BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Tanah merupakan material yang terdiri dari agregat (butiran), beberapa mineral-mineral padat yang tidak tersedimentasi (terikat secara kimia) satu sama lain dari bahan-bahan organik yang telah melapuk disertai dengan zat cair dan gas yang mengisi ruang-ruang kosong di antara partikel-partikel padat tersebut. Salah satu kegunaan tanah adalah sebagai pendukung struktur bangunan atas sehingga tanah harus tetap stabil dan tidak mengalami penurunan yang mengakibatkan kerusakan konstruksi. Istilah penurunan menunjukkan tenggelamnya suatu bangunan akibat kompresi dan deformasi lapisan tanah di bawah bangunan. Karena rumitnya sifat-sifat mekanik tanah maka penurunan struktur hanya dapat diperkirakan dengan hasil analisis tanah tersebut, sehingga perlu diketahui sifat-sifat dasar tanah seperti komposisi tanah, permeabilitas tanah, dan daya dukungnya serta penyebab lainnya. 2.2 Parameter Tanah Dalam mendesain bangunan geoteknik, diperlukan data tanah yang dapat menunjukkan kondisi tanah di lapangan. Data yang diperlukan dapat berupa data pengujian di laboratorium dan data hasil pengujian di lapangan. Pengambilan sampel tanah dan pengujian laboratorium tidak dilakukan pada seluruh lokasi melainkan di tempat-tempat yang memungkinkan dianggap mewakili lokasi sebenarnya. 20

2 Kelengkapan data dalam penyelidikan lapangan, menentukan akurasi dalam perencanaan, tetapi tidak semua data dapat diperoleh dengan lengkap. Hal terkait dengan masalah biaya pengambilan sampel atau kendala non teknis yang terjadi di lapangan. Oleh karena itu, perencana harus dapat mengambil asumsi yang dapat dipertanggung jawabkan dengan nilai kesalahan yang minimal. Asumsi tersebut diperoleh dari korelasi empiris yang telah dilakukan oleh ahliahli geoteknik yang mengacu pada pamahaman mekanika tanah yang baik. Secara umum elemen tanah mempunyai 3 (tiga) fase, yaitu butiran padat, air dan udara. Pemahaman mengenai komposisi tanah diperlukan untuk mengambil keputusan dalam memperoleh parameter tanah. Berdasarkan ketiga fase tersebut, diperoleh hubungan antara volume dengan berat seperti terlihat pada Gambar 2.1. Gambar 2.1. Hubungan antar fase tanah 21

3 Hubungan volume yang umum digunakan untuk suatu elemen tanah adalah angka pori (void ratio), porositas (porosity), derajat kejenuhan (degree of saturation), sedangkan untuk hubungan berat digunakan istilah kadar air (water content), dan berat volume (unit weight). Hubungan-hubungan tersebut dapat dikembangkan sehingga dapat digunakan parameter tanah yang digunakan dalam perhitungan desain (Tabel 2.1). Tabel 2.1 Korelasi berbagai jenis parameter tanah Klasifikasi Tanah dari Data Sondir Data tekanan conus ( qc ) dan hambatan pelekat ( fs ) yang didapatkan dari hasil pengujian sondir dapat digunakan untuk menentukan jenis tanah seperti yang ditunjukkan dalam Tabel 2.2: 22

4 Tabel 2.2 Klasifikasi tanah dari data sondir Hubungan antara konsistensi terhadap tekanan conus dan undrained cohesion adalah sebanding dimana semakin tinggi nilai c dan qc maka semakin keras tanah tersebut. Seperti yang terlihat dalam Tabel 2.3: Tabel 2.3 Hubungan antara konsistensi dengan nilai tekanan konus pada sondir Konsistensi Tanah Tekanan Konus qc (kg/cm 2 ) Undrained Cohesion (T/m 2 ) Very Soft Soft Medium Stiff Stiff Very Stiff Hard < 2,50 2,50 5,0 5,0 10,0 10,0 20,0 20,0 40,0 >40,0 < 1,25 1,25 2,50 2,50 5,0 5,0 10,0 10,0 20,0 >20,0 Begitu pula hubungan antara kepadatan dengan relative density, nilai N SPT, qc dan Ø adalah sebanding. Hal ini dapat dilihat dalam pada Tabel 2.4: 23

5 Tabel 2.4 Hubungan antara kepadatan, relative density, nilai N, qc, dan ø (Mayerhoff, 1965) Kepadatan Relatif Density (γd) Nilai N SPT Tekanan Konus qc (kg/cm 2 ) Very Loose (sangat lepas) <0,2 <4 <20 Loose (lepas) 0,2 0, Medium Dense (agak kompak) 0.4 0, ,0 120 Dense (kompak) 0,6 0, Very Dense (sangat kompak) 0,8 1,0 >50 >200 Sudut Geser (ø o ) < > Berat isi (γ sat dan γ unsat ) Berat volume atau berat isi (γ) merupakan berat tanah persatuan volume, jadi: γ = Berat (W) Volume(V) Tabel 2.5 Korelasi empiris antara nilai N-SPT dengan unconfined compressive strength dengan berat jenis tanah jenuh (γ sat ) untuk tanah kohesif. N-SPT Konsistensi Blows/ft q u (Unconfined Compressive Stength) (tons/ft 2 ) γ sat kn/m 3 < 2 Very Soft < Soft Medium Stiff Very Stiff > 30 Hard > Korelasi untuk menentukan berat jenis tanah (γ) dan berat jenis tanah jenuh (γ sat ) pada tanah kohesif dan non kohesif dapat dilihat pada tabel 2.6 dan tabel

6 Tabel 2.6 Korelasi berat jenis tanah (γ) untuk tanah non kohesif dan kohesif. Cohesionless Soil N > 50 Unit Weight γ, kn/m Angle of Friction, φ > 35 State Loose Medium Dense Very Dense Cohesive N > > 25 Unit Weight γ, kn/m > 20 q u, kpa < > 100 State Very Soft Soft medium Stiff Hard (Soil Mechanics, William T., Whitman, Robert V., 1962) Tabel 2.7 Korelasi berat jenis tanah jenuh (γ sat ) untuk tanah non kohesif. Desciption Very Loose Loose Medium Dense Very Dense N-SPT Fine Medium > 40 Coarse > 45 Angle of friction φ Fine Medium > 50 Coarse γ wet (kn/m 3 )

7 2.2.3 Modulus Young Nilai modulus young menunjukkan besarnya nilai elastisitas tanah yang merupakan perbandingan antara tegangan yang terjadi terhadap regangan. Nilai ini bisa didapatkan dari Traxial Test. Dengan menggunakan data sondir, booring dan grafik triaksial dapat digunakan untuk mencari besarnya nilai elastisitas tanah. Nilai yang dibutuhkan adalah nilai qc atau cone resistance. Yaitu dengan menggunakan rumus : E = 2.qc kg/cm² E = 3.qc ( untuk pasir ) E = 2. sampai 8. qc ( untuk lempung ) Nilai yang dibutuhkan adalah nilai N. Modulus elastisitas didekati dengan menggunakan rumus : E = 6 ( N + 5 ) k/ft² ( untuk pasir berlempung ) E = 10 ( N + 15 ) k/ft² ( untuk pasir ) Tabel 2.8 Nilai Perkiraan Modulus Elastisitas Tanah (Bowles, 1997) Macam Tanah E (Kg/cm 2 ) Lempung Sangat Lunak 3-30 Lunak Sedang Berpasir Pasir Berlanau Tidak Padat Padat Pasir Dan Kerikil Padat Tidak Padat Lanau Loess Cadas

8 2.2.4 Poisson Ratio Nilai poisson ratio ditentukan sebagai rasio kompresi poros terhadap regangan pemuaian lateral. Nilai poisson ratio dapat ditentukan berdasar jenis tanah seperti yang terlihat pada Tabel 2.9 di bawah ini. Tabel 2.9 Nilai Perkiraan Angka Poisson Tanah (Bowles, 1997) Macam Tanah v (angka poisson tanah) Lempung Jenuh Lempung Tak Jenuh Lempung Berpasir Lanau Pasir Padat Pasir Kasar Pasir Halus Batu Loess 0,40 0,50 0,10 0,30 0,20 0,30 0,30 0,35 0,20 0,40 0,15 0,25 0,10 0,40 0,10 0, Sudut Geser Dalam Kekuatan geser dalam mempunyai variabel kohesi dan sudut geser dalam. Sudut geser dalam bersamaan dengan kohesi menentukan ketahanan tanah akibat tegangan yang bekerja berupa tekanan lateral tanah. Nilai ini juga didapatkan dari pengukuran engineering properties tanah dengan Direct Shear Test. Hubungan antara sudut geser dalam dan jenis tanah ditunjukkan pada Tabel 2.10: Tabel 2.10 Hubungan antara sudut geser dalam dengan jenis tanah Jenis Tanah Sudut Geser Dalam (ø) Kerikil kepasiran Kerikil kerakal Pasir padat Pasir lepas Lempung kelanauan Lempung

9 2.2.6 Kohesi Kohesi merupakan gaya tarik menarik antar partikel tanah. Bersama dengan sudut geser dalam, kohesi merupakan parameter kuat geser tanah yang menentukan ketahanan tanah terhadap deformasi akibat tegangan yang bekerja pada tanah dalam hal ini berupa gerakan lateral tanah. Deformasi ini terjadi akibat kombinasi keadaan kritis pada tegangan normal dan tegangan geser yang tidak sesuai dengan faktor aman dari yang direncanakan. Nilai ini didapat dari pengujian Direct Shear Test. Nilai kohesi secara empiris dapat ditentukan dari data sondir (qc) yaitu sebagai berikut: Kohesi ( c ) = qc/ Kekuatan Geser Tanah Kekuatan geser tanah diperlukan untuk menghitung daya dukung tanah (bearing capacity), tegangan tanah terhadap dinding penahan (earth pressure) dan kestabilan lereng. Kekuatan geser tanah dalam tugas akhir ini pada ruas jalan P. Siantar Parapat Km menggunakan analisa Direct Shear Test. Kekuatan geser tanah terdiri dari dua parameter, yaitu: 1. Bagian yang bersifat kohesi c yang tergantung dari macam 2. Bagian yang mempunyai sifat gesekan / frictional yang sebanding dengan tegangan efektif (σ) yang bekerja pada bidang geser. Kekuatan geser tanah dapat dihitung dengan rumus: S = c + (σ u) tan ø Dimana : S = σ = Kekuatan geser Tegangan total pada bidang geser 28

10 u = Tegangan air pori c = kohesi ø = Sudut geser 2.4 Kriteria Umum tanah Timbunan Sebelum melakukan desain, terlebih dahulu kita harus mengetahui nilainilai berat volume (γ), kohesi (c), sudut geser dalam tanah ø) ( yang digunakan dalam hitungan tekanan tanah lateral. Nilai-nilai c dan ø dapat ditentukan dari uji geser dan tes triaksial. Tipe-tipe tanah timbunan tanah untuk dinding penahan tanah menurut Terzaghi dan Peck (1948) adalah : 1) Tanah berbutir kasar, tanpa campuran partikel halus, sangat lolos air (pasir bersih atau kerikil). 2) Tanah berbutir kasar dengan permeabilitas rendah karena tercampur oleh partikel lanau. 3) Tanah residu (residual soil) dengan batu-batu, pasir berlanau halus dan material berbutir dengan kandungan lempung yang cukup besar. 4) Lempung lunak atau sangat lunak, lanau organik, atau lempung berlanau. 5) Lempung kaku atau sedang yang diletakkan dalam bongkahan-bongkahan dan dicegah terhadap masuknya air hujan kedalam sela-sela bongkahan tersebut saat hujan atau banjir. Jika kondisi ini tidak dapat dipenuhi, maka lempung sebaiknya tidak dipakai untuk tanah timbunan. Dengan bertambahnya kekakuan tanah lempung maka bertambah pula bahaya ketidakstabilan dinding penahan akibat infitrasi air yang bertambah dengan cepat. 29

11 Hal pertama yang dilakukan saat mendesain dinding penahan tanah adalah menggunakan salah satu dari lima material di atas. Contoh 1 sampai 3 mempunyai sudut geser dalam tanah dengan permeabilitas sedang, ditentukan dengan uji triaksial drained, karena angka pori-pori tanah ini dapat menyesuaikan sendiri selama melaksanakan pekerjaan. Penyesuaian butiran sering dengan berjalannya waktu, akan mengurangi angka pori dan meningkatkan kuat geser dalam tanah. Untuk perhitungan, kohesi untuk tanah timbunan jenis 1-3 sebaiknya diabaikan. Untuk jenis 4 dan 5, nilai c dan ø ditentukan dari pengujian triaksial undrained. Pengujian dilakukan pada contoh tanah dengan kepadatan dan kadar air yang diusahakan sama seperti yang diharapkan terjadi di lapangan, pada waktu tanah timbunan selesai diletakkan. Penggunaan tanah timbunan berupa tanah lempung sebaiknya dihindari sebab tanah ini dapat berubah kondisinya sewaktu pekerjaan telah selesai. 2.5 Pemadatan Tanah Timbunan Proses pemadatan tanah timbunan harus dilakukan lapis per lapis. Untuk menghindari kerusakan pada dinding penahan tanah dan tekanan tanah lateral yang berlebihan, digunakan alat pemadat yang ringan. Sebab pemadatan yang berlebihan dengan alat yang berat, akan menimbulkan tekanan tanah lateral yang bahkan beberapa kali lebih besar dari pada tekanan yang ditimbulkan oleh tanah pasir yang tidak padat. Jika memakai tanah lempung sebagai tanah timbunan maka diperlukan pengontrolan yang sangat ketat. Bahkan walaupun timbunan berubah tanah berbutir dengan penurunan yang kecil dan dapat ditoleransikan, tanah timbunan harus dipadatkan lapis per lapis dengan ketebalan maksimum 22,5 cm. Pekerjaan pemadatan sebaiknya tidak membentuk permukaan miring, karena 30

12 akan menyebabkan pemisahan lapisan dan akan berdampak pada keruntuhan potensial. Oleh karena itu sebaiknya dilakukan dengan permukaan tanah horizontal. 2.6 Tekanan Tanah Lateral Analisa tekanan tanah lateral digunakan untuk perencanaan dinding penahan tanah. Tekanan tanah lateral adalah gaya yang ditimbulkan oleh akibat dorongan tanah di belakang struktur penahan tanah. Besarnya tekanan lateral sangat dipengaruhi oleh perubahan letak (displacement) dari dinding penahan dan sifat-sifat tanahnya Tekanan Tanah dalam Keadaan Diam (At-Rest) Suatu elemen tanah yang terletak pada kedalaman tertentu akan terkena tekanan arah vertikal (σv) dan tekanan arah horizontal (σh). σv dan σh masingmasing merupakan tekanan aktif dan tekanan total, sementara itu tegangan geser pada bidang tegak dan bidang datar diabaikan. Bila dinding penahan tanah dalam keadaan diam, yaitu bila dinding tidak bergerak ke salah satu arah baik ke kanan atau ke kiri dari posisi awal, maka masa tanah berada dalam keadaan keseimbangan elastis (elastic equilibrium). Rasio tekanan arah horizontal dan tekanan arah vertical dinamakan koefisien tekanan tanah dalam keadaan diam (coefficient of earth pressure at rest). Ko, atau σ v = berat jenis x kedalaman σ v = γz 31

13 σ h = k o (γz) Untuk tanah berbutir, koefisien tekanan tanah dalam keadaan diam diperkenalkan oleh jaky(1994) : k 0 = 1 sin θ Broker dan Jreland (1965) memperkenalkan harga Ko untuk lempung yang terkonsolidasi normal (normally consolidated) : k 0 = 0,95 sin θ Untuk tanah lempung terkonsolidasi normal (normally consolidated), Alpan (1967) telah memperkenalkan persamaan empiris lain: k 0 = log (PI) Dimana : PI = Indeks Plastis untuk tanah lempung yang terkonsolodasi lebih (overconsolidated) : k 0(over consolidated) = k 0(normaly consolidated) Dimana : OCR = overconsolidation ratio Maka gaya total per satuan lebar dinding (P 0 ) seperti yang terlihat pada Gambar 2.2 adalah sama dengan luas dari diagram tekanan tanah yang bersangkutan Jadi : 32

14 Gambar 2.2 Distribusi tekanan tanah dalam keadaan diam (at rest) pada dinding penahan Tekanan Tanah Aktif dan Pasif Menurut Rankine Keseimbangan plastis (plastic equilibrium) di dalam tanah adalah suatu keadaan yang menyebabkan tiap-tiap titik di dalam massa tanah menuju proses ke suatu keadaan runtuh. Rankine (1857) menyelidiki keadaan tegangan di dalam tanah yang berada pada kondisi keseimbangan plastis. Gambar 2.3 Grafik hubungan pergerakan dinding penahan dan tekanan tanah 33

15 Kondisi Aktif Tegangan-tegangan utama arah vertikal dan horisontal (total dan efektif) pada elemen tanah di suatu kedalaman adalah berturut-turut σv dan σh. Apabila dinding penahan tidak diijinkan bergerak sama sekali, maka σh= Ko.σv. Kondisi tegangan dalam elemen tanah tadi dapat diwakili oleh lingkaran berwarna kuning. Akan tetapi, bila dinding penahan tanah diijinkan bergerak menjauhi massa tanah di belakangnya secara perlahan lahan, maka tegangan utama arah horizontal akan berkurang secara terus menerus. Pada suatu kondisi yakni kondisi keseimbangan plastis, akan dicapai bila kondisi tegangan di dalam elemen tanah dapat diwakili oleh lingkaran berwarna merah dan kelonggaran di dalam tanah terjadi. Keadaan tersebut diatas dinamakan sebagai kondisi aktif menurut Rankine (Rankine s Active State); tekanan (σh ) yang terlingkar berwarna biru merupakan tekanan tanah aktif menurut Rankine (Rankine s Active Earth Pressure). Untuk tanah yang tidak berkohesi (cohessionless soil), c = 0, maka koefisien tekanan aktifnya adalah : Langkah yang sama dipakai untuk tanah yang berkohesi (cohesive soil), perbedaannya adalah c 0, maka tegangan utama arah horizontal untuk kondisi aktif adalah : 34

16 Kondisi Pasif Keadaan tegangan awal pada suatu elemen tanah diwakili oleh lingkaran Mohr berwarna kuning. Apabila dinding penahan tanah didorong secara perlahan lahan kearah masuk ke dalam massa tanah, maka tegangan utama σh akan bertambah secara terus menerus. Akhirnya kita akan mendapatkan suatu keadaan yang menyebabkan kondisi tegangan tanah dapat diwakili oleh lingkaran Mohr berwarna merah. Pada keadaan ini, keruntuhan tanah akan terjadi, disebut kondisi pasif menurut Rankine (Rankine s Passive state). Tegangan utama besar (major principal stress) (σh), dinamakan tekanan tanah pasif menurut Rankine (Rankine s passive earth pressure) Untuk tanah yang tidak berkohesi (cohesionless soil), c = 0, maka koefisien tekanan pasifnya adalah : Langkah yang sama dipakai untuk tanah yang berkohesi (cohesive soil), perbedaannya adalah c 0, maka tegangan ut ama arah horizontal untuk kondisi pasif adalah : 2.7 Stabilitas Lereng Sebuah permukaan tanah yang terbuka yang berdiri membentuk sudut tertentu terhadap horisontal disebut sebuah lereng tanpa perkuatan. Lereng dapat 35

17 terjadi secara ilmiah atau buatan manusia. Jika tanah tidak horisontal, suatu komponen gravitasi akan cenderung untuk menggerakkan tanah ke bawah. Jika komponen gravitasi cukup besar maka kegagalan lereng akan terjadi, yakni massa tanah dapat meluncur jatuh. Gaya yang meluncurkan mempengaruhi ketahanan dari kuat geser tanah sepanjang permukaan keruntuhan. Seorang engineer sering diminta untuk membuat perhitungan untuk memeriksa keamanan dari lereng alamiah, lereng galian, dan lereng timbunan. Pemeriksaan ini termasuk menentukan kekuatan geser yang terbangun sepanjang permukaan keruntuhan dan membedakannya dengan kekuatan geser tanah. Proses ini disebut analisa stabilitas lereng. Permukaan keruntuhan itu biasanya adalah permukaan kritis yang memiliki faktor keamanan minimum. Analisa stabilitas lereng adalah hal yang sulit untuk dilakukan. Evaluasi variabel - variabel seperti stratifikasi tanah dan parameter - parameter tanahnya bisa menjadi suatu pekerjaan yang berat. Rembesan pada lereng dan pemilihan suatu permukaan gelincir potensial menambah kompleksitas dari permasalahan ini. Pengertian tanah longsor sebagai respon dari pada yang merupakan faktor utama dalam proses geomorfologi akan terjadi di mana saja di atas permukaan bumi, terutama permukaan relief pegunungan yang berlereng terjal, maupun permukaan lereng bawah laut. Tanah longsor didefinisikan sebagai tanah batuan atau tanah di atas lereng permukaan yang bergerak ke arah bawah lereng bumi disebabkan oleh gravitasi / gaya berat. Di daerah yang beriklim tropis termasuk Indonesia, air hujan yang jatuh ke atas permukaan tanah yang memicu gerakan material yang ada di atas permukaan 36

18 lereng. Material berupa tanah atau campuran tanah dan rombakan batuan akan bergerak ke arah bawah lereng dengan cara air meresap kedalam celah pori batuan atau tanah, sehingga menambah beban material permukaan lereng dan menekan material tanah dan bongkah-bongkah perombakan batuan, selanjutnya memicu lepas dan bergeraknya material bersama-sama dengan air Upaya Stabilisasi Lereng Ada beberapa upaya dalam pengendalian kelongsoran pada suatu lereng, diantaranya adalah : 1. Mengurangi beban di puncak lereng Pemangkasan lereng Pemotongan lereng atau cut biasanya digabungkan dengan pengisian pengurugan atau fill di kaki lereng. 2. Menambah beban di kaki lereng Menanam tanaman keras (biasanya pertumbuhannya cukup lama). Membuat dinding penahan (bisa dilakukan dalam waktu yang relatif cepat berupa dinding penahan atau retaining wall). Membuat bronjong, yaitu batu-batu bentuk menyudut diikat dengan kawat dengan bentuk angular atau menyudut lebih kuat dan tahan lama dibandingkan dengan bentuk bulat. 3. Mencegah lereng jenuh dengan air tanah atau mengurangi kenaikan kadar air Membuat beberapa pengaliran air (dari bambu atau pipa paralon) di kemiringan lereng dekat ke kaki lereng yang berguna supaya muka air 37

19 tanah yang naik di dalam tubuh lereng akan mengalir ke luar sehingga muka air tanah turun. Menanam vegetasi dengan daun lebar di puncak-puncak lereng sehingga evapotranspirasi meningkat. Air hujan yang jatuh akan masuk ke tubuh lereng (infiltrasi). Peliputan rerumputan. Cara yang sama untuk mengurangi pemasukan atau infiltrasi air hujan ke tubuh lereng, selain itu peliputan rerumputan jika disertai dengan desain drainase juga akan mengendalikan run-off. 4. Mengendalikan air permukaan Membuat desain drainase yang memadai sehingga air permukaan dari puncak-puncak lereng dapat mengalir lancar dan infiltrasi berkurang. Penanaman vegetasi dan peliputan rerumputan juga mengurangi air larian (run-off) sehingga erosi permukaan dapat dikurangi Klasifikasi Tanah Longsor Tanah longsor yang disesuaikan dengan dasar klasifikasi yang dipergunakan masing-masing ahli, berikut ini dijelaskan nama-nama kelas gerakan tanah yang umum dipakai (Ritter, 1986) : 1. Tanah Longsor tipe jatuhan (falls) Tanah longsor tipe ini, material batuan atau tanah atau campuran keduaduanya bergerak dengan cara jatuh bebas karena gaya beratnya sendiri. Proses tanah longsor semacam ini umumnya terjadi pada lereng terjal, bisa dalam bentuk 38

20 bongkah individual batuan berukuran besar atau dalam bentuk guguran fragmen bongkah bercampur dengan bongkah-bongkah yang berukuran lebih kecil. 2. Tanah Longsor tipe robohan (toples) Gerakan massa tipe robohan hampir serupa dengan tanah longsor tipe falls, pada tipe topples ini gerakannya dimulai dengan bagian paling atas dari bongkah lepas dari batuan dari batuan induknya karena adanya cela retakan pemisah, bongkah terdorong kedepan hingga tidak dapat menahan bebannya sendiri 3. Tanah Longsor tipe gelincir (slides) Tanah longsor tipe gelincir adalah tanah longsor batuan atau tanah atau campuran keduanya yang bergerak melalui bidang gelincir tertentu yang bertindak sebagai bidang diskontinuitas berupa bidang perlapisan batuan atau bidang patahan, bidang kekar, bidang batas pelapukan. Jika bidang-bidang diskontinuitas tersebut sejajar dengan bidang perlapisan, maka semakin besar peluang terjadinya tanah longsor Perhitungan Faktor Keamanan Lereng Faktor Keamanan (FS) lereng tanah dapat dihitung dengan berbagai metode. Faktor Keamanan (FS) adalah nilai banding antara gaya yang menahan dan gaya yang menggerakkan. Data-data yang diperlukan dalam perhitungan nilai faktor keamanan suatu lereng adalah : a. Data lereng (terutama diperlukan untuk membuat penampang lereng.) Sudut kemiringan lereng Tinggi lereng atau panjang lereng dari kaki lereng ke puncak lereng. 39

21 b. Data mekanika tanah Sudut geser dalam (Ø) Berat isi tanah (ɣ) Kohesi (c) Kadar air tanah (w) Perumusan dalam perhitungan suatu faktor keamanan (FS) suatu lereng adalah : Dimana : FS = Faktor Keamanan = Tegangan geser rata-rata tanah = Tegangan geser yang terjadi di sepanjang bidang runtuh Sedangkan nilai dan dari adalah: dan Sehingga diperoleh persamaan baru yakni : Faktor keamanan yang diperhitungkan juga ditinjau dari faktor keamanan kohesi ( ) dan faktor keamanan friksi ( ). Persamaan untuk mendapatkan nilai dari faktor keamanan kohesi ( ) dan faktor keamanan friksi ( ) adalah : dan Membandingkan nilai dan, sehingga diperoleh : 40

22 Maka Faktor keamanan suatu lereng dapat dilihat dari Tabel 2.11 yang dibuat sesuai dengan besar kestabilan suatu lereng. Tabel 2.11 Nilai Faktor Keamanan Untuk Perencanaan Lereng (Sosrodarsono, 2003) Faktor Keamanan ( FS ) Keadaan Lereng FS < 1,00 Lereng dalam kondisi tidak mantap (lereng labil) 1,00 < FS < 1,20 Lereng dalam kondisi kemantapan diragukan 1,30 < FS < 1,40 Lereng dalam kondisi memuaskan 1,50 < FS < 1,70 Lereng dalam kondisi mantap (lereng stabil) Dalam perhitungan perhitungan nilai faktor keamanan suatu lereng dapat dilakukan dengan berbagai cara diantaranya dengan metode grafik. Menurut Taylor (1937), perhitungan faktor keamanan dapat dilakukan dengan menghitung resultan gaya dari faktor keamanan kohesi ( ) dan faktor keamanan friksi ( ). Angka stabilitas (m) diperoleh dari plot antara nilai sudut geser dalam tanah dengan sudut kemiringan lereng yang ditinjau, atau dengan menggunakan rumusan berupa : Dimana : m = angka stabilitas c = kohesi tanah (kg/cm²) ɣ = berat isi tanah (g/cm 3 ) H = tinggi lereng (m) 41

23 Gambar 2.4 menunjukkan grafik hubungan antara angka stabilitas dengan sudut kemiringan lereng (Ø > 0). Dengan menggunakan metode Taylor, Singh (1970) juga memberikan grafik untuk menentukan angka-angka keamanan (FS) untuk bermacam-macam kemiringan lereng. Grafik tersebut ditunjukkan dalam Gambar 2.4. Gambar 2.4 Grafik Hubungan antara Angka Stabilitas dengan Sudut Kemiringan Lereng, Ø > 0 (Taylor, 1937) 42

24 2.8 Faktor Penyebab Kelongsoran Beberapa faktor-faktor penyebab kelongsoran antara lain dapat dipengaruhi oleh geologi, topografi, proses cuaca, perubahan struktur tanah dan pengaruh air dalam tanah Pengaruh Geologi Proses geologi dalam pembentukan lapisan-lapisan kulit bumi dengan cara pengendapan sedimen ternyata memungkinkan terbentuknya sutau lapisan yang potensial mengalami kelongsoran. Sebagai contoh adalah pembentukan lapisan tanah sebagai berikut, sungai yang mengalirkan air ke laut membawa partikelpartikel halus yang jumlahnya tergantung dari volume dan kecepatan alirannya, kemudian partikel-partikel tersebut mengendap di dasar laut membentuk lapisan tanah, dimana penyebaran pengendapannya bisa merata atau tidak merata tergantung arus air laut. Karena pembentukan tiap lapisan terjadi maka dasar tiap lapisan adalah air, yang bisa dilihat sering sekali sebagai lapisan tipis pada zona pemisah antara lapisan lempung dan lanau kepasiran atau sebagai aliran laminer pada lapisan pasir yang lebih permeabel. Dengan keadaan demikian bila banyak air memasuki lapisan pasir tipis sedangkan pengeluaran air sedikit sehingga keadaan lapisan menjadi jenuh, maka tekanan air akan bertambah dan tekanan air inilah yang akan menyebabkan kelongsoran. Berbeda bila air memasuki lapisan pasir tebal sehingga keadaan lapisan tidak sepenuhnya jenuh air, maka lapisan tersebut bahkan bisa menjadi drainase alamiah. 43

25 2.8.2 Pengaruh Topografi Variasi bentuk permukaan bumi yang meliputi daerah pegunungan dan lembah dengan sudut kemiringan permukaannya yang cenderung besar, maupun daerah dataran rendah yang permukaannya cenderung datar, ternyata memiliki peranan penting dalam menentukan kestabilan. Daerah dengan kemiringan besar tentu lebih potensial mengalami kelongsoran dibanding daerah datar, sehingga kasus kelongsoran sering ditemukan di daerah perbukitan atau pegunungan, dan pada perbedaan galian atau timbunan yang memiliki sudut kemiringan lereng yang besar. Kestabilan lereng terganggu akibat lereng yang terlalu terjal, perlemahan pada kaki lereng dan tekanan yang berlebihan dari beban di kepala lereng. Hal tersebut terjadi karena erosi air pada kaki lereng dan kegiatan penimbunan atau pemotongan lereng yang dilakukan manusia Pengaruh Proses Cuaca Perubahan temperatur, fluktuasi muka air tanah musiman, gaya gravitasi dan relaksasi tegangan sejajar permukaan ditambah dengan proses oksidasi dan dekomposisi akan mengakibatkan suatu lapisan tanah kohesif yang secara lambat laun tereduksi kekuatan gesernya terutama nilai kohesi (c) dan sudut geser dalamnya (ø). Pada tanah non kohesif misalnya lapisan pasir, bila terjadi getaran gempa, mesin atau sumber getaran lainnya akan mengakibatkan lapisan tanah tersebut ikut bergetar sehingga pori-pori lapisan akan terisi oleh air atau udara yang akan meningkatkan tekanan dalam pori. Tekanan pori yang meningkat dengan spontan 44

26 dan sangat besar ini akan menyebabkan terjadinya likuifikasi atau pencairan lapisan pasir sehingga kekuatan gesernya hilang Pengaruh Air Dalam Tanah Keberadaan air dapat dikatakan sebagai faktor dominan penyebab terjadinya kelongsoran, karena hampir sebagian besar kasus kelongsoran melibatkan air didalamnya. Tekanan air pori memiliki nilai besar sebagai tenaga pendorong terjadinya kelongsoran, semakin besar tekanan air semakin tenaga pendorong. Penyerapan maupun konsentrasi air dalam lapisan tanah kohesif dapat melunakkan lapisan tanah tersebut yang pada akhirnya mereduksi nilai kohesi dan sudut geser dalam sehingga kekuatan gesernya berkurang. Aliran air dapat menyebabkan erosi yaitu pengikisan lapisan oleh aliran air, sehingga keseimbangan lereng menjadi terganggu. Dalam menganalisa stabilitas lereng harus ditentukan terlebih dahulu faktor keamanan (FK) dari lereng tersebut. Secara umum faktor keamanan didefenisikan sebagai perbandingan antara gaya penahan dan gaya penggerak longsoran. Suatu lereng dikatakan stabil apabila memiliki faktor keamanan (FK) lebih dari 1,3. Untuk meningkatkan stabiitas lereng ada beberapa cara yang dapat dilaksanakan diantaranya : 45

27 1. Memperkecil gaya penggerak / momen penggerak. Gaya dan momen penggerak dapat diperkecil hanya dengan merubah bentuk lereng, yaitu dengan membuat lereng lebih datar dengan cara mengurangi sudut kemiringan dan memperkecil ketinggian lereng. 2. Memperbesar gaya penahan / momen penahan. Untuk memperbesar gaya penahan dapat dilakukan dengan menerapkan beberapa metode perkuatan tanah, diantaranya dinding penahan tanah, box culvert, abutmen jembatan. Untuk memilih jenis dinding penahan tanah yang akan digunakan hal-hal yang perlu diperhatikan antara lain : sifat tanah, kondisi lokasi, dan metode pelaksanaan. Beberapa jenis dinding penahan antara lain : 1. Dengan memancangkan tiang-tiang pancang pada permukaan lereng yang labil. Tiang tersebut dapat berupa sheet pile berbahan beton concrete ataupun baja, cerucuk dari rel bekas, angkur, pancang beton, dan kayu. 2. Dengan menggunakan geotekstil, yaitu bahan perkuatan tanah yang terbuat dari serat sintetis berbentuk lembaran-lembaran, yang disusun secara berlapis-lapis untuk menahan tekanan tanah pada lereng. 3. Membuat counterweight. 4. Grouting, yaitu metode untuk meningkatkan stabilitas dan daya dukung tanah lereng dengan cara menginjeksikan bahan grouting (semen) sehingga semen tersebut mengisi pori-pori tanah. 46

28 2.9 Turap ( Sheetpile ) Dinding turap (sheet pile) adalah dinding vertikal relatif tipis yang berfungsi kecuali menahan tanah juga berfungsi untuk menahan masuknya air ke dalam lubang galian. Karena pemasangan yang mudah dan biaya pelaksanaan yang relatif murah, turap banyak digunakan pada pekerjaan-pekerjaan, seperti: penahan tebing galian sementara, bangunan-bangunan di pelabuhan, dinding penahan tanah, bendungan elak dan lain-lain. Dinding turap tidak cocok untuk menahan tanah timbunan yang sangat tinggi karena akan memerlukan luas tampang bahan turap yang besar. Selain itu, dinding turap juga tidak cocok digunakan pada bahan tanah yang mengandung banyak batuan-batuan, karena menyulitkan pemancangan Tipe-tipe Turap Tipe turap dapat dibedakan menurut bahan yang digunakan. Bahan turap tersebut bermacam-macm, contohnya: kayu, beton bertulang, dan baja Turap Kayu Turap kayu digunakan untuk dinding penahan tanah yang tidak begitu tinggi, karena tidak kuat menahan beban-beban lateral yang besar. Turap ini tidak cocok digunakan pada tanah berkerikil, karena turap cenderung pecah bila dipancang. Bila turap kayu digunakan untuk bangunan permanen yang berada di atas muka air, maka perlu diberikan lapisan pelindung agar tidak mudah lapuk. Turap kayu banyak digunakan pada pekerjaan-pekerjaan sementara, misalnya untuk penahan tebing galian. 47

29 Gambar 2.5 Turap kayu Turap Beton Turap beton merupakan balok balok beton yang telah dicetak sebelum dipasang dengan bentuk tertentu. Balok-balok turap dibuat saling mengkait satu sama lain. Masing-masing balok, selain dirancang kuat menahan beban-beban yang bekerja pada turap, juga terhadap beban-beban yang akan bekerja pada waktu pengangkatannya. Ujung bawah turap biasanya dibentuk meruncing untuk memudahkan pemancangan. Gambar 2.6 Turap beton 48

30 Turap Baja Biasa digunakan pada bangunan permanen. Konstruksi dinding turap ini lebih ringan, lebih mudah pelaksanaannya, dapat digunakan berulang-ulang, mempunyai keawetan yang tinggi, serta hasilnya lebih baik. Sedangkan kerugiannya adalah adanya tenggang waktu pemesanan serta adanya bahan korosi. Bahan korosi pada konstruksi ini dapat dicegah dengan memberikan catodic protection. Variasi kontruksi baja sangat tergantung pada pabrik pembuatan. Beberapa variasi antara lain: - Variasi di daerah eropa seperti Laarsen, Krupp dan De Wendell DPF. - Variasi di daerah Amerika seperti DP type dan ZP type Gambar 2.7 Variasi turap baja 49

31 Biasanya pada setiap pabrik akan disediakan bentuk penampang tipe-tipe di bawah ini: - Tipe penampang U (U type sections) - Tipe penampang Z (Z type sections) - Tipe penampang F (F type sections) - Tipe penampang kotak/boks (Box type sections) - Tipe penampang straight web - Tipe penampang tabung pipa (Pipa type sections) Jika tidak berdasarkan faktor ekonomi ataupun keterpaksaan pengadaan jenis bahan, maka pada pemakaian konstruksi dinding turap (sheet pile) dianjurkan untuk memilih konstruksi baja dengan alasan: Lebih tahan driving stresses misalnya pemancangan pada tanah dengan lapisan tanah keras atau batuan Lebih tipis penampangnya Bisa digunakan berulang-ulang Panjang turap bisa ditambah atau dikurangi dengan mudah Bisa digunakan baik di bawah atau di atas air Penyambungan yang mudah memungkinkan untuk mendapatkan dinding yang menerus dan lurus pada waktu pemancangan Pengertian angka keamanan (safety factor) dan perlunya perancangan dinding turap Pengertian angka keamanan (safety factor) Pengertian angka keamanan pada dinding turap selama ini tidaklah begitu jelas. Sebagai contoh dari suatu perhitungan diperoleh suatu harga dalamnya 50

32 pemancangan. Bila dalam pelaksanaan diperdalam 30% dari dalam pemancangan semula, belum berarti didapat angka keamanan 1,3. Karena belum tentu angka keamanan dari struktur yang baru ini sama dengan 1,3. Selama ini anggapan angka keamanan (safety factor) untuk sheet pile berdasarkan cara konvensional yaitu dengan memperpanjang dalamnya pemancangan. Misalnya didapat dalamnya pemancangan adalah D dari dredge line kemudian untuk mendapatkan safety factor, harga D tersebut dikalikan dengan suatu angka tertentu. Atau dengan cara membagi harga koefisien pasif (Kp) dan kohesi (c) dengan suatu angka keamanan tertentu. Anggapan yang disebutkan pertama tidak benar. Seperti yang diterangkan di depan, yang diperlukan sebetulnya menghitung kembali gaya-gaya yang bekerja sesuai dengan anggapan pertama. Dari hasil perhitungan ini akan diperoleh angka keamanan yang sebenarnya. Sedangkan anggapan kedua, pada umumnya memberikan angka keamanan yang cukup memadai. Lebih dianjurkan untuk menghitung pertambahan dalamnya pemancangan yang diabaikan oleh kriteria-kriteria antara lain sebagai berikut: - Bertambahnya gaya horizontal yang disebabkan oleh karena naiknya harga berat isi tanah atau adanya pembebanan. - Menurunnya dredge line akibat pelaksanaan misalnya pada perhitungan cara perletakan sendi (Free Earth Method). Lingkup Perancangan dinding turap Perencanaan dinding turap mencakup: 1. Penentuan karakteristik dari dinding turap (sheet pile) dengan mengetahui: 51

33 - Panjang dinding turap yang diperlukan untuk konstruksi statistik. Panjang yang ada di pasaran 27 meter, sedangkan jika dipesan di pabrik dapat mencapai 37 meter. - Profil sheet pile terutama yang mudah di pasaran. - Karakteristik mekanik dari baja yang dapat digunakan, komposisi kimia, dan harga limit elastiknya. 2. Penentuan sistem jangkar (anchor) yaitu dengan menentukan: - Daerah penjangkaran, kemiringan dan luas penampang tali jangkar - Panjang tali jangkar yang menjamin stabilitas bersama turap - Sistem penjangkaran, dapat berupa jangkar pasif, jangkar aktif, dan lain-lain 3. Dan kemungkinan penentuan stabilitas lebih umum, yaitu stabilitas terhadap gelincir, bersama-sama dalam satu sistem dari dinding turap dan tali jangkar Tipe-tipe dinding turap Terdapat 4 tipe dinding turap, yaitu: 1. Dinding turap kantilever. 2. Dinding turap diangker 3. Dinding turap dengan landasan/panggung (platform) yang didukung tiangtiang 4. Bendungan elak seluler (cellular cofferdam) 52

34 Dinding Turap kantilever Dinding turap kantilever (Gambar 2.8) merupakan turap yang dalam menahan beban lateral mengandalkan tahanan tanah di depan dinding. Turap kantilever adalah dinding penahan tanah yang tidak menggunakan jangkar. Defleksi lateral yang terjadi relatif lebih besar pada pemakaian turap kantilever. Karena luas tampang bahan turap yang dibutuhkan bertambah besar dengan ketinggian tanah yang ditahan (akibat momen lentur yang timbul), turap kantilever hanya cocok untuk menahan tanah dengan ketinggian sedang. Gambar 2.8 Dinding turap kantilever Dinding Turap diangker Dinding turap diangker cocok untuk menahan tebing galian yang dalam, tetapi masih juga bergantung pada kondisi tanah (Gambar 2.9). Dinding turap ini menahan beban lateral dengan mengandalkan tahanan tanah pada bagian turap yang terpancang ke dalam tanah dengan dibantu oleh angker yang dipasang pada bagian atasnya. Kedalaman turap menembus tanah bergantung pada besarnya tekanan tanah. Untuk dinding turap yang tinggi, diperlukan turap baja dengan 53

35 kekuatan tinggi. Stabilitas dan tegangan-tegangan pada turap yang diangker bergantung pada banyak faktor, misalnya: kekuatan relatif bahan turap, kedalaman penetrasi turap, kemudah-mampatan tanah, kuat geser tanah, keluluhan angker dan lainnya. Gambar 2.9 Dinding turap diangker Dinding Turap dengan Landasan (Platform) Dinding turap semacam ini dalam menahan tekanan tanah lateral dibantu oleh tiang-tiang, dimana di atas tiang-tiang tersebut dibuat landasan untuk meletakkan bangunan tertentu (Gambar 2.10). Tiang-tiang pendukung landasan 54

36 juga berfungsi untuk mengurangi beban lateral pada turap. Dinding turap ini dibuat bila di dekat lokasi dinding turap direncanakan akan dibangun jalan kereta api, mesin derek, atau bangunan-bangunan berat lainnya. Gambar 2.10 Dinding turap dengan landasan yang didukung tiang-tiang Bendungan Elak Seluler Bendungan elak seluler (cellular cofferdam) merupakan turap yang berbentuk sel-sel yang diisi dengan pasir (Gambar 2.11). Dinding ini menahan tekanan tanah dengan mengandalkan beratnya sendiri. 55

37 Gambar 2.11 Bendungan elak selular 2.10 Geogrid Geogrid adalah salah satu jenis material Geosintetik (Geosynthetic) yang mempunyai bukaan yang cukup besar, dan kekuatan badan yang lebih baik dibanding Geotextile. Istilah Geosintetik berasal dari kata geo, yang berarti bumi atau dalam dunia teknik sipil diartikan sebagai tanah pada umumnya, dan kata synthetic yang berarti bahan buatan, dalam hal ini adalah bahan polimer. Geogrid adalah perkuatan sistem anyaman. Geogrid berupa lembaran berongga dari bahan polymer. Pada umumnya sistem serat tikar banyak digunakan untuk memperkuat badan timbunan pada jalan, lereng atau tanggul dan dinding tegak. Mekanisme kekuatan perkuatan dapat meningkatkan kuat geser. Material 56

38 dasar Geogrid bisa berupa: Polyphropylene, Polyethilene, dan Polyesther atau material polymer yang lain. Gambar 2.12 Jenis-jenis Geosintetik Jenis Geogrid Geogrid dapat dibedakan berdasarkan arah penarikannya yaitu: Geogrid Uni-Axial Uni-axial Geogrid adalah lembaran massif dengan celah yang memanjang dengan bahan dasar HDPE (high density polyethelene), banyak digunakan di Indonesia untuk perkuatan tanah pada dinding penahan tanah untuk memperbaiki lereng yang longsor dengan menggunakan tanah setempat/bekas longsoran. Material ini memiliki kuat tarik 40 kn/m hingga 190 kn/m. Geogrid jenis ini biasanya dipakai untuk perkuatan dinding penahan tanah dan perbaikan lereng yang longsor. Geogrid Uni-Axial berfungsi sebagai material perkuatan pada sistem konstruksi dinding penahan tanah (retaining wall) dan perkuatan lereng (slope reinforcement). 57

39 Gambar 2.13 Geogrid Uni-Axial Geogrid Bi-Axial Bi-axial Geogrid dari bahan dasar polypropylene (PP) dan banyak digunakan di Indonesia sebagai bahan untuk meningkatkan tanah dasar lunak (CBR << 1%). Bi-axial Geogrid adalah lembaran berbentuk lubang bujursangkar dimana dengan struktur lubang bujursangkar ini partikel tanah timbunan akan saling terkunci dan kuat geser tanah akan naik dengan mekanisme penguncian ini. Kuat tarik bervariasi antara 20 kn/m 40 kn/m. Keunggulan Geogrid Bi-Axial ini antara lain: Kuat tarik yang bervariasi Kuat tarik tinggi pada regangan yang kecil Tahan terhadap sinar ultraviolet Tahan terhadap reaksi kimia tanah vulkanik dan tropis Tahan hingga 120 tahun 58

40 Geogrid Bi-Axial berfungsi sebagai stabilitas tanah dasar. Seperti pada tanah dasar lunak (soft clay maupun tanah gambut). Metode kerjanya adalah interlocking, artinya mengunci agregat yang ada di atas Geogrid sehingga lapisan agregat tersebut lebih kaku, dan mudah dilakukan pemadatan. Gambar 2.14 Geogrid Bi-Axial Geogrid Triax Fungsinya sama dengan Biaxial sebagai material stabilisasi dasar lunak, hanya saja performance nya lebih baik. Hal ini disebabkan bentuk bukaan segitiga lebih kaku sehingga penyebaran beban menjadi lebih merata. 59

41 Gambar 2.15 Geogrid Triax Keuntungan dari Penggunaan Geogrid Beberapa keuntungan-keuntungan atau kelebihan dari penggunaan Geogrid antara lain: Kekuatan tarik yang tinggi, Pelaksanaan yang cepat, Memungkinkan penggunaan material setempat, Pemasangan yang mudah dan dapat membangun lebih tinggi dan tegak, Tambahan PVC sebagai pelindung terhadap ultraviolet, Pemasangan dan harga geogrid yang murah dibandingkan beton, Merupakan struktur yang fleksibel sehingga tahan terhadap gaya gempa, Tidak mempunyai resiko yang besar jika terjadi deformasi struktur 60

42 Tipe elemen penutup lapisan luar dinding penahan dapat dibuat dalam bentuk yang bermacam-macam, sehingga memungkinkan untuk menciptakan permukaan dinding yang mempunyai nilai estetika. Biasanya perbaikan tanah dengan perkuatan dilakukan secara horisontal artinya digelar karena lebih mudah pelaksanaannya ketimbang arah tegak vertikal. Perkuatan horizontal dapat menerima beban tekan dari permukaan atau tarik dari arah horizontal. Sedangkan perbaikan tanah arah vertikal lebih utama menerima beban vertikal dari permukaannya tanpa mampu menerima beban horizontal Kekurangan Pemakaian Geogrid Geogrid tanpa PVC akan mengalami penurunan tingkat kemampuan penahan gaya tarik. Karena bahan Geogrid sangat peka terhadap naik turunnya temperatur udara, dimana pemuaian akan sangat mudah terjadi terhadap bahan geogrid pada saat mendapatkan temperatur tinggi. Pemuaian akan membuat geogrid atas, dan akhirnya akan mengurangi kuat tarik. Selain itu, geotekstil juga mempunyai kelemahan, yaitu sinar ultraviolet, karena bahan geosintetik akan mengalami degradasi yang cepat di bawah terik sinar matahari Metode / Cara Pemasangan Geotekstil 1. Geotekstil harus digelar di atas tanah dalam keadaan terhampar tanpa gelombang atau kerutan. 61

43 2. Sambungan geotekstil tiap lembarannya dipasang overlapping terhadap lembaran berikutnya. 3. Pada daerah pemasangan yang berbetuk kurva (misalnya tikungan jalan), geotekstil dipasang mengikuti arah kurva. 4. Jangan membuat overlapping atau jahitan pada daerah yang searah dengan beban roda (beban lalu-lintas). 5. Jika geotekstil dipasang untuk terkena langsung sinar matahari maka digunakan geotekstil yang berwarna hitam Plaxis Metode Elemen Hingga Metode elemen hingga adalah prosedur perhitungan yang dipakai untuk mendapatkan pendekatan dari permasalahan matematis yang sering muncul pada rekayasa teknik. Inti dari metode tersebut adalah membuat persamaan matematis dengan berbagai pendekatan dan rangkaian persamaan aljabar yang melibatkan nilai - nilai pada titik titik diskrit pada bagian yang dievaluasi. Persamaan metode elemen hingga dibuat dan dicari solusinya dengan sebaik mungkin untuk menghindari kesalahan pada hasil akhirnya. Jaring (mesh) terdiri dari elemen - elemen yang dihubungkan oleh node. Node merupakan titik - titik pada jaring di mana nilai dari variabel primernya dihitung. Misal untuk analisa displacement, nilai variabel primernya adalah nilai dari displacement. Nilai - nilai nodal displacement diinterpolasikan pada elemen agar didapatkan persamaan aljabar untuk displacement, dan regangan, melalui jaring - jaring yang terbentuk. 62

44 Gambar 2.16 Contoh jaring jaring dari elemen hingga Elemen untuk Analisa Dua Dimensi Analisa dua dimensi pada umumnya merupakan analisa yang menggunakan elemen triangular atau quadrilatelar ( Gambar 2.17 ). Bentuk umum dari elemen elemen tersebut berdasarkan pada pendekatan Iso- Parametric di mana fungsi interpolasi polynomial dipakai untuk menunjukkan displacement pada elemen. Gambar 2.17 Elemen-elemen Triangular dan Lagrange 63

45 Interpolasi Displacement Nilai - nilai nodal displacement pada solusi elemen hingga dianggap sebagal primary unknown. Nilai ini merupakan nilai displacement pada nodes. Untuk mendapatkan nilai - nilai tersebut harus menginterpolasikan fungsi - fungsi yang biasanya merupakan polynomial. Gambar 2.18 Elemen dan six-noded triangular Anggap sebuah elemen seperti pada Gambar 2.18 U dan V adalah Displacement pada sebuah titik di elemen pada arah x dan y. Displacement ini didapatkan dengan menginterpolasikan displacement pada nodes dengan menggunakan persamaan polynomial : U(x,y) = a0 + a1x + a2y2 + a3x2 + a4xy + a5y2 V(x,y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2 Konstanta a1, a2,, a5 dan b1, b2,, b5 tergantung pada nilai nodal displacement. Jika jumlah nodes yang menjabarkan elemen bertambah maka fungsi interpolasi untuk polynomial yang juga akan bertambah. 64

46 Regangan Regangan pada elemen dapat diturunkan dengan memakai definisi standar. Sebagai contoh untuk six-node triangle : ε ε ε = u / x = a1 + 2a3x + a4y = v / y = b2 + b4x + 2b5y = ( u / y) + ( v / x) = (b1+ a2) (a4 + 2b3)x + (2a5x + b4)y Persamaan yang menghubungkan regangan dengan nodal displacement ditulis dalam bentuk persamaan matrix : ε = B. Ue Vektor regangan ε dan vektor nodal displacement masing masing dihubungkan dengan Ue : Matrix Kekakuan Elemen Gaya pada tanah yang diaplikasikan pada elemen dianggap sebagai gaya yang bekerja pada nodes. Vektor nodal forces Pe ditulis : 65

47 Nodal forces yang bekerja pada titik i di arah x dan y adalah Pix dan Piy, dan dihubungkan dengan nodal displacement dengan matrik : KeUe = Pe Sedangkan Ke merupakan Matrik Kekakuan Elemen yang ditulis : Ke = Bt.D.B.dv Keterangan : D : Matrik kekakuan material B : Matrik penghubung nodal displacement dengan regangan dv : Elemen dari volume Matrik Kekakuan Global Matriks kekakuan K untuk jaring ( mesh ) elemen hingga dihitung dengan menggabungkan matrik - matrik kekakuan elemen di atas. K.U = P Di mana U merupakan vektor yang mempunyai unsur displacement pada semua titik pada jaring elemen hingga. 66

48 Analisa Elastis Dua Dimensi Dalam mencari solusi dan analisa numerik dua dimensi kondisi model yang dianalisa tersebut harus seperti pada kondisi tiga dimensi. Pendekatan yang digunakan adalah tegangan bidang (plane stress) dan regangan bidang (plain strain). Pendekatan yang sering digunakan dalam ilmu tanah adalah kondisi regangan bidang (plain strain). Gambar 2.19 Analisa regangan bidang Pada analisa regangan bidang, nilai regangan yang terletak di luar bidang ( out - of plain ), dalam hal ini bidang z, adalah nol Input Memulai program PLAXIS V dari start kemudian program, pilih PLAXIS V.8.2. Dialog Box A Create / Open Project akan timbul. Pilih New Project dan klik <OK>, window General Setting akan muncul yang terdiri dari dua tab sheet Project dan Dimensions ( lihat Gambar 2.20 dan 2.21 ). 67

49 Gambar 2.20 Dialog box Create/Open project Gambar 2.21 Tab sheet Project dari windows General Settings General Settings Langkah paling awal dari setiap analisis adalah membuat parameter dasar dari metode elemen hingga. Tahap ini dilakukan pada windows General Setting yang mencantumkan tipe analisis, tipe elemen, basic unit dan ukuran bidang gambar. Langkah langkahnya adalah sebagai berikut: 68

50 Berikan judul proyek pada box Title dan keterangan pada box Comments. Spesifikasikan pada box General tipe analisis dan tipe elemen. Untuk kasus ini dipilih model Plain Strain dan tipe elemen memakai 15 nodal (15 node). Program komputer ini menggunakan elemen segitiga dengan pilihan 6 nodal atau 15 nodal. Pada penggunaan 6 nodal lebih mempercepat proses perhitungan komputer dengan menggunakan memori yang jauh lebih kecil daripada 15 nodal. Dengan menggunakan elemen ini akurasi hasil analisis sudah cukup teliti dan dapat diandalkan. Box Accelerations memberi nilai sudut gravitasi -90 yang menunjukkan arah kebawah. Nilai-nilai pada box Accelerations dibiarkan nol, karena pemberian nilai nilai pada box tersebut hanya untuk analisa Pseudodinamis. Nilai-nilai pada tab sheet Dimension dibiarkan sesuai dengan defaultnya di box Unit ( Length = m: Force = kn: Time = day ) Masukkan nilai yang diperlukan pada box Geometry Dimensions. Masukkan nilai untuk Spacing (besar kecilnya spacing bergantung pada nilai ketelitian berapa angka dibelakang koma yang diinginka),dan 1 untuk Intervals. Tekan <OK> untuk konfirmasi penyetingan. 69

51 Geometry Contour Apabila tahap pengisian General settings telah selesai maka bidang gambar akan muncul dengan sumbu x dan y. sumbu x menuju arah kanan dan sumbu y ke arah atas. Untuk membuat objek gambar dapat dipilih dari tombol ikon pada toolbar atau dari menu Geometry. Langkah-langkah pembuatan sebagai berikut: Pilih Geometry Line. Gambar 2.22 Tab sheet Dimensions dari windows General Setting Klik tombol mouse sebelah kiri pada titik titik geometri sampai terbentuk sebuah cluster dengan kembali pada titik asal Untuk membuat cluster baru, ulangi langkah yang sama agar terbentuk cluster - cluster yang diinginkan. 70

52 Boundary Conditions Ikon Boundary Condition bisa dicari di bagian tengah toolbar atau di menu Loads. Prinsipnya, semua batas harus mempunyai satu kondisi batas (boundary conditions) pada tiap arah. Jika suatu model tidak diberi boundary conditions maka kondisi alamiah akan terjadi di mana gaya yang ditentukan sama dengan nol dan terjadi free displacement. Tahapan pembuatannya dilakukan sebagai berikut: Tekan ikon Standard Fixities pada toolbar atau pilih Standard Fixities dari menu Loads untuk memilih standard boundary conditions. Program Plaxis akan membentuk jepit pada dasar geometri dan kondisi nol pada dasar geometri ( Ux = 0: Uy = free ). Pilih ikon Traction-Load System A dari toolbar atau pilih dari menu Loads. Traction-Load System A digunakan untuk memodelkan beban merata yang bekerja pada permukaan. Material Data Set Simulasi sifat tanah pada geometri perlu dilakukan agar dapat dilakukan analisis elemen hingga. Program Plaxis V.8.2 dilengkapi dengan database mengenai material tanah dan struktur ( beam, anchors dan geotextile ), namun pengguna program ini dapat juga memasukkan database sesuai kebutuhan. Tahapan pendefinisian material tanah dilakukan setelah tahap pemberian boundary conditions. Sebelum dilakukan meshing pada geometri, cluster-cluster 71

MEKANIKA TANAH 2 KESTABILAN LERENG. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH 2 KESTABILAN LERENG. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH 2 KESTABILAN LERENG UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 PENDAHULUAN Setiap kasus tanah yang tidak rata, terdapat dua permukaan

Lebih terperinci

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( ) TUGAS AKHIR PERENCANAAN SECANT PILE SEBAGAI DINDING PENAHAN TANAH BASEMENT DENGAN MENGGUNAKAN PROGRAM PLAXIS v8.2 (Proyek Apartemen, Jl. Intan Ujung - Jakarta Selatan) Diajukan sebagai syarat untuk meraih

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Tanah lempung adalah tanah yang memiliki partikel-partikel mineral tertentu

BAB II TINJAUAN PUSTAKA. Tanah lempung adalah tanah yang memiliki partikel-partikel mineral tertentu 7 BAB II TINJAUAN PUSTAKA 2.1 Tanah Lempung Tanah lempung adalah tanah yang memiliki partikel-partikel mineral tertentu yang menghasilkan sifat-sifat plastis pada tanah bila dicampur dengan air (Grim,

Lebih terperinci

MEKANIKA TANAH (CIV -205)

MEKANIKA TANAH (CIV -205) MEKANIKA TANAH (CIV -205) OUTLINE : Tipe lereng, yaitu alami, buatan Dasar teori stabilitas lereng Gaya yang bekerja pada bidang runtuh lereng Profil tanah bawah permukaan Gaya gaya yang menahan keruntuhan

Lebih terperinci

TUGAS AKHIR. Untuk Menempuh Ujian Sarjana Teknik Sipil. Disusun Oleh : ARAN GREGORIUS SIMARMATA BIDANG STUDI GEOTEKNIK

TUGAS AKHIR. Untuk Menempuh Ujian Sarjana Teknik Sipil. Disusun Oleh : ARAN GREGORIUS SIMARMATA BIDANG STUDI GEOTEKNIK ANALISIS STABILITAS LERENG MENGGUNAKAN PERKUATAN DOUBLE SHEET PILE DAN GEOGRID DENGAN MENGGUNAKAN METODE ELEMEN HINGGA (Studi Kasus Jalan Siantar Parapat Km.152) TUGAS AKHIR Diajukan Untuk Melengkapi Tugas-tugas

Lebih terperinci

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI a BAB III METODOLOGI 3.1 Umum Pada pelaksanaan Tugas Akhir ini, kami menggunakan software PLAXIS 3D Tunnel 1.2 dan Group 5.0 sebagai alat bantu perhitungan. Kedua hasil perhitungan software ini akan dibandingkan

Lebih terperinci

BAB III PROSEDUR ANALISIS

BAB III PROSEDUR ANALISIS BAB III PROSEDUR ANALISIS Dalam melakukan perencanaan desain, secara umum perhitungan dapat dibagi menjadi 2 yaitu: perencanaan secara manual dan perencanaan dengan bantuan program. Dalam perhitungan secara

Lebih terperinci

LAMPIRAN 1 LANGKAH PEMODELAN ANALISA STABILITAS TIMBUNAN PADA PROGRAM PLAXIS 8.6

LAMPIRAN 1 LANGKAH PEMODELAN ANALISA STABILITAS TIMBUNAN PADA PROGRAM PLAXIS 8.6 LAMPIRAN 1 LANGKAH PEMODELAN ANALISA STABILITAS TIMBUNAN PADA PROGRAM PLAXIS 8.6 LANGKAH PEMODELAN ANALISA STABILITAS TIMBUNAN PADA PROGRAM PLAXIS 8.6 Berikut ini merupakan langkah-langkah pemodelan analisa

Lebih terperinci

D3 JURUSAN TEKNIK SIPIL POLBAN BAB II DASAR TEORI

D3 JURUSAN TEKNIK SIPIL POLBAN BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Stabilitas Talud (Stabilitas Lereng) Suatu tempat yang memiliki dua permukaan tanah yang memiliki ketinggian yang berbeda dan dihubungkan oleh suatu permukaan disebut lereng (Vidayanti,

Lebih terperinci

BAB IV STUDI KASUS 4.1 UMUM

BAB IV STUDI KASUS 4.1 UMUM BAB IV STUDI KASUS 4.1 UMUM Penimbunan pada tanah dengan metode drainase vertikal dilakukan secara bertahap dari ketinggian tertentu hingga mencapai elevasi yang diinginkan. Analisis penurunan atau deformasi

Lebih terperinci

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R. DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R. 3108100065 LATAR BELAKANG Pembangunan Tower Apartemen membutuhkan lahan parkir,

Lebih terperinci

LAMPIRAN 1. Langkah Program PLAXIS V.8.2

LAMPIRAN 1. Langkah Program PLAXIS V.8.2 L1-1 LAMPIRAN 1 Langkah Program PLAXIS V.8.2 Analisa Beban Gempa Pada Dinding Basement Dengan Metode Pseudo-statik dan Dinamik L1-2 LANGKAH PEMODELAN ANALISA BEBAN GEMPA PADA DINDING BASEMENT DENGAN PROGRAM

Lebih terperinci

Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) :

Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) : TEKANAN TANAH LATERAL Tekanan tanah lateral ada 3 (tiga) macam, yaitu : 1. Tekanan tanah dalam keadaan diam atau keadaan statis ( at-rest earth pressure). Tekanan tanah yang terjadi akibat massa tanah

Lebih terperinci

REKAYASA GEOTEKNIK DALAM DISAIN DAM TIMBUNAN TANAH

REKAYASA GEOTEKNIK DALAM DISAIN DAM TIMBUNAN TANAH REKAYASA GEOTEKNIK DALAM DISAIN DAM TIMBUNAN TANAH O. B. A. Sompie Dosen Jurusan Teknik Sipil Fakultas Teknik Universitas Sam Ratulangi Manado ABSTRAK Dam dari timbunan tanah (earthfill dam) membutuhkan

Lebih terperinci

BAB II DASAR TEORI...

BAB II DASAR TEORI... DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii UCAPAN TERIMA KASIH... iii DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR ISTILAH... xii DAFTAR NOTASI... xiv BAB I PENDAHULUAN... 1 1.1.

Lebih terperinci

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan Bab 1 PENDAHULUAN 1.1. Latar Belakang Bowles (1991) berpendapat bahwa tanah dengan nilai kohesi tanah c di bawah 10 kn/m 2, tingkat kepadatan rendah dengan nilai CBR di bawah 3 %, dan tekanan ujung konus

Lebih terperinci

DAFTAR ISI. i ii iii. ix xii xiv xvii xviii

DAFTAR ISI. i ii iii. ix xii xiv xvii xviii DAFTAR ISI HALAMAN JUDUL... LEMBAR PENGESAHAN... PENGANTAR... DAFTAR ISI... DAFTAR NOTASI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... ABSTRAK... i ii iii v ix xii xiv xvii xviii BAB I PENDAHULUAN...

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Gambaran Umum Obyek Penelitian 2.1.1 Material Geosintetik Penggunaan material geosintetik pada proyek perbaikan tanah semakin luas, material geosintetik yang telah teruji kekuatannya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. atau menurunnya kekuatan geser suatu massa tanah. Dengan kata lain, kekuatan

BAB II TINJAUAN PUSTAKA. atau menurunnya kekuatan geser suatu massa tanah. Dengan kata lain, kekuatan BAB II TINJAUAN PUSTAKA 2.1. Kelongsoran Tanah Kelongsoran tanah merupakan salah satu yang paling sering terjadi pada bidang geoteknik akibat meningkatnya tegangan geser suatu massa tanah atau menurunnya

Lebih terperinci

STUDI PERBANDINGAN PERANCANGAN DINDING TURAP DENGAN MENGGUNAKAN METODE MANUAL DAN PROGRAM OASYS GEO 18.1

STUDI PERBANDINGAN PERANCANGAN DINDING TURAP DENGAN MENGGUNAKAN METODE MANUAL DAN PROGRAM OASYS GEO 18.1 STUDI PERBANDINGAN PERANCANGAN DINDING TURAP DENGAN MENGGUNAKAN METODE MANUAL DAN PROGRAM OASYS GEO 18.1 Nama : Riwan Bicler Sinaga NRP : 0121018 Pembimbing : Ibrahim Surya, Ir., M.Eng FAKULTAS TEKNIK

Lebih terperinci

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun oleh : TITIK ERNAWATI

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun oleh : TITIK ERNAWATI TUGAS AKHIR DESAIN TURAP PENAHAN TANAH DENGAN OPTIMASI LETAK DAN DIMENSI PROFIL PADA LOKASI SUNGAI MAHAKAM KALIMANTAN TIMUR MENGGUNAKAN PROGRAM PLAXIS V.8.2 Diajukan sebagai syarat untuk meraih gelar Sarjana

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Stabilitas Lereng Pada permukaan tanah yang miring, komponen gravitasi cenderung untuk menggerakkan tanah ke bawah. Jika komponen gravitasi sedemikian besar sehingga perlawanan

Lebih terperinci

PERENCANAAN STABILITAS LERENG DENGAN SHEET PILE DAN PERKUATAN GEOGRID MENGGUNAKAN METODE ELEMEN HINGGA. Erin Sebayang 1 dan Rudi Iskandar 2

PERENCANAAN STABILITAS LERENG DENGAN SHEET PILE DAN PERKUATAN GEOGRID MENGGUNAKAN METODE ELEMEN HINGGA. Erin Sebayang 1 dan Rudi Iskandar 2 PERENCANAAN STABILITAS LERENG DENGAN SHEET PILE DAN PERKUATAN GEOGRID MENGGUNAKAN METODE ELEMEN HINGGA Erin Sebayang 1 dan Rudi Iskandar 2 1 Departemen Teknik Sipil, Universitas Sumatera Utara, Jl,Perpustakaan

Lebih terperinci

LAMPIRAN 1 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK NAVFAC KASUS 1. Universitas Kristen Maranatha

LAMPIRAN 1 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK NAVFAC KASUS 1. Universitas Kristen Maranatha LAMPIRAN 1 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK NAVFAC KASUS 1 93 LAMPIRAN 2 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK EC7 DA1 C1 (UNDRAINED) 94 LAMPIRAN 3 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Persiapan Penelitian 3.1.1. Lokasi Penelitian Kegiatan penelitian ini akan dilaksanakan di lokasi studi yaitu Jalan Raya Sekaran di depan Perumahan Taman Sentosa Gunungpati,

Lebih terperinci

DAFTAR ISI ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN 1 1.

DAFTAR ISI ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN 1 1. DAFTAR ISI Judul Pengesahan Persetujuan Persembahan ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN Halaman i ii iii iv i vi vii iiii xii

Lebih terperinci

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH BAB I PENDAHULUAN 1. 1 LATAR BELAKANG MASALAH Seiring dengan pertumbuhan penduduk di kota Semarang, maka diperlukan sarana jalan raya yang aman dan nyaman. Dengan semakin bertambahnya volume lalu lintas,

Lebih terperinci

PENGARUH GEOTEKSTIL TERHADAP KUAT GESER PADA TANAH LEMPUNG LUNAK DENGAN UJI TRIAKSIAL TERKONSOLIDASI TAK TERDRAINASI SKRIPSI. Oleh

PENGARUH GEOTEKSTIL TERHADAP KUAT GESER PADA TANAH LEMPUNG LUNAK DENGAN UJI TRIAKSIAL TERKONSOLIDASI TAK TERDRAINASI SKRIPSI. Oleh 786 / FT.01 / SKRIP / 04 / 2008 PENGARUH GEOTEKSTIL TERHADAP KUAT GESER PADA TANAH LEMPUNG LUNAK DENGAN UJI TRIAKSIAL TERKONSOLIDASI TAK TERDRAINASI SKRIPSI Oleh MIRZA RIO ENDRAYANA 04 03 01 047 X DEPARTEMEN

Lebih terperinci

TOPIK BAHASAN 8 KEKUATAN GESER TANAH PERTEMUAN 20 21

TOPIK BAHASAN 8 KEKUATAN GESER TANAH PERTEMUAN 20 21 TOPIK BAHASAN 8 KEKUATAN GESER TANAH PERTEMUAN 20 21 KEKUATAN GESER TANAH PENGERTIAN Kekuatan tanah untuk memikul beban-beban atau gaya yang dapat menyebabkan kelongsoran, keruntuhan, gelincir dan pergeseran

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek penulisan tugas akhir ini adalah Perencanaan kemantapan lereng (Slope

BAB III METODOLOGI PENELITIAN. Objek penulisan tugas akhir ini adalah Perencanaan kemantapan lereng (Slope BAB III METODOLOGI PENELITIAN 3.1 OBJEK PENULISAN Objek penulisan tugas akhir ini adalah Perencanaan kemantapan lereng (Slope Stability) pada dasar galian basement pada Proyek Gedung Jakarta Pusat. 3.2

Lebih terperinci

KATA PENGANTAR Puji syukur kepada Tuhan Yang Maha Esa, karena hanya dengan rahmat dan berkat-nya penyusun dapat menyelesaikan laporan tugas akhir berj

KATA PENGANTAR Puji syukur kepada Tuhan Yang Maha Esa, karena hanya dengan rahmat dan berkat-nya penyusun dapat menyelesaikan laporan tugas akhir berj LEMBAR PENGESAHAN LAPORAN TUGAS AKHIR ANALISA STABILITAS LERENG dan PENANGANAN LONGSORAN STUDI KASUS RUAS JALAN KETEP PASS KM 26 + 900 ( Analysis Of Slope Stability And Landslide Handling Ketep Pass Road

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengumpulan Data Sekayan Kalimantan Timur bagian utara merupakan daerah yang memiliki tanah dasar lunak lempung kelanauan. Ketebalan tanah lunaknya dapat mencapai 15

Lebih terperinci

BAB III DATA DAN ANALISA TANAH 3.2 METODE PEMBUATAN TUGAS AKHIR

BAB III DATA DAN ANALISA TANAH 3.2 METODE PEMBUATAN TUGAS AKHIR BAB III DATA DAN ANALISA TANAH 3.1 TINJAUAN UMUM Perencanaan suatu pekerjaan diperlukan tahapan tahapan atau metedologi yang jelas untuk menentukan hasil yang ingin dicapai sesuai dengan tujuan yang ada.

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL...

DAFTAR ISI HALAMAN JUDUL... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... BERITA ACARA BIMBINGAN TUGAS AKHIR... MOTTO DAN PERSEMBAHAN... KATA PENGANTAR... ABSTRAK... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR NOTASI

Lebih terperinci

ANALISIS STABILITAS TANAH TIMBUNAN DENGAN PERKUATAN SABUT KELAPA

ANALISIS STABILITAS TANAH TIMBUNAN DENGAN PERKUATAN SABUT KELAPA ANALISIS STABILITAS TANAH TIMBUNAN DENGAN PERKUATAN SABUT KELAPA Ferra Fahriani Email : f2_ferra@yahoo.com Jurusan Teknik Sipil Fakultas Teknik Universitas Bangka Belitung Kampus Terpadu UBB Balunijuk,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Klasifikasi Tiang Di dalam rekayasa pondasi dikenal beberapa klasifikasi pondasi tiang, pembagian klasifikasi tiang ini dibuat berdasarkan jenis material yang digunakan kekakuan

Lebih terperinci

HALAMAN PENGESAHAN BERITA ACARA BIMBINGAN TUGAS AKHIR MOTTO PERSEMBAHAN

HALAMAN PENGESAHAN BERITA ACARA BIMBINGAN TUGAS AKHIR MOTTO PERSEMBAHAN DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii BERITA ACARA BIMBINGAN TUGAS AKHIR... iii MOTTO... iv PERSEMBAHAN... v KATA PENGANTAR... vii DAFTAR ISI... x DAFTAR NOTASI... xiii DAFTAR GAMBAR...

Lebih terperinci

BAB I PENDAHULUAN LATAR BELAKANG

BAB I PENDAHULUAN LATAR BELAKANG 1 BAB I PENDAHULUAN 1. 1. LATAR BELAKANG Gunungpati merupakan daerah berbukit di sisi utara Gunung Ungaran dengan kemiringan dan panjang yang bervariasi. Sungai utama yang melintas dan mengalir melalui

Lebih terperinci

LANGKAH-LANGKAH PEMODELAN MENGGUNAKAN PLAXIS V8.2. Pada bagian ini dijelaskan tentang cara-cara yang dilakukan untuk memodelkan proyek

LANGKAH-LANGKAH PEMODELAN MENGGUNAKAN PLAXIS V8.2. Pada bagian ini dijelaskan tentang cara-cara yang dilakukan untuk memodelkan proyek LANGKAH-LANGKAH PEMODELAN MENGGUNAKAN PLAXIS V8.2 Pada bagian ini dijelaskan tentang cara-cara yang dilakukan untuk memodelkan proyek 5 ke dalam bentuk model analisa yang bisa dihitung oleh Plaxis. Adapun

Lebih terperinci

MEKANIKA TANAH 2. TEKANAN TANAH LATERAL At Rest...Rankine and Coulomb

MEKANIKA TANAH 2. TEKANAN TANAH LATERAL At Rest...Rankine and Coulomb MEKANIKA TANAH 2 TEKANAN TANAH LATERAL At Rest...Rankine and Coulomb UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 KRITERIA KERUNTUHAN MENURUT MOHR -

Lebih terperinci

BAB III METODE KAJIAN

BAB III METODE KAJIAN 24 BAB III METODE KAJIAN 3.1 Persiapan Memasuki tahap persiapan ini disusun hal-hal penting yang harus dilakukan dalam rangka penulisan tugas akhir ini. Adapun tahap persiapan ini meliputi hal-hal sebagai

Lebih terperinci

PENGGUNAAN BAMBU PETUNG SEBAGAI ALTERNATIF MATERIAL KONSTRUKSI DINDING PENAHAN GALIAN PADA KONDISI TANAH NON KOHESIF

PENGGUNAAN BAMBU PETUNG SEBAGAI ALTERNATIF MATERIAL KONSTRUKSI DINDING PENAHAN GALIAN PADA KONDISI TANAH NON KOHESIF PENGGUNAAN BAMBU PETUNG SEBAGAI ALTERNATIF MATERIAL KONSTRUKSI DINDING PENAHAN GALIAN PADA KONDISI TANAH NON Kurniadi Wahyudianto 1, Yusep Muslih Purwana 2, dan Niken Silmi Surjandari 3 1 Program Studi

Lebih terperinci

ANALISIS TIMBUNAN PELEBARAN JALAN SIMPANG SERAPAT KM-17 LINGKAR UTARA ABSTRAK

ANALISIS TIMBUNAN PELEBARAN JALAN SIMPANG SERAPAT KM-17 LINGKAR UTARA ABSTRAK ANALISIS TIMBUNAN PELEBARAN JALAN SIMPANG SERAPAT KM-17 LINGKAR UTARA Adriani 1), Lely Herliyana 2) ABSTRAK Jalan lingkar utara adalah daerah yang berjenis tanah rawa atau tanah lunak maka untuk melakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Umum Seperti yang sudah dijelaskan sebelumnya bahwa lereng adalah suatu permukaan tanah yang miring dan membentuk sudut tertentu terhadap suatu bidang horisontal dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Uraian Umum Abutmen merupakan bangunan yang berfungsi untuk mendukung bangunan atas dan juga sebagai penahan tanah. Adapun fungsi abutmen ini antara lain : Sebagai perletakan

Lebih terperinci

Soal Geomekanik Mekanika Tanah dan Teknik Pondasi

Soal Geomekanik Mekanika Tanah dan Teknik Pondasi Soal Geomekanik Mekanika Tanah dan Teknik Pondasi 1. Fase Tanah (1) Sebuah contoh tanah memiliki berat volume 19.62 kn/m 3 dan berat volume kering 17.66 kn/m 3. Bila berat jenis dari butiran tanah tersebut

Lebih terperinci

PERENCANAAN STRUKTUR TANGGUL KOLAM RETENSI KACANG PEDANG PANGKAL PINANG DENGAN MENGGUNAKAN SOFTWARE OASYS GEO 18.1 DAN 18.2

PERENCANAAN STRUKTUR TANGGUL KOLAM RETENSI KACANG PEDANG PANGKAL PINANG DENGAN MENGGUNAKAN SOFTWARE OASYS GEO 18.1 DAN 18.2 PERENCANAAN STRUKTUR TANGGUL KOLAM RETENSI KACANG PEDANG PANGKAL PINANG DENGAN MENGGUNAKAN SOFTWARE OASYS GEO 18.1 DAN 18.2 Nama : Jacson Sumando NRP : 9821055 Pembimbing : Ibrahim Surya, Ir., M.Eng FAKULTAS

Lebih terperinci

BAB III DATA PERENCANAAN

BAB III DATA PERENCANAAN BAB III DATA PERENCANAAN 3.1 Umum Perencanaan pondasi tiang mencakup beberapa tahapan pekerjaan. Sebagai tahap awal adalah interpretasi data tanah dan data pembebanan gedung hasil dari analisa struktur

Lebih terperinci

dinding penahan tanah sudah cukup lama dikenal di dunia. Salah satu bukti berupa podium bertingkat yang ditanami pohon, rumput dan bunga-bungaan serta

dinding penahan tanah sudah cukup lama dikenal di dunia. Salah satu bukti berupa podium bertingkat yang ditanami pohon, rumput dan bunga-bungaan serta 2.1 Umum Dinding penahan tanah berfungsi untuk menyokong tanah serta mencegahnya dari bahaya kelongsoran. Baik akibat beban air hujan, berat tanah itu sendiri maupun akibat beban yang bekerja di atasnya.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi dimasa modern ini memberikan dampak yang besar dalam berbagai bidang, seperti bidang komunikasi informasi, pendidikan, perekonomian, perindustrian,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya BAB II TINJAUAN PUSTAKA A. Umum Pondasi adalah struktur bagian bawah bangunan yang berhubungan langsung dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya beban diatasnya. Pondasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar BAB II TINJAUAN PUSTAKA 2.1. Umum Pondasi adalah struktur bagian bawah bangunan yang berhubungan langsung dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya beban diatasnya. Pondasi

Lebih terperinci

ANALISA KONSOLIDASI DAN KESTABILAN LERENG BENDUNG KOSINGGOLAN

ANALISA KONSOLIDASI DAN KESTABILAN LERENG BENDUNG KOSINGGOLAN ANALISA KONSOLIDASI DAN KESTABILAN LERENG BENDUNG KOSINGGOLAN Sesty E.J Imbar Alumni Program Pascasarjana S2 Teknik Sipil Universitas Sam Ratulangi O. B. A. Sompie Dosen Pasca Sarjana Program Studi S2

Lebih terperinci

BAB III METODOLOGI PRA RENCANA STRUKTUR BAWAH

BAB III METODOLOGI PRA RENCANA STRUKTUR BAWAH BAB III METODOLOGI PRA RENCANA STRUKTUR BAWAH 3.1 Konsep Perancangan Gedung bertingkat yang penulis tinjau terdiri atas 12 lantai dan 3 lantai basement, dimana basement 1 sebenarnya merupakan Sub-Basement

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dinding Penahan Tanah Bangunan dinding penahan tanah berfungsi untuk menyokong dan menahan tekanan tanah. Baik akibat beban hujan,berat tanah itu sendiri maupun akibat beban

Lebih terperinci

BAB II TI JAUA PUSTAKA

BAB II TI JAUA PUSTAKA BAB II TI JAUA PUSTAKA 2.1 Sifat Alamiah Tanah Tanah adalah akumulasi partikel mineral yang mempunyai ikatan antar partikel yang lemah atau sama sekali tidak mempunyai ikatan antar partikel tanahnya, dimana

Lebih terperinci

Pengaruh Perkuatan Sheetpile terhadap Deformasi Area Sekitar Timbunan pada Tanah Lunak Menggunakan Metode Partial Floating Sheetpile (PFS)

Pengaruh Perkuatan Sheetpile terhadap Deformasi Area Sekitar Timbunan pada Tanah Lunak Menggunakan Metode Partial Floating Sheetpile (PFS) Reka Racana Jurusan Teknik Sipil Itenas No. 3 Vol. 3 Jurnal Online Institut Teknologi Nasional September 2017 Pengaruh Perkuatan Sheetpile terhadap Deformasi Area Sekitar Timbunan pada Tanah Lunak Menggunakan

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan ABSTRAK ABSTRACT KATA PENGANTAR

DAFTAR ISI. Halaman Judul Pengesahan ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI Halaman Judul i Pengesahan ii ABSTRAK iv ABSTRACT v KATA PENGANTAR vi DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xii DAFTAR LAMPIRAN xix DAFTAR NOTASI DAN SINGKATAN xx BAB I PENDAHULUAN 1 1.1

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Cara Analisis Kestabilan Lereng Cara analisis kestabilan lereng banyak dikenal, tetapi secara garis besar dapat dibagi menjadi tiga kelompok yaitu: cara pengamatan visual, cara

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah BAB I PENDAHULUAN A. Latar Belakang Di Indonesia banyak sekali daerah yang,mengalami longsoran tanah yang tersebar di daerah-daerah pegunngan di Indonesia. Gerakan tanah atau biasa di sebut tanah longsor

Lebih terperinci

III. KUAT GESER TANAH

III. KUAT GESER TANAH III. KUAT GESER TANAH 1. FILOSOFI KUAT GESER Kuat geser adalah gaya perlawanan yang dilakukan oleh butir-butir tanah terhadap desakan atau tarikan. Kegunaan kuat geser Stabilitas lereng σ γ γ γ Daya dukung

Lebih terperinci

BAB III METODOLOGI. Adapun yang termasuk dalam tahap persiapan ini meliputi:

BAB III METODOLOGI. Adapun yang termasuk dalam tahap persiapan ini meliputi: BAB III METODOLOGI 3.1 Tahap Persiapan Tahap persiapan merupakan rangkaian kegiatan sebelum memulai tahapan pengumpulan data dan pengolahannya. Dalam tahap awal ini disusun hal-hal penting yang harus dilakukan

Lebih terperinci

KUAT GESER 5/26/2015 NORMA PUSPITA, ST. MT. 2

KUAT GESER 5/26/2015 NORMA PUSPITA, ST. MT. 2 KUAT GESER Mekanika Tanah I Norma Puspita, ST. MT. 5/6/05 NORMA PUSPITA, ST. MT. KUAT GESER =.??? Kuat geser tanah adalah gaya perlawanan yang dilakukan oleh butiran tanah terhadap desakan atau tarikan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam mendesain bangunan geoteknik salah satunya konstruksi Basement, diperlukan

BAB II TINJAUAN PUSTAKA. Dalam mendesain bangunan geoteknik salah satunya konstruksi Basement, diperlukan BAB II TINJAUAN PUSTAKA 2.1. Studi Parameter Tanah Dalam mendesain bangunan geoteknik salah satunya konstruksi Basement, diperlukan data data tanah yang mempresentasikan keadaan lapangan. Penyelidikan

Lebih terperinci

DINDING PENAHAN TANAH ( Retaining Wall )

DINDING PENAHAN TANAH ( Retaining Wall ) DINDING PENAHAN TANAH ( Retaining Wall ) A. PENGERTIAN Dinding penahan tanah (DPT) adalah suatu bangunan yang dibangun untuk mencegah keruntuhan tanah yang curam atau lereng yang dibangun di tempat di

Lebih terperinci

TURAP REKAYASA PONDASI II 2013/2014

TURAP REKAYASA PONDASI II 2013/2014 REKAYASA PONDASI II 03/04 TURAP. Pendahuluan Turap merupakan struktur sheet piles yang dipancang secara kontinu kedalam tanah sehingga membentuk dinding vertikal yang menerus dan digunakan untuk menahan

Lebih terperinci

BAB III DATA DAN TINJAUAN DESAIN AWAL

BAB III DATA DAN TINJAUAN DESAIN AWAL BAB III DATA DAN TINJAUAN DESAIN AWAL 3.1 PENDAHULUAN Proyek jembatan Ir. Soekarno berada di sebelah utara kota Manado. Keterangan mengenai project plan jembatan Soekarno ini dapat dilihat pada Gambar

Lebih terperinci

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH Lis Jurusan Teknik Sipil Universitas Malikussaleh Email: lisayuwidari@gmail.com Abstrak Tanah berguna sebagai bahan bangunan pada

Lebih terperinci

PENGARUH KEDALAMAN PEMANCANGAN TURAP BAJA PADA BERBAGAI KEPADATAN TANAH NON-KOHESIF TERHADAP FAKTOR KEAMANAN PEMANCANGAN ABSTRAK

PENGARUH KEDALAMAN PEMANCANGAN TURAP BAJA PADA BERBAGAI KEPADATAN TANAH NON-KOHESIF TERHADAP FAKTOR KEAMANAN PEMANCANGAN ABSTRAK PENGARUH KEDALAMAN PEMANCANGAN TURAP BAJA PADA BERBAGAI KEPADATAN TANAH NON-KOHESIF TERHADAP FAKTOR KEAMANAN PEMANCANGAN Victoria Eleny Prijadi NRP: 1321022 Pembimbing: Hanny Juliany Dani, S.T.,M.T. ABSTRAK

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Gambaran Umum Lokasi Penelitian Daerah penelitian merupakan daerah yang memiliki karakteristik tanah yang mudah meloloskan air. Berdasarkan hasil borring dari Balai Wilayah

Lebih terperinci

D4 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II DASAR TEORI

D4 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Klasifikasi Tiang Di dalam rekayasa pondasi dikenal beberapa klasifikasi pondasi tiang. Pembagian klasifikasi pondasi tiang ini dibuat berdasarkan jenis material yang digunakan,

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL

DAFTAR ISI HALAMAN JUDUL DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii BERITA ACARA BIMBINGAN TUGAS AKHIR... iii MOTTO... iv PERSEMBAHAN... v KATA PENGANTAR... vii DAFTAR ISI... ix DAFTAR GAMBAR... xii DAFTAR TABEL...

Lebih terperinci

ANALISA KESTABILAN LERENG METODE SLICE (METODE JANBU) (Studi Kasus: Jalan Manado By Pass I)

ANALISA KESTABILAN LERENG METODE SLICE (METODE JANBU) (Studi Kasus: Jalan Manado By Pass I) ANALISA KESTABILAN LERENG METODE SLICE (METODE JANBU) (Studi Kasus: Jalan Manado By Pass I) Turangan Virginia, A.E.Turangan, S.Monintja Email:virginiaturangan@gmail.com ABSTRAK Pada daerah Manado By Pass

Lebih terperinci

BAB II DESKRIPSI KONDISI LOKASI

BAB II DESKRIPSI KONDISI LOKASI BAB II DESKRIPSI KONDISI LOKASI 2.1. Tinjauan Umum Untuk dapat merencanakan penanganan kelongsoran tebing pada suatu lokasi, terlebih dahulu harus diketahui kondisi existing dari lokasi tersebut. Beberapa

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Dewasa ini teknologi terus berkembang seiring kemajuan jaman. Teknologi di bidang konstruksi bangunan juga mengalami perkembangan pesat, termasuk teknologi dalam bidang

Lebih terperinci

PENGGUNAAN BORED PILE SEBAGAI DINDING PENAHAN TANAH

PENGGUNAAN BORED PILE SEBAGAI DINDING PENAHAN TANAH PENGGUNAAN BORED PILE SEBAGAI DINDING PENAHAN TANAH Yeremias Oktavianus Ramandey NRP : 0021136 Pembimbing : Ibrahim Surya, Ir., M.Eng FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Lokasi Lokasi pengambilan sampel tanah berasal dari proyek jembatan pengarengan jalan tol Cinere Jagorawi Sesi II, Depok, Jawa Barat. Untuk pengujian pemodelan matras dan

Lebih terperinci

ANALISIS KESTABILAN LERENG DENGAN ATAU TANPA PERKUATAN GEOTEXTILE DENGAN PERANGKAT LUNAK PLAXIS ABSTRAK

ANALISIS KESTABILAN LERENG DENGAN ATAU TANPA PERKUATAN GEOTEXTILE DENGAN PERANGKAT LUNAK PLAXIS ABSTRAK ANALISIS KESTABILAN LERENG DENGAN ATAU TANPA PERKUATAN GEOTEXTILE DENGAN PERANGKAT LUNAK PLAXIS Kistiyani Prabowo NRP : 1021054 Pembimbing : Ir. Asriwiyanti Desiani, MT. ABSTRAK Penggunaan geosintetik

Lebih terperinci

BAB III METODOLOGI PENELITIAN. dalam pelaksanaan penelitian tersebut. Adapun langkah penelitian adalah:

BAB III METODOLOGI PENELITIAN. dalam pelaksanaan penelitian tersebut. Adapun langkah penelitian adalah: BAB III 56 METODOLOGI PENELITIAN Dalam penelitian perlu diadakan alur kegiatan yang diharapkan dapat membantu dalam pelaksanaan penelitian tersebut. Adapun langkah penelitian adalah: Start Identifikasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Uraian Singkat Jembatan Kereta Api Lintas Semarang-Bojonegoro Pembangunan Jembatan Kereta Api Lintas Semarang-Bojonegoro, merupakan proyek pembangunan Track dan Jalur

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR

LEMBAR PENGESAHAN TUGAS AKHIR LEMBAR PENGESAHAN TUGAS AKHIR STUDI KASUS STABILITAS LERENG dan PENANGANAN KELONGSORAN PADA RUAS KALI BODRI - KENDAL (Case Study Of Slope Stability And Landslide Handling On The Bodri River Kendal) Diajukan

Lebih terperinci

ANALISIS STABILITAS LERENG BERTINGKAT DENGAN PERKUATAN GEOTEKSTIL MENGGUNAKAN METODE ELEMEN HINGGA

ANALISIS STABILITAS LERENG BERTINGKAT DENGAN PERKUATAN GEOTEKSTIL MENGGUNAKAN METODE ELEMEN HINGGA ANALISIS STABILITAS LERENG BERTINGKAT DENGAN PERKUATAN GEOTEKSTIL MENGGUNAKAN METODE ELEMEN HINGGA Ichsan Prasetyo 1) Bambang Setiawan 2) Raden Harya Dananjaya 3) 1) Mahasiswa Fakultas Teknik, Program

Lebih terperinci

BAB 1 PENDAHULUAN. Banten. Sumber-sumber gempa di Banten terdapat pada zona subduksi pada pertemuan

BAB 1 PENDAHULUAN. Banten. Sumber-sumber gempa di Banten terdapat pada zona subduksi pada pertemuan 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada tanggal 17 Juni 2006 gempa sebesar 6,8 skala Richter mengguncang Banten. Sumber-sumber gempa di Banten terdapat pada zona subduksi pada pertemuan lempeng Ausralia

Lebih terperinci

TANYA JAWAB SOAL-SOAL MEKANIKA TANAH DAN TEKNIK PONDASI. 1. Soal : sebutkan 3 bagian yang ada dalam tanah.? Jawab : butiran tanah, air, dan udara.

TANYA JAWAB SOAL-SOAL MEKANIKA TANAH DAN TEKNIK PONDASI. 1. Soal : sebutkan 3 bagian yang ada dalam tanah.? Jawab : butiran tanah, air, dan udara. TANYA JAWAB SOAL-SOAL MEKANIKA TANAH DAN TEKNIK PONDASI 1. : sebutkan 3 bagian yang ada dalam tanah.? : butiran tanah, air, dan udara. : Apa yang dimaksud dengan kadar air? : Apa yang dimaksud dengan kadar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Daya Dukung Pondasi Tiang Pondasi tiang adalah pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dengan jalan menyerap lenturan. Pondasi tiang dibuat menjadi satu

Lebih terperinci

BAB 9. B ANGUNAN PELENGKAP JALAN

BAB 9. B ANGUNAN PELENGKAP JALAN BAB 9. B ANGUNAN PELENGKAP JALAN Bangunan pelengkap jalan raya bukan hanya sekedar pelengkap akan tetapi merupakan bagian penting yang harus diadakan untuk pengaman konstruksi jalan itu sendiri dan petunjuk

Lebih terperinci

ANALISIS STABILITAS DAN PERKUATAN LERENG PLTM SABILAMBO KABUPATEN KOLAKA SULAWESI TENGGARA ABSTRAK

ANALISIS STABILITAS DAN PERKUATAN LERENG PLTM SABILAMBO KABUPATEN KOLAKA SULAWESI TENGGARA ABSTRAK ANALISIS STABILITAS DAN PERKUATAN LERENG PLTM SABILAMBO KABUPATEN KOLAKA SULAWESI TENGGARA Christy Yanwar Yosapat NRP : 1121037 Pembimbing : Hanny Juliany Dani, S.T., M.T. ABSTRAK Pada akhir tahun 2012,

Lebih terperinci

Analisis Stabilitas dan Penurunan pada Timbunan Mortar Busa Ringan Menggunakan Metode Elemen Hingga

Analisis Stabilitas dan Penurunan pada Timbunan Mortar Busa Ringan Menggunakan Metode Elemen Hingga Reka Racana Jurusan Teknik Sipil Itenas No. 2 Vol. 3 Jurnal Online Institut Teknologi Nasional Juni 2017 Analisis Stabilitas dan Penurunan pada Timbunan Mortar Busa Ringan RIFKI FADILAH, INDRA NOER HAMDHAN

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Tanah Lempung Menurut Terzaghi ( 1987 ) Lempung adalah agregat partikel-partikel berukuran mikroskopik dan submikroskopik yang berasal dari pembusukan kimiawi unsur-unsur penyusun

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Dan Stabilitas Lereng Dengan Struktur Counter Weight Menggunakan program

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. Dan Stabilitas Lereng Dengan Struktur Counter Weight Menggunakan program BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI A. Tinjauan Pustaka Yulianto (2013) dalam penelitiannya Analisis Dinding Penahan Tanah Dan Stabilitas Lereng Dengan Struktur Counter Weight Menggunakan program

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 15 BAB III METODE PENELITIAN 3.1 Jenis Penelitian Jenis penelitian Tugas Akhir ini adalah pemodelan variasi trucuk bambu dengan program PLAXIS versi 7 dan perhitungan manual daya dukung serta penurunan

Lebih terperinci

ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL

ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL Niken Silmi Surjandari 1), Bambang Setiawan 2), Ernha Nindyantika 3) 1,2 Staf Pengajar dan Anggota Laboratorium Mekanika Tanah Jurusan Teknik Sipil

Lebih terperinci

BAYU TEGUH ARIANTO NIM : D NIRM :

BAYU TEGUH ARIANTO NIM : D NIRM : ANALISIS PARAMETER KUAT GESER TANAH DENGAN GEOTEXTILE Tugas Akhir untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil diajukan oleh : BAYU TEGUH ARIANTO NIM : D 100 030 074 NIRM

Lebih terperinci

ANALISA KESTABILAN LERENG METODE LOWE-KARAFIATH (STUDI KASUS : GLORY HILL CITRALAND)

ANALISA KESTABILAN LERENG METODE LOWE-KARAFIATH (STUDI KASUS : GLORY HILL CITRALAND) ANALISA KESTABILAN LERENG METODE LOWE-KARAFIATH (STUDI KASUS : GLORY HILL CITRALAND) Giverson Javin Rolos, Turangan A. E., O. B. A. Sompie Jurusan Teknik Sipil Fakultas Teknik Universitas Sam Ratulangi

Lebih terperinci

PEMERIKSAAN KEKUATAN TANAH DENGAN PERKUATAN ANYAMAN KAWAT (STUDI KASUS : KAWASAN TINOOR)

PEMERIKSAAN KEKUATAN TANAH DENGAN PERKUATAN ANYAMAN KAWAT (STUDI KASUS : KAWASAN TINOOR) PEMERIKSAAN KEKUATAN TANAH DENGAN PERKUATAN ANYAMAN KAWAT (STUDI KASUS : KAWASAN TINOOR) Davly Rivaldo Tumewu Hendra Riogilang, Alva N. Sarajar Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Manado

Lebih terperinci

PERMODELAN TIMBUNAN PADA TANAH LUNAK DENGAN MENGGUNAKAN PROGRAM PLAXIS. Rosmiyati A. Bella *) ABSTRACT

PERMODELAN TIMBUNAN PADA TANAH LUNAK DENGAN MENGGUNAKAN PROGRAM PLAXIS. Rosmiyati A. Bella *) ABSTRACT PERMODELAN TIMBUNAN PADA TANAH LUNAK DENGAN MENGGUNAKAN PROGRAM PLAXIS Rosmiyati A. Bella *) ABSTRACT In civil construction frequently encountered problems in soft soils, such as low bearing capacity and

Lebih terperinci

MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 154 KRITERIA KERUNTUHAN MOHR COULOMB Keruntuhan geser (shear

Lebih terperinci

ANALISIS KESTABILAN LERENG DENGAN METODE FELLENIUS (Studi Kasus: Kawasan Citraland)

ANALISIS KESTABILAN LERENG DENGAN METODE FELLENIUS (Studi Kasus: Kawasan Citraland) ANALISIS KESTABILAN LERENG DENGAN METODE FELLENIUS (Studi Kasus: Kawasan Citraland) Violetta Gabriella Margaretha Pangemanan A.E Turangan, O.B.A Sompie Fakultas Teknik, Jurusan Teknik Sipil, Universitas

Lebih terperinci

STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA

STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA STUDI STABILITAS SISTEM PONDASI BORED PILE PADA JEMBATAN KERETA API CIREBON KROYA TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL OLEH

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL ABSTRAK... i ABSTRACT... iii KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR TABEL... xi DAFTAR GAMBAR...

DAFTAR ISI. HALAMAN JUDUL ABSTRAK... i ABSTRACT... iii KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR TABEL... xi DAFTAR GAMBAR... DAFTAR ISI HALAMAN JUDUL ABSTRAK... i ABSTRACT... iii KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR TABEL... xi DAFTAR GAMBAR... xiv BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Rumusan Permasalahan...

Lebih terperinci