ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI"

Transkripsi

1 ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI Jean Jhenesly F Tumanggor, Ir. Riswan Dinzi, MT Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan 2155 INDONESIA Abstrak Motor adalah mesin yang mengubah energi listrik menjadi enegi mekanis. orang beranggapan bahwa tidak perlu lagi dipelajari motor arus searah karena dipergunakan pada industriindustri sudah sangat kurang. Namun akhirnya beberapa tahun terakhir ini motor arus searah mengalami perkembangan ada beberapa alasan untuk dilanjutkan popularitas dari motor dc. Paper ini membahas analisis perbandingan efek pembebanan terhadap GGL balik dan efisiensi pada motor dc kompon panjang dan motor induksi. Besar efisiensi maksimum pada motor dc kompon panjang adalah 43,881 % dengan besar GGL lawan 193,996 V pada arus beban atau arus beban 5,91 A dan efisiensi minimum pada motor induksi tiga fasa rotor belitan adalah 17,8196% dengan besar GGL lawan 24,952 A dan arus beban sebesar 3,42 A. Motor induksi adalah mesin yang paling banyak digunakan dalam industri. Dalam aplikasinya motor induksi banyak digunakan untuk kebutuhan seharihari, juga untuk industri. Perhitungan GGL balik dan efisiensi motor secara akurat diperlukan untuk mengetahui kondisi aktual motor induksi yang pada akhirnya bertujuan untuk mengoptimalkan kinerja sistem secara keseluruhan. Tingkat efisiensi motor induksi dipengaruhi oleh rugi ruginya. Besar efisiensi maksimum pada motor induksi tiga fasa rotor belitan adalah 84,6419 % dengan besar GGL lawan 37,8318 V pada arus beban atau arus stator 5,16 A dan efisiensi minimum pada motor induksi tiga fasa rotor belitan adalah 8,53% dengan besar GGL lawan 369,4386 V dan arus beban sebesar 5,94 A. Kata Kunci : GGL Balik, Motor dc, Motor induksi Tiga fasa Rotor belitan, Efisiensi 1. Pendahuluan 2. Motor DC dan Motor Induksi Tiga Fasa Motor adalah mesin yang mengubah energi listrik menjadi energi mekanis. Pada motor arus searah energi listrik yang diubah adalah energi arus searah yang berasal dari sumber tegangan listrik arus searah. Dimana sumber tegangan ini dihubungkan pada rangkaian medan dan rangkaian jangkar dari motor tersebut. Akhirakhir ini mungkin banyak orang beranggapan bahwa tidak perlu lagi mempelajari motor arus searah karena penggunaannya pada industriindustri sudah sangat kurang. Oleh sebab itu, perlu dilakukan pengujian untuk membandingkan pengaruh efek pembebanan dan efisiensi pada motor dc penguatan kompon panjang dan motor induksi tiga fasa merupakan masalah yang sangat penting dalam motor listrik karena motor yang akan terus dibebani, maka akan mempengaruhi terhadap besar GGL balik dan efisiensi pada sebuah motor. Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Berdasarkan fisiknya motor arus searah secara umum terdiri atas bagian yang diam dan bagian yang berputar. Kumparan medan pada stator tersebut dihubungkan dengan suatu sumber tegangan, maka pada kumparan medan itu akan mengalir arus medan (I f ). Kumparan medan yang dialiri arus ini akan menimbulkan fluksi utama yang dinamakan fluksi stator. Fluksi ini merupakan medan magnet yang arahnya dari kutub utara menuju kutub selatan (hal ini dapat dilihat dengan adanya garis garis fluksi). Apabila pada kumparan jangkar mengalir arus yakni arus jangkar, berdasarkan hukum Lorenzt kita ketahui bahwa apabila sebuah konduktor yang dialiri arus ditempatkan pada sebuah medan magnet maka pada konduktor tersebut akan timbul gaya, maka demikian pula halnya pada kumparan jangkar. Besarnya gaya ini bergantung dari besarnya arus yang mengalir pada kumparan jangkar (I), kerapatan fluksi (B) dari 53 DTE FT USU

2 kedua kutub dan panjang konduktor jangkar (l). Semakin besar fluksi yang terimbas pada kumparan jangkar maka arus yang mengalir pada kumparan jangkar juga besar, dengan demikian gaya yang terjadi pada konduktor juga semakin besar [1]. Jika arus jangkar (I) tegak lurus dengan arah induksi magnetik (B) maka besar gaya yang dihasilkan oleh arus yang mengalir pada konduktor jangkar yang ditempatkan dalam suatu medan magnet adalah seperti pada Persamaan 1 [2]. F = B. I. l Newton (1) di mana : I = Arus yang mengalir pada konduktor jangkar (Ampere) B = Kerapatan fluksi (Weber/m 2 ) l = Panjang konduktor jangkar (m) Maka, besar gaya keseluruhan yang ditimbulkan oleh jumlah total konduktor jangkar z dapat dilihat pada Persamaan 2. F z. B. I.. l Newton (2) Gaya yang terjadi pada kumparan jangkar di atas akan menghasilkan torsi dapat dilihat pada persamaan 3. T a F. r Newtonmeter (3) Maka, T a z. B. I. l. d / 2 Newton meter (4) Apabila torsi start lebih besar daripada torsi beban maka jangkar akan berputar. Sehingga prinsip kerja motor dc dapat dilihat pada Gambar 1. sedangkan yang lainnya meninggalkan dot, sehingga fluksi yang dihasilkannya menjadi saling mengurangi. Rangkaian ekivalen motor arus searah penguatan kompon panjang diferensial (lawan) pada Gambar 2. V t I L I sh R sh I s R s R I a E a a Gambar 2 Rangkaian ekuivalen motor arus searah penguatan kompon panjang diferensial (lawan) [2] b. Motor arus searah penguatan kompon panjang komulatif (bantu). Pada motor arus searah penguatan kompon panjang komulatif, polaritas kedua kumparan medannya sama atau dikarenakan kedua arus medannya sama sama memasuki dot, sehingga fluksi yang dihasilkannya saling menguatkan. Rangkaian ekivalen motor arus searah penguatan kompon panjang komulatif (bantu) pada Gambar 3. V t I L I sh. R sh. I s R s R a I a E a Gambar 1. Prinsip kerja Motor DC [2] Pada motor arus searah penguatan kompon panjang, kumparan medan serinya terhubung secara seri terhadap kumparan jangkarnya dan terhubung paralel terhadap kumparan medan shunt. Motor arus searah penguatan kompon panjang ini dibagi menjadi 2 jenis, yaitu [2]: a. Motor arus searah penguatan kompon panjang diferensial (lawan). Pada motor arus searah penguatan kompon panjang diferensial, polaritas kedua kumparan medannya saling berlawanan atau sesuai aturan dot, salah satu arus medannya memasuki dot Gambar 3 Rangkaian ekuivalen motor arus searah penguatan kompon panjang komulatif (bantu) [2] Persamaan persamaan yang berlaku pada motor arus searah penguatan kompon panjang adalah: V t =E a I a R a I s R s (5) I L =I a I sh (6) I s =I a (7) Maka V t = E a I a ( R a R s ) (8) Vt I sh R (9) sh 54 DTE FT USU

3 Motor induksi terdiri atas dua bagian utama yaitu stator dan rotor. Keduanya merupakan rangkaian magnetik yang berbentuk silinder dan simetris. Diantara rotor dan stator ini terdapat celah udara yang sempit. Motor induksi adalah peralatan pengubah energi listrik ke bentuk energi mekanik. Pengubahan energi ini bergantung pada keberadaan fenomena alami magnetik dan medan listrik pada satu sisi dan gaya mekanis dan gerak di sisi lainnya. Prinsip kerja motor induksi tiga fasa dijabarkan dalam langkahlangkah sebagai berikut [3]: 1. Pada keadaan beban nol, ketiga fasa stator yang dihubungkan dengan sumber tegangan tiga fasa yang setimbang menghasilkan arus pada tiap belitan fasa.arus pada tiap fasa menghasilkan fluksi bolakbalik yang berubahubah. Amplitudo fluksi yang dihasilkan berubah secara sinusoidal dan arahnya tegak lurus terhadap belitan fasa. 2. Akibat fluksi yang berputar timbul GGL pada stator motor yang besarnya adalah : d e 1 = N 1 (1) dt 3. Penjumlahan ketiga fluksi bolakbalik tersebut disebut juga putaran sinkron n s yang besarnya ditentukan oleh jumlah kutub p dan frekuensi stator f yang dirumuskan dengan : 12. f (11) ns p 4. Fluksi yang berputar tersebut akan memotong batang konduktor pada rotor. Akibatnya pada kumparan rotor timbul tegangan induksi (GGL) sebesar E 2 yang besarnya: E 2 4, 44 fn 2 m (12) dimana : E 2 = Tegangan induksi pada rotor saat rotor dalam keadaan diam = Jumlah lilitan kumparan rotor N 2 Ф m = Fluksi maksimum 5. E2 menghasilkan arus rotor (I 2 ), I 2 dalam medan maget menghasilkan gaya pada rotor F rotor sehingga menimbulkan Kopel Mula 6. Bila Kopel Mula lebih besar dari Kopel Beban, maka rotor akan berputar 7. Perputaran rotor akan semakin meningkat hingga mendekati kecepatan sinkron. Perbedaan kecepatan medan stator (n s ) dan kecepatan rotor (n r ) disebut slip (s), besarnya tegangan yang terinduksi pada kumparan rotor akan bervariasi tergantung 8. Besarnya slip. Tegangan induksi ini dinyatakan dengan E 2s yang Besarnya E 2s 4, 44sfN 2 m (13) dimana E 2s = tegangan induksi pada rotor dalam keadaan berputar f 2 = s.f frekuensi rotor (frekuensi tegangan induksi pada rotor dalam keadaan berputar) Rangkaian ekivalen motor induksi tiga fasa seperti pada Gambar 4. Gambar 4 Rangkaian ekivalen Motor induksi Tiga fasa [4] Sehingga rumus pada GGL Balik Motor InduksiTiga Fasa sebagai berikut [3] : V 1 = E 1 I 1 (R 1 J X 1 ) Volt (14) 3. Pengaruh efek pembebanan pada Motor dc kompon panjang dan motor induksi Tiga Fasa Biasanya efek pembebanan pada motor sangat mempengaruhi parameterparameter khususnya pada motor induksi dan motor DC. Karena motor DC adalah mesin dc sedangkan motor induksi adalah mesin bolak balik (Alternating Current). Untuk mengetahui nilai parameter seperti GGL balik dan efisiensi pada motor DC dan motor induksi dapat dipahami melalui rangkaian ekivalen masing masing motor induksi dan motor DC. Ketika jangkar motor DC berputar di bawah pengaruh GGL penggerak, konduktor jangkar bergerak di dalam medan magnet dan akan menghasilkan tegangan induksi di dalamnya seperti halnya pada generator. GGL induksi bekerja pada arah yang berlawanan dengan tegangan terminal V t (sesuai dengan bunyi Hukum Lenz) dan dikenal sebagai GGL lawan atau GGL balik E a. GGL balik E a (=PΦZN/6A) biasanya kurang dari tegangan terminal V, meskipun perbedaan ini kecil sekali pada saat motor berjalan di bawah kondisi normal. Dalam memutar GGL pada motor dc sama dengan memutar balik putaran pada motor dc. [4] Adanya GGL balik menjadikan 55 DTE FT USU

4 motor DC yaitu motor memikul arus jangkar sesuai dengan yang dibutuhkan untuk membangkitkan GGL lawan. Vt Ea Ia (15) Ra 1. Ketika motor berjalan pada kondisi tanpa beban, GGL yang kecil dibutuhkan untuk mengatasi rugirugi gesek dan angin. Dengan demikian, arus jangkar I a juga kecil dan GGL balik besarnya hampir sama dengan tegangan terminal. 2. Jika motor tibatiba dibebani, efek yang pertama sekali dirasakan adalah penurunan kecepatan jangkar. Sehingga kecepatan konduktor jangkar yang bergerak di dalam medan magnet berkurang dan begitu juga dengan GGL balik E a. Berkurangnya GGL balik menyebabkan arus yang besar mengalir melalui jangkar dan arus yang besar ini juga meningkatkan GGL penggerak. Maka, GGL penggerak meningkat seiring dengan menurunnya kecepatan motor. Penurunan kecepatan motor akan berhenti ketika arus jangkar sudah cukup untuk menghasilkan GGL yang dibutuhkan oleh beban. 3. Jika beban motor dikurangi GGL penggerak sesaat melebihi dari yang dibutuhkan sehingga jangkar mengalami percepatan. Karena kecepatan jangkar meningkat, GGL balik juga akan meningkat dan menyebabkan arus jangkar I a berkurang. Motor akan berhenti dari percepatannya jika arus jangkar sudah cukup untuk menghasilkan GGL yang dibutuhkan oleh beban. Dengan demikian, GGL balik di dalam motor DC mengatur aliran arus jangkar, yang secara otomatis merubah besaran arus jangkar untuk memenuhi kebutuhan beban. Perhitungan untuk efisiensi motor dc induksi tiga fasa dirumuskan pada Persamaan 16. [6]: Pout η m= x1% (16) Pin Dalam menghasilkan GGL lawan pada motor induksi maka gelombang fluks celahudara yang berputar serempak membangkitkan GGL lawan fasa banyak seimbang di dalam fasafasa stator. Besarnya tegangan terminal stator berbeda dari GGL lawan sebesar jatuhnya tegangan pada reaktansi bocor stator pada stator akan timbul GGL induksi sendiri E1 atau dengan kata lain GGL lawan (balik) maupun dalam keadaan berbeban maupun tanpa beban, karena hanya GGL lawan E1 yang hanya melawan Tegangan sumber sehingga GGL lawan dapat dihitung dengan menggunakan persamaan 3. untuk mendapatkan nilai GGL lawan pada motor induksi tiga pahasa [3]. Dengan menentukan nilai parameter parameter pada rangkaian ekivalen motor induksi terlebih dahulu melalui 3 tes yaitu : (i) Percobaan beban nol (ii) Percobaan rotor tertahan (iii) Percobaan tahanan dc Perhitungan untuk efisiensi motor dc Induksi tiga fasa dirumuskan pada Persamaan 17. Pout Pin Ploss Pout (%) x1 % x1 % x1 % Pin Pin Pout Ploss (17) 4. Hasil Simulasi dan Analisis Percobaan pengukuran analisis efek pembebanan pada motor dc dan motor induksi dapat dilakukan dengan mensimulasi besar nilai GGL lawan pada motor dc kompon panjang dan motor induksi dengan menentukan terlebih dahulu nilai parameterparameter pada motor dc kompon panjang dan motor induksi.percobaan ini dilakukan untuk menentukan nilai besar GGL lawan dan efisiensi dari motor dc kompon panjang dan motor induksi sehingga rugirugi dapat dikurangi dan perawatan minimum. Motor yang digunakan pada analisis ini adalah motor DC AEG tipe Gd 11/11GMotor dengan penguatan kompon panjang yang terdapat dilaboratorium konversi energy Listrik FTUSU dengan spesifikasi sebagai berikut: 2 Kutub, Tegangan 22 v, TYPE ISOLASI B, 14 rpm, 5 Hz, Ish=.177 Ampere, Daya 1.2 Kw, Daya 1.2 Kw, I l = 7.1 A Rsh (JK) = 1.25 kω Rs (EF) =,6 kω Ra (GAHB) = 3,8 kω Dari pengujian yang dilakukan dari kondisi berbeban diperoleh pada data Tabel 1. Tabel 1 Data Percobaan Berbeban Persen beban (%) Is=Ia Ampere Ampere Ampere Ampere Dari pengujian yang dilakukan dari kondisi tanpa 56 DTE FT USU

5 beban diperoleh pada data Tabel 2. Tabel 2 Percobaan Tanpa Beban ( % Beban) Is=Ia 2.69 Ampere Motor yang digunakan pada analisis ini dilaboratorium konversi energy Listrik FTUSU dengan spesifikasi sebagai berikut: AEG Type C Am 112MU4RI 2.2 Kw, Cosφ.67 Δ/Y 22/36 V 1.7/6.2 TYPE ISOLASI B 15 rpm, 5 Hz Amperemeter AC & DC Volt Meter Tahanan Geser Watt Meter 3φsumber tegangan AC dan DC Adapun data percobaan pada motor induksi tiga fasa rotor belitan seperti pada Tabel 3. Tabel 3 Data percobaan pada Motor Induksi Tiga fasa rotor belitan Persen beban Arus stator ( amper e) Putara n rotor (rpm) P input (Kw) ARUS ROTOR Ampere Berdasarkan datadata yang diperoleh dari hasil pengujian, dapat dilakukan analisis perhitungan dengan simulasi program software matlab seperti pada Tabel 4. GGL LAWAN Volt Tabel 4 Analisis Data pada Motor DC Kompon panjang ARUS Effisiensi BEBAN (%) (I S =Ia) ampere Persen beban (%) Sehingga dapat digambarkan kurva GGL lawan terhadap beban seperti ditunjukkan pada Gambar 5. g g l b a lik e ffis ie n s i ggl balik thd arus beban arus beban Gambar 5 Grafik GGL balik VS arus beban Pada Sehingga kurva efissiensi terhadap beban pada motor dc kompon panjang seperti ditunjukkan pada Gambar effisiensi thd arus beban arus beban Gambar 6 Grafik Effisiensi VS arus beban Pada Berdasarkan datadata yang diperoleh dari hasil pengujian, dapat dilakukan analisis perhitungan dengan simulasi program software matlab seperti pada Tabel 5. Tabel 5 Analisis Data pada Motor Induksi Tiga Fasa rotor belitan Persen Arus stator beban (ampere) Putaran rotor (rpm) P input (Kw) GGL balik (E1) VOLT (%) ARUS ROTOR Ampere Sehingga dapat digambarkan kurva GGL lawan terhadap beban seperti ditunjukkan pada Gambar DTE FT USU

6 g g l b a l i k e t a ggl balik thd beban arus stator Gambar 7 Grafik GGL balik VS arus stator Pada Motor Induksi Tiga Fasa Rotor Belitan sehingga kurva efisiensi terhadap beban pada motor induksi tiga fasa rotor belitan dapat ditunjukkan seperti pada Gambar eta (effisiensi) thd beban arus stator Gambar 8 Grafik Efisiensi VS arus stator Pada Motor Induksi Tiga Fasa Rotor Belitan 5. Kesimpulan Kesimpulan yang dapat diambil dari tugas akhir ini adalah: 1. Besar Parameter Motor Induksi yang diperoleh dari percobaan ini adalah : R m = Ohm X 1 = 3,61 Ohm R 1 = Ohm X 2 = Ohm R 2 =.42 Ohm X m = 61.1 Ohm Sedangkan pada motor dc penguatan kompon panjang : Rs =,6 Ohm Rsh = 125 Ohm Ra= 3,8 Ohm 2. Pada percobaan pengaruh pembebanan terhadap arus stator dan arus rotor dan arus jangkar yang dihasilkan, diketahui bahwa jika persen beban yang dihubungkan ke rotor diperbesar maka nilai arus stator dan arus rotor dan arus jangkar pada motor dc dan motor induksi rotor belitan yang dihasilkan juga akan bertambah. 3. Menurut percobaan effisiensi pada motor dc kompon panjang akan meningkat seiring meningkatnya arus beban sedangkan pada motor induksi tiga fasa rotor belitan berbeda diakibatkan oleh pembebanan yang bervariasi. 4. GGL lawan pada motor dc kompon panjang dan motor induksi tiga fasa akan meningkat seiring meningkatnya beban pada motor dc kompon panjang dan motor induksi tiga fasa rotor belitan. 6. Daftar Pustaka [1] Chapman, J Stephen, Electrical machinery Fundamental, Mc GrawHill Book Company, singapore, 1999 [2] Mehta, V,k dan Mehta, Rohit, Principles of electrical machines first edition, S. chand and company LTD, Ram Nagar, New Delhi, 22. [3] Fitzgerald Kingslay JR, Mesinmesin Listrik, Edisi Keempat, Penerbit Erlangga, Jakarta, 199. [4] Theraja BL. Ak, A Text Book of Electrical Technology, Publication Division Nirja Construction And Development Co. Ltd, New Delhi, [5] Wijaya, Mochtar, Dasardasar mesin listrik, penerbit Djamban, jakarta, 21 [6] Sen S. K, Rotating Electrical Machinery, Khana Publisher, New Delhi, 197 [7] 3 S798etode%2perhitungan.pdf 58 DTE FT USU

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

Kata Kunci: motor DC, rugi-rugi. 1. Pendahuluan. 2. Rugi-Rugi Pada Motor Arus Searah Penguatan Seri Dan Shunt ABSTRAK

Kata Kunci: motor DC, rugi-rugi. 1. Pendahuluan. 2. Rugi-Rugi Pada Motor Arus Searah Penguatan Seri Dan Shunt ABSTRAK PENGARUH PENAMBAHAN KUTUB BANTU PADA MOTOR ARUS SEARAH PENGUATAN SERI DAN SHUNT UNTUK MEMPERKECIL RUGIRUGI (Aplikasi pada Laboratorium Konversi Energi Listrik FTUSU) Al Magrizi Fahni, Syamsul Amien Konsentrasi

Lebih terperinci

PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT

PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT PENGARUH POSISI SIKAT DAN PENAMBAHAN KUTUB BANTU TERHADAP EFISIENSI DAN TORSI MOTOR DC SHUNT Jesayas Sihombing Syamsul Amien Konsentrasi Teknik Energi Listrik Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR ARUS SEARAH KOMPON Irpan Rosidi Tanjung, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON

PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON PENGARUH PENGATURAN TAHANAN SHUNT DAN SERI TERHADAP PUTARAN DAN EFISIENSI MOTOR ARUS SEARAH KOMPON (Aplikasi pada Laboratorium Departemen Listrik P4TK, Medan) Andri Sitorus,Syamsul Amien Konsentrasi Teknik

Lebih terperinci

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS Samson M. Tambunsaribu, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) STUDI PENGATURAN KECEPATAN MOTOR DC SHUNT DENGAN METODE WARD LEONARD (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) Dimas Harind Yudha Putra,Riswan Dinzi Konsentrasi Teknik Energi Listrik,

Lebih terperinci

PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON

PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON PENGARUH PEGATURAN KECEPATAN MENGGUNAKAN METODE PENGATURAN FLUKSI TERHADAP EFISIENSI PADA MOTOR ARUS SEARAH KOMPON Bambang Hidayat, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro

Lebih terperinci

METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH

METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH METODE PERLAMBATAN (RETARDATION TEST) DALAM MENENTUKAN RUGI-RUGI DAN EFISIENSI MOTOR ARUS SEARAH Lamcan Raya Tamba, Eddy Warman Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum )

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) Makruf Abdul Hamid,Panusur S M L Tobing Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA Ali Sahbana Harahap, Raja Harahap, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

ANALISIS PERBANDINGAN TORSI START

ANALISIS PERBANDINGAN TORSI START ANALISIS PERBANDINGAN TORSI START DAN ARUS START,DENGAN MENGGUNAKAN METODE PENGASUTAN AUTOTRAFO, STAR DELTA DAN DOL (DIRECT ON LINE) PADA MOTOR INDUKSI 3 FASA (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

ABSTRAK. Kata Kunci: generator dc, arus medan dan tegangan terminal. 1. Pendahuluan

ABSTRAK. Kata Kunci: generator dc, arus medan dan tegangan terminal. 1. Pendahuluan ANALISIS PENGARUH BEBAN TERHADAP KARAKTERISTIK DAN EFISIENSI GENERATOR ARUS SEARAH PENGUATAN KOMPON KUMULATIF DAN KOMPON DIFERENSIAL (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) Syahrizal

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY)

ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) ANALISIS PENENTUAN TEGANGAN TERMINAL, REGULASI, DAN EFISIENSI GENERATOR SINKRON 3 FASA ROTOR SALIENT POLE DENGAN METODE BLONDEL (TWO REACTION THEORY) Selamat Aryadi (1), Syamsul Amien (2) Konsentrasi Teknik

Lebih terperinci

STUDI PENGARUH PEMBEBANAN PADA MOTOR DC PENGUATAN SHUNT TERHADAP ARUS STATOR ABSTRAK

STUDI PENGARUH PEMBEBANAN PADA MOTOR DC PENGUATAN SHUNT TERHADAP ARUS STATOR ABSTRAK STUDI PENGARUH PEMBEBANAN PADA MOTOR DC PENGUATAN SHUNT TERHADAP ARUS STATOR Oleh : Agus Raikhani Prodi Elektro F. Teknik Universitas Darul Ulum Jl. Gus Dur 29 a Jombang Email. Agus.raikhani@gmail.com

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT

ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT ANALISIS EFISIENSI MOTOR DC SERI AKIBAT PERGESERAN SIKAT Edi Saputra, Syamsul Amien Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara (USU) Jl. Almamater,

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Generator merupakan suatu alat yang dapat mengubah energi mekanik menjadi energi listrik melalui medium medan magnet. Bagian utama generator terdiri dari stator dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar

Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar Jurnal Kompetensi Teknik Vol.1, No. 2, Mei 2010 57 Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar Isdiyarto Jurusan Teknik Elektro, Universitas Negeri Semarang

Lebih terperinci

ANALISA PENGARUH BESAR NILAI KAPASITOR EKSITASI TERHADAP KARAKTERISTIK BEBAN NOL DAN BERBEBAN PADA MOTOR INDUKSI SEBAGAI

ANALISA PENGARUH BESAR NILAI KAPASITOR EKSITASI TERHADAP KARAKTERISTIK BEBAN NOL DAN BERBEBAN PADA MOTOR INDUKSI SEBAGAI ANALISA ENGARUH BESAR NILAI KAASITOR EKSITASI TERHADA KARAKTERISTIK BEBAN NOL DAN BERBEBAN ADA MOTOR INDUKSI SEBAGAI GENERATOR (MISG) ENGUATAN SENDIRI Muhammad Habibi Lubis, Masykur Sjani Konsentrasi Teknik

Lebih terperinci

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT USU

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

ANALISIS PERBANDINGAN UNJUK KERJA MOTOR INDUKSI SATU FASA SPLIT-PHASE

ANALISIS PERBANDINGAN UNJUK KERJA MOTOR INDUKSI SATU FASA SPLIT-PHASE ANALSS PERBANDNGAN UNJUK KERJA MOTOR NDUKS SATU FASA SPLT-PHASE DAN MOTOR NDUKS SATU FASA KAPASTOR START-RUN DENGAN MENGGUNAKAN MATLAB SMULNK Andry Nico Manik, Riswan Dinzi Konsentrasi Teknik Energi Listrik,

Lebih terperinci

MODUL III SCD U-Telkom. Generator DC & AC

MODUL III SCD U-Telkom. Generator DC & AC MODUL III SCD U-Telkom 2013 Generator DC & AC Pengertian Generator DC Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN Momentum, Vol. 10, No. 2, Oktober 2014, Hal. 62-68 ISSN 0216-7395 PERANCANGAN PARAMETER PADA MOTOR INDUKSI TIGA FASA TIPE ROTOR BELITAN UNTUK PENINGKATAN UNJUK KERJA Tejo Sukmadi Jurusan Teknik Elektro

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Motor arus searah (motor DC) telah ada selama lebih dari seabad. Keberadaan motor DC telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa

ABSTRAK. Kata Kunci: pengaturan, impedansi, amperlilit, potier. 1. Pendahuluan. 2. Generator Sinkron Tiga Fasa ANALISA PERBANDINGAN METODE IMPEDANSI SINKRON, AMPER LILIT DAN SEGITIGA POTIER DALAM MENENTUKAN REGULASI TEGANGAN GENERATOR SINKRON DENGAN PEMBEBANAN RESISTIF, INDUKTIF DAN KAPASITIF Hanri Adi Martua Hasibuan,

Lebih terperinci

STUDI TENTANG PENGARUH PEMBEBANAN STATIS DAN PERUBAHAN TEGANGAN INPUT MOTOR DC PENGUATAN SHUNT TERHADAP ARUS JANGKAR

STUDI TENTANG PENGARUH PEMBEBANAN STATIS DAN PERUBAHAN TEGANGAN INPUT MOTOR DC PENGUATAN SHUNT TERHADAP ARUS JANGKAR Studi Tentang Pengaruh Pembebanan Statis.(Agus Raikhani) STUDI TENTANG PENGARUH PEMBEBANAN STATIS DAN PERUBAHAN TEGANGAN INPUT MOTOR DC PENGUATAN SHUNT TERHADAP ARUS JANGKAR Oleh : Agus Raikhani,Khumaidi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

Mekatronika Modul 7 Aktuator

Mekatronika Modul 7 Aktuator Mekatronika Modul 7 Aktuator Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Aktuator Listrik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan penerapan

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI

STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI STUDI PERBANDINGAN PENGGUNAAN RHEOSTAT DAN AUTO-TRANSFORMATOR UNTUK PENGATURAN KECEPATAN MOTOR DC SERI Tugas Akhir Ini Diajukan Untuk Melengkapi Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Teknik

Lebih terperinci

KEGIATAN 1 : PENGEREMAN MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN GESER UNTUK APLIKASI LABORATORIUM

KEGIATAN 1 : PENGEREMAN MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN GESER UNTUK APLIKASI LABORATORIUM KEGIATAN 1 : PENGEREMAN MOTOR ARUS SEARAH DENGAN MENGGUNAKAN TAHANAN GESER UNTUK APLIKASI LABORATORIUM 1.1. Latar Belakang Mahasiswa perlu mengetahui aspek pengereman pada motor arus searah (Direct Current

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

UNIT I MOTOR ARUS SEARAH MEDAN TERPISAH. I-1. JUDUL PERCOBAAN : Pengujian Berbeban Motor Searah Medan Terpisah a. N = N (Ia) Pada U = k If = k

UNIT I MOTOR ARUS SEARAH MEDAN TERPISAH. I-1. JUDUL PERCOBAAN : Pengujian Berbeban Motor Searah Medan Terpisah a. N = N (Ia) Pada U = k If = k UNIT I MOTOR ARUS SEARAH MEDAN TERPISAH I-1. JUDUL PERCOBAAN : Pengujian Berbeban Motor Searah Medan Terpisah a. N = N (Ia) Pada U = k If = k I-2. MAKSUD PERCOBAAN : Menentukan besar kecepatan putar motor

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Generator fluks radial yang telah dirancang kemudian dilanjutkan dengan pembuatan dan perakitan alat. Pada stator terdapat enam buah kumparan dengan lilitan sebanyak 650 lilitan.

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

STUDI PENGARUH ARUS EKSITASI PADA GENERATOR SINKRON YANG BEKERJA PARALEL TERHADAP PERUBAHAN FAKTOR DAYA

STUDI PENGARUH ARUS EKSITASI PADA GENERATOR SINKRON YANG BEKERJA PARALEL TERHADAP PERUBAHAN FAKTOR DAYA SINGUD ENSIKOM VOL. 7 NO. 1/pril STUDI PENGRUH RUS EKSITSI PD GENERTOR SINKRON YNG BEKERJ PRLEL TERHDP PERUBHN FKTOR DY Basofi, Ir.Syamsul mien, M.S Konsentrasi Teknik Energi Listrik, Departemen Teknik

Lebih terperinci

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014 ANALISIS KEDIP TEGANGAN AKIBAT PENGASUTAN MOTOR INDUKSI MENGGUNAKAN PROGRAM MATLAB (Aplikasi pada Bengkel Listrik Balai Besar Latihan Kerja (BBLKI) Medan) Sorganda Simbolon, Eddy Warman Konsentrasi Teknik

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) O L E H EKO PRASETYO NIM : 0404007

Lebih terperinci

HANDOUT MESIN-2 LISTRIK

HANDOUT MESIN-2 LISTRIK HANDOUT MESIN-2 LISTRIK Materi : GENERATOR Alokasi: 6 x 3Js oleh: HARI PUTRANTO Tujuan Pembelajaran: 1. Memahami konsep dasar konstruksi, prinsip kerja dan bgm generator beroperasi. 2. Mengenal berbagai

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan 1

Modul Kuliah Dasar-Dasar Kelistrikan 1 TOPIK 14 MESIN SINKRON PRINSIP KERJA MESIN SINKRON MESIN sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor. Kumparan jangkarnya berbentuk sarna dengan mesin induksi. sedangkan

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni 2014

SINGUDA ENSIKOM VOL. 7 NO. 3/ Juni 2014 ANALISIS PERBANDINGAN PENGARUH BEBAN SEIMBANG DAN TIDAK SEIMBANG TERHADAP REGULASI TEGANGAN DAN EFISIENSI PADA BERBAGAI HUBUNGAN BELITAN TRANSFORMATOR TIGA FASA Yuliana Tanjung [1], A. Rachman Hasibuan

Lebih terperinci

JOB SHEET MESIN LISTRIK 2. Percobaan Medan Putar dan Arah Putaran

JOB SHEET MESIN LISTRIK 2. Percobaan Medan Putar dan Arah Putaran JOB SHEET MESIN LISTRIK Percobaan Medan Putar dan Arah Putaran UNIVERSITAS NEGERI MALANG FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO JOB SHEET PRAKTIKUM MESIN LISTRIK Materi Judul Percobaan Waktu : Motor Induksi

Lebih terperinci

TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR DC PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING

TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR DC PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING TUGAS AKHIR PERBANDINGAN PENGEREMAN MOTOR D PENGUATAN SERI DENGAN METODE DINAMIK DAN PLUGGING ( Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU ) Diajukan untuk memenuhi salah satu persyaratan

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran.pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan.

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan. MESIN ASINKRON A. MOTOR LISTRIK Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA. Motor asinkron IEC berbasis metrik (milimeter),

Lebih terperinci

ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR

ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR KOMPENSASI (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator adalah mesin yang mengelola energi mekanik menjadi energi listrik. Prinsip kerja generator adalah rotor generator yang digerakan oleh turbin sehingga menimbulkan

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

GENERATOR ARUS SEARAH

GENERATOR ARUS SEARAH GENERATOR ARUS SEARAH PRINSIP KERJA GENERATOR ARUS SEARAH Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday : e = N d / dt dimana : N : jumlah lilitan : fluksi magnet e : Tegangan imbas,

Lebih terperinci

JENIS-JENIS GENERATOR ARUS SEARAH

JENIS-JENIS GENERATOR ARUS SEARAH JENISJENIS GENERATOR ARUS SEARAH Medan magnet pada generator dapat dibangkitkan dengan dua cara yaitu : dengan magnet permanen dengan magnet remanen Generator listrik dengan magnet permanen sering juga

Lebih terperinci

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l Mesin DC Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi listrik. Prinsip kerja mesin DC (dan AC) adalah

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

Soal Soal Latihan Elektronika & Tenaga Listrik

Soal Soal Latihan Elektronika & Tenaga Listrik Soal Soal Latihan Elektronika & Tenaga Listrik 1. Generator DC 4 kutub mempunyai belitan jangkar yang terdiri dari 648 penghantar (konduktor) total yang dihubungkan dalam dua garis edar paralel. Jika flux

Lebih terperinci

PENGARUH BENTUK GELOMBANG SINUS TERMODIFIKASI (MODIFIED SINE WAVE) TERHADAP UNJUK KERJA MOTOR INDUKSI SATU FASA

PENGARUH BENTUK GELOMBANG SINUS TERMODIFIKASI (MODIFIED SINE WAVE) TERHADAP UNJUK KERJA MOTOR INDUKSI SATU FASA PENGARUH BENTUK GELOMBANG SINUS TERMODIFIKASI (MODIFIED SINE WAVE) TERHADAP UNJUK KERJA MOTOR INDUKSI SATU FASA Robby Fierdaus¹, Ir. Soeprapto,MT.², Ir. Hery Purnomo,MT.³ ¹Mahasiswa Teknik Elektro, ² ³Dosen

Lebih terperinci

PENGARUH VARIASI KETIDAKSEIMBANGAN TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA DENGAN NILAI FAKTOR KETIDAKSEIMBANGAN TEGANGAN YANG SAMA

PENGARUH VARIASI KETIDAKSEIMBANGAN TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA DENGAN NILAI FAKTOR KETIDAKSEIMBANGAN TEGANGAN YANG SAMA PENGARUH VARIASI KETIDAKSEIMBANGAN TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA DENGAN NILAI FAKTOR KETIDAKSEIMBANGAN TEGANGAN YANG SAMA Ahmad Muntashir Aulia, Zulkarnaen Pane Konsentrasi Teknik Energi

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

ANALISIS PENGARUH PERUBAHAN ARUS EKSITASI TERHADAP ARUS JANGKAR DAN FAKTOR DAYA MOTOR SINKRON TIGA FASA. Elfizon. Abstract

ANALISIS PENGARUH PERUBAHAN ARUS EKSITASI TERHADAP ARUS JANGKAR DAN FAKTOR DAYA MOTOR SINKRON TIGA FASA. Elfizon. Abstract ANALISIS PENGARUH PERUBAHAN ARUS EKSITASI TERHADAP ARUS JANGKAR DAN FAKTOR DAYA MOTOR SINKRON TIGA FASA Elfizon Abstract This paper aimed to analyze the effect of changing excitation current to the armature

Lebih terperinci

PEMODELAN UNJUK KERJA MOTOR INDUKSI TIGA FASA PADA KONDISI UNDER VOLTAGE TIDAK SEIMBANG DENGAN MENGGUNAKAN MATLAB/SIMULINK

PEMODELAN UNJUK KERJA MOTOR INDUKSI TIGA FASA PADA KONDISI UNDER VOLTAGE TIDAK SEIMBANG DENGAN MENGGUNAKAN MATLAB/SIMULINK E.9 PEMODELAN UNJUK KERJA MOTOR INDUKSI TIGA FASA PADA KONDISI UNDER VOLTAGE TIDAK SEIMBANG DENGAN MENGGUNAKAN MATLAB/SIMULINK Nasrullah 1,2, Muhamad Haddin 1, Supari 1 1 Magister Teknik Elektro, Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1 Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal

Lebih terperinci