DAS) dilakukan secara integratif dari komponen biofisik dan sosial budaya

Lebih terperinci

PERSYARATAN JARINGAN DRAINASE

PERSYARATAN JARINGAN DRAINASE PERSYARATAN JARINGAN DRAINASE Untuk merancang suatu sistem drainase, yang harus diketahui adalah jumlah air yang harus dibuang dari lahan dalam jangka waktu tertentu, hal ini dilakukan untuk menghindari

Lebih terperinci

MENU PENDAHULUAN ASPEK HIDROLOGI ASPEK HIDROLIKA PERANCANGAN SISTEM DRAINASI SALURAN DRAINASI MUKA TANAH DRAINASI SUMURAN DRAINASI BAWAH MUKA TANAH

MENU PENDAHULUAN ASPEK HIDROLOGI ASPEK HIDROLIKA PERANCANGAN SISTEM DRAINASI SALURAN DRAINASI MUKA TANAH DRAINASI SUMURAN DRAINASI BAWAH MUKA TANAH DRAINASI PERKOTAAN NOVRIANTI, MT. MENU PENDAHULUAN ASPEK HIDROLOGI ASPEK HIDROLIKA PERANCANGAN SISTEM DRAINASI SALURAN DRAINASI MUKA TANAH DRAINASI SUMURAN DRAINASI BAWAH MUKA TANAH DRAINASI GABUNGAN DRAINASI

Lebih terperinci

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI Oleh : FIRDAUS NURHAYATI F14104021 2008 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 1 PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN

Lebih terperinci

Analisa Frekuensi dan Probabilitas Curah Hujan

Analisa Frekuensi dan Probabilitas Curah Hujan Analisa Frekuensi dan Probabilitas Curah Hujan Rekayasa Hidrologi Universitas Indo Global Mandiri Norma Puspita, ST.MT Sistem hidrologi terkadang dipengaruhi oleh peristiwa-peristiwa yang luar biasa, seperti

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Hidrologi adalah ilmu yang menjelaskan tentang kehadiran dan gerakan air di alam, yang meliputi bentuk berbagai bentuk air, yang menyangkut perubahan-perubahannya antara

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 )

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 ) II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Pada umumnya ketersediaan air terpenuhi dari hujan. Hujan merupakan hasil dari proses penguapan. Proses-proses yang terjadi pada peralihan uap air dari laut ke

Lebih terperinci

NASKAH SEMINAR EVALUASI NILAI INFILTRASI JENIS PENUTUP LAHAN DI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA INTISARI

NASKAH SEMINAR EVALUASI NILAI INFILTRASI JENIS PENUTUP LAHAN DI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA INTISARI NASKAH SEMINAR EVALUASI NILAI INFILTRASI JENIS PENUTUP LAHAN DI UNIVERSITAS MUHAMMADIYAH YOGYAKARTA Ivan Setyo Prabowo 1, Nursetiawan 2, Burhan Barid 3 1 Mahasiswa Jurusan Teknik Sipil UMY, 2 Dosen Pembimbing

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN 4.1 Uraian Umum Sesuai dengan program pengembangan sumber daya air di Sulawesi Utara khususnya di Gorontalo, sebuah fasilitas listrik akan dikembangkan di daerah ini. Daerah

Lebih terperinci

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37 BAB I PENDAHULUAN 1.1 Latar Belakang Hujan adalah jatuhnya air hujan dari atmosfer ke permukaan bumi dalam wujud cair maupun es. Hujan merupakan faktor utama dalam pengendalian daur hidrologi di suatu

Lebih terperinci

I. PENGUKURAN INFILTRASI

I. PENGUKURAN INFILTRASI I. PENGUKURAN INFILTRASI A. Proses Infiltrasi Presipitasi (hujan) yang jatuh dipermukaan tanah sebagian atau semuanya akan mengisi pori-pori tanah. Pergerakan air ke arah bawah ini disebabkan oleh gaya

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan selama 3 (tiga) bulan terhitung mulai bulan April sampai

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan selama 3 (tiga) bulan terhitung mulai bulan April sampai III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan selama 3 (tiga) bulan terhitung mulai bulan April sampai dengan bulan Juli 2011. Tempat penelitian adalah Rayon I Unit

Lebih terperinci

II. TINJAUAN PUSTAKA. Daerah penelitian termasuk dalam lembar Kotaagung yang terletak di ujung

II. TINJAUAN PUSTAKA. Daerah penelitian termasuk dalam lembar Kotaagung yang terletak di ujung II. TINJAUAN PUSTAKA A. Geologi Umum Sekitar Daerah Penelitian Daerah penelitian termasuk dalam lembar Kotaagung yang terletak di ujung selatan Sumatra, yang mana bagian selatan di batasi oleh Kabupaten

Lebih terperinci

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai TINJAUAN PUSTAKA Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai Kabupaten Deli Serdang memiliki iklim tropis yang kondisi iklimnya hampir sama dengan kabupaten Serdang Bedagai. Pengamatan

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Penelitian

BAB I PENDAHULUAN A. Latar Belakang Penelitian BAB I PENDAHULUAN A. Latar Belakang Penelitian Air merupakan sumber daya alam yang sangat diperlukan bagi kelangsungan hidup seluruh makhluk, terutama manusia. Dua pertiga wilayah bumi terdiri dari lautan

Lebih terperinci

RANCANGAN DIMENSI SUMUR RESAPAN DI KELURAHAN MINOMARTANI, KECAMATAN NGAGLIK, KABUPATEN SLEMAN. Nur Wiryanti Sih Antomo

RANCANGAN DIMENSI SUMUR RESAPAN DI KELURAHAN MINOMARTANI, KECAMATAN NGAGLIK, KABUPATEN SLEMAN. Nur Wiryanti Sih Antomo RANCANGAN DIMENSI SUMUR RESAPAN DI KELURAHAN MINOMARTANI, KECAMATAN NGAGLIK, KABUPATEN SLEMAN Nur Wiryanti Sih Antomo nurwiryantigeo@gmail.com Slamet Suprayogi slametsuprayogi@yahoo.com Abstract The purpose

Lebih terperinci

Gambar 3.1 Siklus hidrologi (Triatmodjo, 2008)

Gambar 3.1 Siklus hidrologi (Triatmodjo, 2008) BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan denga air di bumi, baik mengenai terjadinya, peredaran dan penyebaran, sifat-sifatnya dan hubunngan dengan lingkungan terutama dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Di bumi terdapat sekitar 1,3-1,4 milyar km 3 air dengan komposisi 97,5% adalah air laut, 1,75% berbentuk es, 0,73% berada di daratan sebagai air sungai, air danau,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi dan Neraca air Menurut Mori (2006) siklus air tidak merata dan dipengaruhi oleh kondisi meteorologi (suhu, tekanan atmosfir, angin, dan lain-lain) dan kondisi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kolam Retensi Kolam retensi merupakan kolam/waduk penampungan air hujan dalam jangka waktu tertentu, berfungsi untuk memotong puncak banjir yang terjadi dalam badan air/sungai.

Lebih terperinci

PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012

PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012 PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012 BAB VI Air Tanah Air Tanah merupakan jumlah air yang memiliki kontribusi besar dalam penyelenggaraan kehidupan dan usaha

Lebih terperinci

WALIKOTA PROBOLINGGO PROVINSI JAWA TIMUR

WALIKOTA PROBOLINGGO PROVINSI JAWA TIMUR WALIKOTA PROBOLINGGO PROVINSI JAWA TIMUR SALINAN PERATURAN WALIKOTA PROBOLINGGO NOMOR 11 TAHUN 2016 TENTANG PEMANFAATAN AIR HUJAN DENGAN RAHMAT TUHAN YANG MAHA ESA WALIKOTA PROBOLINGGO Menimbang : a. bahwa

Lebih terperinci

EVALUASI SISTEM DRAINASE JALAN LINGKAR BOTER KABUPATEN ROKAN HULU

EVALUASI SISTEM DRAINASE JALAN LINGKAR BOTER KABUPATEN ROKAN HULU EVALUASI SISTEM DRAINASE JALAN LINGKAR BOTER KABUPATEN ROKAN HULU SYAFRIANTO 1 ANTON ARIYANTO, M.Eng 2 dan ARIFAL HIDAYAT MT 2 Program Studi Teknik Sipil Fakultas Teknik Universitas Pasir Pengaraian e-mail

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA BAB II. TINJAUAN PUSTAKA 2.1 Definisi Daerah Aliran Sungai (DAS) Definisi daerah aliran sungai dapat berbeda-beda menurut pandangan dari berbagai aspek, diantaranya menurut kamus penataan ruang dan wilayah,

Lebih terperinci