Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007"

Transkripsi

1 Pengantar PENGOLAHAN CITRA Achmad Basuki PENS-ITS Surabaya 2007

2 TUJUAN Mahasiswa dapat membuat aplikasi pengolahan citra Mahasiswa dapat menerapkan konsep-konsep pengolahan citra untuk menghasilkan suatu teknologi berbasis pengolahan citra

3 MATERI 1. Introduction: Image Processing 2. Image Model 3. Gray-Scale Transformation 4. Image Statistic 5. Image Enhancement 6. Tranformasi Fourier and Image Spectrum 7. Image Filtering 8. Reduksi Noise 9. Deteksi Tepi 10. Image Feature Extraction (Color, Shape & Texture) 11. Image Segmentation 12. Image Application: Image Searching 13. Image Application: Character Recognition 14. Image Application: Deteksi Obyek Berdasarkan Warna/Bentuk

4 Materi Prasyarat Matematika Pemrograman Grafis Struktur Data

5 Pengolahan Citra Pengolahan citra adalah salah satu aplikasi yang dapat mengubah gambar menjadi suatu informasi Tujuan lebih jauh dari pengolahan citra adalah membuat suatu sistem yang bisa melihat

6 Beberapa Judul Proyek Akhir Pengolahan Citra Content Based Image Retrieval Pengenalan Wajah Tracking Wajah secara Real Time Pengenalan Tulisan dan Tanda Tangan Untuk Cek Bank Mesin Absensi Dengan Sidik Jari Deteksi dan Pengenalan Rambu-Rambu Lalu-Lintas Deteksi Gerakan Badan Untuk Kendali Game Kendali Game Dengan Gerakan Mata Filter Gambar Porno Pengenalan Buah dan Produk Menggunakan Fitur Warna Deteksi Jumlah Obyek Gambar Video Panorama Menggunakan Image Mosaic Mesin Pembaca Not Jawa Sistem Keamanan Terpadu Dengan Deteksi Gerakan Pengenalan Wajah Untuk Pencarian Data Buron Melalui Gambar Sketsa Navigasi Cerdas Pada Robot Pengenalan Golongan Darah Dll.

7 Referensi Gonzales, Rafael C, Woods, Richard E, Digital Image Processing, Prentice-Hall Inc., 2 nd Edition, 2002 Nixon Mark, Aguando, Alberto, Feature Extraction and Image Processing, 1 st Edition, 2002 Awcock GJ., Thomas R., Applied Image Processing, McGraw-Hill, 2001 Parker JR., Algorithm For Image Processing and Computer Vision, John Wiley & Sons, Achmad Basuki, Fathurrochman, Joshua F Palandi, Pengolahan Citra Digital Menggunakan Visual Basic 6, Graha Ilmu, 2005 Riyanto Sigit, Achmad Basuki, Nana Ramadijanti, Dadet Pramadihanto, Step by step Pengolahan Citra Digital, Penerbit Andi, Jogjakarta, 2006

8 Pengolahan Data Berdasarkan Input/Output OUTPUT IMAGE DESKRIPSI INPUT IMAGE DESKRIPSI Image Processing Grafika Komputer Computer Vision Data Mining dll.

9 Image Processing Image processing adalah suatu pengolahan data yang masukannya berupa gambar dan luarannya juga gambar Tujuan dari image processing adalah memperbaiki informasi pada gambar sehingga mudah terbaca atau memperbaiki kualitas dari gambar itu sendiri Image Enhancement Color Image Processing Image Feature Extraction Image Segmentation Image Compression Computer Vision

10 Model Image Sampling Kuantisasi Sampling menunjukkan banyaknya pixel (blok) untuk mendefinisikan suatu gambar Kuantisasi menunjukkan banyaknya derajat nilai pada setiap pixel (menunjukkan jumlah bit pada gambar digital b/w dengan 2bit, grayscale dengan 8 bit, true color dengan 24 bit

11 Image Enhancement Proses untuk memperbaiki gambar seperti brightness, contrast, mengubah gambar menjadi gray-scale, inversi, reduksi noise,deteksi tepi dan sharpness Masukan Image Enhancement Luaran Brightness & Contrast Gray Scale Sharpness

12 Image Segmentation Proses untuk mengelompokkan gambar sesuai dengan onyek gambarnya

13 Persoalan di dalam Image Processing Capture Modeling Feature Extraction Image Segmentation

14 Permasalahan Capture Capture (Menangkap Gambar) merupakanprosesawaldariimage processing untuk mendapatkan gambar. Proses capture membutuhkan alat-alat capture yang baik seperti kamera, scanner, light-pen dan lainnya, agar diperoleh gambar yang baik. Gambar yang baik akan banyak membantu dalam proses selanjutnya.

15 Alat-Alat Capture Sesuai Frekwensinya Diambil dari modul pelatihan image processing yang disusun oleh bapak Dadet Pramadihanto

16 Hasil Capture

17 Hasil Capture

18 Hasil Capture

19 Hasil Capture

20 Hasil Capture

21 Permasalahan Modeling Dalam modeling diperlukan analisa matematika yang cukup rumit, khususnya pemakaian kalkulus, dan transformasi geometri. (inilah sebabnya di jurusan TI mata kuliah matematika menjadi sangat penting!!)

22 Permasalahan Feature Extraction Setiap gambar mempunyai karakteristik tersendiri, sehingga fitur tidak dapat bersifat general tetapi sangat tergantung pada model dan obyek gambar yang digunakan. Fitur dasar yang bisa diambil adalah warna, bentuk dan tekstur. Fitur yang lebih kompleks menggunakan segmentasi, clustering dan motion estimation. Pemakaian statistik dan probabilitas, pengolahan sinyal sampai pada machine learning diperlukan di sini.

23 Fitur Warna Fitur ini digunakan bila setiap obyek gambar mempunyai warna yang spesifik Color Thresholding Merah Color Histogram Color Thresholding Hijau Gray-scale Histogram

24 Fitur Bentuk Fitur ini digunakan bila gambar setiap obyek mempunyai bentuk yang spesifik Deteksi Tepi Integral Proyeksi Kuantisasi Rata-rata

25 Fitur Tekstur Beberapa algoritma untuk mendapatkan fitur tekstur: (1) FFT (2) Wavelets (3) Image Filter (4) Filter Gabor

26 Permasalahan Image Segmentation Bagaimana memisahkan obyek gambar dengan backgroundnya Bagaimana memisahkan setiap obyek gambar. Teknik clustering apa yang sesuai dengan model dan obyek gambar yang digunakan

27 APLIKASI IMAGE PROCESSING Biometric Medical Image Image Databases Robot Vision Motion Capture Document Analysis

28 Biometric

29 Medical Image

30 Image Databases

31 Robot Vision

32 Motion Capture

33 Document Analysis

Pengantar Mata Kuliah Pengolahan Citra

Pengantar Mata Kuliah Pengolahan Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Pengantar Mata Kuliah Pengolahan Citra Content: 1. Tujuan mata kuliah Pengolahan Citra 2. Apa saja yang bisa dikerjakan dengan

Lebih terperinci

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010 Image Processing Nana Ramadijanti Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010 Referensi 1. Rafael C. Gonzales E.Woods, Digital Image Processing,2 nd Edition,Prentice Hall,2001 2. Wanasanan Thongsongkrit,

Lebih terperinci

Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya

Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya Materi: 1. Pendahuluan 2. Formasi Citra 3. Pemrosesan Citra dan Ekualisasi 4. Koreksi Warna 5. Konvolusi 6. Spatial

Lebih terperinci

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Sigit Wasista, Siwi Dian Priyanti Jurusan Teknik Elektronika Politeknik Elektronika Negeri Surabaya- Institut Teknologi

Lebih terperinci

IMAGE COLOR FEATURE. Achmad Basuki Politeknik Elektronika Negeri Surabaya

IMAGE COLOR FEATURE. Achmad Basuki Politeknik Elektronika Negeri Surabaya IMAGE COLOR FEATURE Achmad Basuki Politeknik Elektronika Negeri Surabaya Materi: 1. Image Color Feature 2. Application Using Image Color Feature 3. RGB-Cube 4. Histogram RGB Gabungan Layer Color Indeks

Lebih terperinci

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA Nana Ramadijanti, Achmad Basuki Politeknik Eletronika Negeri Surabaa, Institut Teknologi Sepuluh Nopember Surabaa Kampus PENS-ITS, Keputih, Sukolilo, Surabaa

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING Mohamad Aditya Rahman, Ir. Sigit Wasista, M.Kom Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya

Lebih terperinci

Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi

Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi Millatul Maziyah dan Andy Noortjahja Jurusan Fisika,

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Computer Vision Komputerisasi memiliki ketelitian yang jauh lebih tinggi bila dibandingkan dengan cara manual yang dilakukan oleh mata manusia, komputer dapat melakukan berbagai

Lebih terperinci

PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR

PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR Farah Zakiyah Rahmanti 1, Entin Martiana K. 2, S.Kom, M.Kom, Nana Ramadijanti

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI

PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI Setiawardhana 1), Nana Ramadijanti 2), Rizky Yuniar Hakkun 3), Aji Seto Arifianto 4) 1,2,3) Dosen Jurusan

Lebih terperinci

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008 Fitur Bentuk Pada Citra Achmad Basuki, Nana R PENS-ITS, 008 Materi Fitur Bentuk Deteksi Tepi Histogram Proyeksi Histogram Sudut Aplikasi Pengenalan Angka Fitur Bentuk Fitur bentuk adalah fitur dasar dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya 5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada

Lebih terperinci

TIP 243 Computer Vision. 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama

TIP 243 Computer Vision. 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama TIP 243 Computer Vision 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama Computer Vision Mata kuliah ini bersifat 'inspiring subject' yang memperkenalkan

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL Murien Nugraheni Prodi Teknik Informatika Fak FTI UAD Jl. Prof. Dr. Soepomo, Janturan, Yogyakarta 55164,

Lebih terperinci

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009 Image Processing Nana Ramadijanti Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009 Referensi 1. Rafael C. Gonzales E.Woods, Digital Image Processing,2 nd Edition,Prentice Hall,2001 2. Dadet Pramadihanto,

Lebih terperinci

Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan Metode Optical Flow

Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan Metode Optical Flow The 3 th Industrial Electronics Seminar 2 (IES 2) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2 Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan

Lebih terperinci

CS3214 Pengolahan Citra - UAS. CHAPTER 1. Pengantar Pengolahan Citra

CS3214 Pengolahan Citra - UAS. CHAPTER 1. Pengantar Pengolahan Citra CS3214 Pengolahan Citra - UAS CHAPTER 1. Pengantar Pengolahan Citra Fakultas Informatika IT Telkom CITRA Citra (image) = gambar pada bidang 2 dimensi. Citra (ditinjau dari sudut pandang matematis) = fungsi

Lebih terperinci

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Nur Nafi iyah 1, Yuliana Melita, S.Kom, M.Kom 2 Program Pascasarjana Sekolah Tinggi Teknik Surabaya Email: nafik_unisla26@yahoo.co.id 1, ymp@stts.edu

Lebih terperinci

TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW

TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW Ubaidillah Umar, Reni Soelistijorini, B. Eng, MT, Haryadi Amran Darwito, S.ST Jurusan Teknik Telekomunkasi - Politeknik

Lebih terperinci

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Zahir arsya #1, Eru Puspita #2, Ronny Susetyoko #3 # Jurusan Teknik Elektronika, Politeknik Elektronika Negeri

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) CIG4E3 PENGOLAHAN CITRA DIGITAL Disusun oleh: Bedy Purnama PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran

Lebih terperinci

Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0

Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0 Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0 Kholilatul Wardani, Aditya Kurniawan Politeknik Kota Malang Kompleks Pendidikan Internasional

Lebih terperinci

KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL

KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL Rudy Adipranata Universitas Kristen Petra Jl. Siwalankerto 121-131, Surabaya. Telp. (031) 8439040

Lebih terperinci

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006 Sesi 2: Image Formation Achmad Basuki PENS-ITS 2006 Materi Representasi Penglihatan Model Kamera Sampling Dan Kuantisasi Jenis-JenisCitra Mdel Citra Berwarna Format Warna RGB Membaca dan Menampilkan Citra

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

Pengolahan Citra : Konsep Dasar

Pengolahan Citra : Konsep Dasar Pengolahan Citra Konsep Dasar Universitas Gunadarma 2006 Pengolahan Citra Konsep Dasar 1/14 Definisi dan Tujuan Pengolahan Citra Pengolahan Citra / Image Processing Proses memperbaiki kualitas citra agar

Lebih terperinci

Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata

Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata Arif Senja Fitrani 1, Hindarto 2, Endang Setyati 3 1,2, Jurusan Teknik Informatika Universitas Muhammadiyah Sidoarjo,

Lebih terperinci

PERBANDINGAN PERFORMANCE IMAGE MATCHING MENGGUNAKAN KESAMAAN LANGSUNG DAN KESAMAAN SETELAH SEGMENTASI

PERBANDINGAN PERFORMANCE IMAGE MATCHING MENGGUNAKAN KESAMAAN LANGSUNG DAN KESAMAAN SETELAH SEGMENTASI Seminar asional Ilmu Komputer dan eknologi Informasi 003 PERBADIGA PERFORMACE IMAGE MACHIG MEGGUAKA KESAMAA LAGSUG DA KESAMAA SEELAH SEGMEASI AA RAMADIJAI, ACHMAD BASUKI Jurusan eknologi Informasi Lab

Lebih terperinci

Cb Cb. jarak = x = w b. SNR(dB) = log( I N ) (1) (y y k) 2 n MSE = Y = 0.59G R B Cr = (R Y ) (3) Cb = 0.

Cb Cb. jarak = x = w b. SNR(dB) = log( I N ) (1) (y y k) 2 n MSE = Y = 0.59G R B Cr = (R Y ) (3) Cb = 0. JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Implementasi VB 6.0 pada face detection Berbasis image processing untuk Sistem Identikasi Millatul Maziyah dan Andy Noortjahja Jurusan Fisika,

Lebih terperinci

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Seminar Nasional Teknologi Terapan SNTT 2013 (26/10/2013) COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Isnan Nur Rifai *1 Budi Sumanto *2 Program Diploma Elektronika & Instrumentasi Sekolah

Lebih terperinci

APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET

APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET Agus Kurniawan, Akuwan Saleh, Nana Ramadijanti Jurusan Teknik Telekomunikasi, Politeknik Elektronika Negeri Surabaya,

Lebih terperinci

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I Pembuatan Perangkat Lunak Untuk Menampilkan Deskripsi Mengenai Batik dan Pola Citra Batik Berdasarkan Segmentasi Objek Maulana Sutrisna, maulanasutrisna@gmail.com Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 1 Konsep Dasar Pengolahan Citra Pengertian Citra Citra atau Image merupakan istilah lain dari gambar, yang merupakan

Lebih terperinci

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD Murinto, Resa Fitria Rahmawati Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN Rudy Adipranata 1, Liliana 2, Gunawan Iteh Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra Jl. Siwalankerto

Lebih terperinci

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 3 NO. 1 MARET 2011

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 3 NO. 1 MARET 2011 PERANCANGAN DAN IMPLEMENTASI SISTEM PENGENALAN GAMBAR KATA DAN BILANGAN DENGAN KELUARAN SUARA Muhammad Ilhamdi Rusydi 1 Hendra Syahputra 2 ABSTRACT The development of computer technology has triggered

Lebih terperinci

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1 BAB II LANDASAN TEORI Computer vision adalah bagian dari ilmu pengetahuan dan teknologi yang membuat mesin seolah-olah dapat melihat. Komponen dari Computer Vision tentunya adalah gambar atau citra, dengan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR. Abstrak

VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR. Abstrak VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR Resmana Lim & Santoso Jurusan Teknik Elektro Universitas Kristen Petra Siwalankerto 11-131 Surabaya Fax: 031-8436418 resmana@petra.ac.id

Lebih terperinci

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Veronica Lusiana Program Studi Teknik Informatika, Universitas Stikubank email: verolusiana@yahoo.com Abstrak Segmentasi citra sebagai

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54 Rekonstruksi Citra pada Super Resolusi menggunakan Projection onto Convex Sets (Image Reconstruction in Super Resolution using Projection onto Convex Sets) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA

TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA 55 TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA A. Rudatyo Himamunanto, Elisabeth Kaka Kole Fakultas Sains dan Komputer, Universitas Kristen

Lebih terperinci

LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN

LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN Diusulkan oleh: Dini Pratiwi 1401130181 2010 Priyangkah Hartawan Sim 1401115243 2010 Steven

Lebih terperinci

PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR Eko Subiyantoro, Yan Permana Agung Putra Program Studi Teknik

Lebih terperinci

OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR

OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR Seminar Nasional Ilmu Komputer dan Aplikasinya SNIKA 2008 27/11/2008 OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR Thiang, Leonardus Indrotanoto Jurusan Teknik

Lebih terperinci

Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera

Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera Sandy Prayogi, Eru Puspi,ST, M.Kom, Ronny Susetyoko S.Si, M.Si # Jurusan Teknik Elektronika, Politeknik

Lebih terperinci

Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan Embedded OpenCV

Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan Embedded OpenCV The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan

Lebih terperinci

KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1. Nugroho hary Mindiar,

KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1. Nugroho hary Mindiar, KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1 Nugroho hary Mindiar, 21104209 Mahasiswa Sarjana Strata Satu (S1) Jurusan Sistem Komputer, Fakultas Ilmu Komputer Universitas Gunadarma mindiar@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berjalannya waktu ilmu pengetahuan semakin berkembang pesat sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun aplikasi baru yang lahir

Lebih terperinci

BAB 1 PENDAHULUAN. Grafika komputer merupakan salah satu topik dalam bidang informatika.

BAB 1 PENDAHULUAN. Grafika komputer merupakan salah satu topik dalam bidang informatika. BAB 1 PENDAHULUAN 1.1 PENDAHULUAN Grafika komputer merupakan salah satu topik dalam bidang informatika. Perkembangan grafika komputer tentunya tidak lepas dari pengolahan citra secara digital. Pengolahan

Lebih terperinci

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET Nana Ramadijanti RG. Computer Vision, Program Studi Teknologi Informasi, Politeknik Elektronika Negri Surabaya E-mail: nana@eepis-its.edu

Lebih terperinci

Praktikum Pengolahan Citra - Pertemuan 1

Praktikum Pengolahan Citra - Pertemuan 1 Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Praktikum Pengolahan Citra - Pertemuan 1 Content: 1. Instalasi dan Seting (OpenCV + GDI) baca file image 2. Membaca data RGB dan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam kehidupan sehari-hari semakin banyak masalah yang terjadi seiring meningkatnya populasi di daerah perkotaan, akibatnya lalu lintas menjadi lebih padat karena

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418

TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418 RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418 OLEH: Dr. ANDASURYANI, S.TP, M.Si PROGRAM STUDI TEKNIK PERTANIAN JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI

Lebih terperinci

Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom

Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom ABSTRAK Sistem penitipan barang yang umum digunakan adalah secara manual, penjaga

Lebih terperinci

Gambar 15 Contoh pembagian citra di dalam sistem segmentasi.

Gambar 15 Contoh pembagian citra di dalam sistem segmentasi. dalam contoh ini variance bernilai 2000 I p I t 2 = (200-150) 2 + (150-180) 2 + (250-120) I p I t 2 = 28400. D p (t) = exp(-28400/2*2000) D p (t) = 8.251 x 10-4. Untuk bobot t-link {p, t} dengan p merupakan

Lebih terperinci

Pendahuluan Pengantar Pengolahan Citra. Bertalya Universitas Gunadarma, 2005

Pendahuluan Pengantar Pengolahan Citra. Bertalya Universitas Gunadarma, 2005 Pendahuluan Pengantar Pengolahan Citra Bertalya Universitas Gunadarma, 2005 Definisi Citra Citra (Image) adalah gambar pada bidang dua dimensi. Secara matematis, citra merupakan fungsi terus menerus (continue)

Lebih terperinci

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL Mawaddah Aynurrohmah, Andi Sunyoto STMIK AMIKOM Yogyakarta email : andi@amikom.ac.id Abstraksi Perkembangan teknologi

Lebih terperinci

Fitur bentuk merupakan fitur dasar dalam visual content

Fitur bentuk merupakan fitur dasar dalam visual content 7407030059 1 KLASIFIKASI CIRI BENTUK MENGGUNAKAN METODE FUZZY INFERENCE SYSTEM Mala Alfiyah Ningsih; Setiawardhana, S.T; Nana Ramadijanti, S.Kom,M.Kom Abstract Fitur bentuk merupakan fitur dasar dimana

Lebih terperinci

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK

APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK APLIKASI IDENTIFIKASI ISYARAT TANGAN SEBAGAI PENGOPERASIAN E-KIOSK Wiratmoko Yuwono Jurusan Teknologi Informasi Politeknik Elektronika Negeri Surabaya-ITS Jl. Raya ITS, Kampus ITS, Sukolilo Surabaya 60111

Lebih terperinci

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan BAB III METODE PENELITIAN 3.1. Model Pengembangan Tujuan dari tugas akhir ini adalah untuk membuat sebuah aplikasi untuk mengatur kontras pada gambar secara otomatis. Dan dapat meningkatkan kualitas citra

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengenalan Wajah Pengenalan wajah adalah salah satu teknologi biometrik yang telah banyak diaplikasikan dalam sistem keamanan selain pengenalan retina mata, pengenalan sidik jari

Lebih terperinci

PENGELOMPOKAN GAMBAR BERDASARKAN FITUR WARNA DAN TEKSTUR DENGAN FGKA CLUSTERING (FAST GENETICS K-MEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR

PENGELOMPOKAN GAMBAR BERDASARKAN FITUR WARNA DAN TEKSTUR DENGAN FGKA CLUSTERING (FAST GENETICS K-MEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR PENGELOMPOKAN GAMBAR BERDASARKAN FITUR WARNA DAN TEKSTUR DENGAN FGKA CLUSTERING (FAST GENETICS K-MEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR Dewi Wulansari, S.ST 1, Entin Martiana K, M.Kom 2, Nana Ramadijanti,

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

Pendahuluan 9/7/2011. Overview. Deskripsi

Pendahuluan 9/7/2011. Overview. Deskripsi Pertemuan : I Dosen Pembina : Sriyani Violina Danang Junaedi Pendahuluan Overview Deskripsi Tujuan Instruksional Kaitan Materi Urutan Bahasan Penilaian Grade Referensi 2 Deskripsi Tujuan Instruksional

Lebih terperinci

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran INTERACTIVE BROADCASTING Modul ke: Pengolahan Citra Fakultas Ilmu Komunikasi Yusuf Elmande., S.Si., M.Kom Program Studi Penyiaran www.mercubuana.ac.id Pendahuluan Istilah citra digital sangat populer pada

Lebih terperinci

SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 )

SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 ) SEGMENTASI CITRA DIGITAL DENGAN MENGGUNAKAN ALGORITMA WATERSHED DAN LOWPASS FILTER SEBAGAI PROSES AWAL ( November, 2013 ) Pramuda Akariusta Cahyan, Muhammad Aswin, Ir., MT., Ali Mustofa, ST., MT. Jurusan

Lebih terperinci

ROBOT MOBIL DENGAN SENSOR KAMERA UNTUK MENELUSURI JALUR PADA MAZE

ROBOT MOBIL DENGAN SENSOR KAMERA UNTUK MENELUSURI JALUR PADA MAZE ROBOT MOBIL DENGAN SENSOR KAMERA UNTUK MENELUSURI JALUR PADA MAZE Lauw Lim Un Tung, Resmana Lim, Budiman Lewa Electrical Engineering Dept., PETRA Christian University Jl. Siwalankerto 121-131, Surabaya

Lebih terperinci

Implementasi Morphology Concept and Technique dalam Pengolahan Citra Digital Untuk Menentukan Batas Obyek dan Latar Belakang Citra

Implementasi Morphology Concept and Technique dalam Pengolahan Citra Digital Untuk Menentukan Batas Obyek dan Latar Belakang Citra Implementasi Morphology Concept and Technique dalam Pengolahan Citra Digital Untuk Menentukan Batas Obyek dan Latar Belakang Citra Eddy Nurraharjo Program Studi Teknik Informatika, Universitas Stikubank

Lebih terperinci

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT

Arga Wahyumianto Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT IDENTIFIKASI DAUN BERDASARKAN FITUR TULANG DAUN MENGGUNAKAN ALGORITMA EKSTRAKSI MINUTIAE Arga Wahyumianto 2209 105 047 Pembimbing : 1. Dr. I Ketut Eddy Purnama, ST., MT 2. Christyowidiasmoro, ST., MT LATAR

Lebih terperinci

Kuantisasi Gray Level untuk Enhancement Citra

Kuantisasi Gray Level untuk Enhancement Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Kuantisasi Gray Level untuk Enhancement Citra Content: 1. Definisi 2. Ketetanggaan Citra 3. Operator T 4. Transformasi Gray Level

Lebih terperinci

Review Paper. Image segmentation by histogram thresholding using hierarchical cluster analysis

Review Paper. Image segmentation by histogram thresholding using hierarchical cluster analysis Review Paper Image segmentation by histogram thresholding using hierarchical cluster analysis Agus Zainal Arifin a,*, Akira Asano b a Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama,

Lebih terperinci

SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG

SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG Vol. 5, No. 1, Januari 2009 ISSN 0216-0544 SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG * Iman Sapuguh, Daniel O Siahaan, dan Chastine Fatichah Program Magister Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan

Lebih terperinci

KLASIFIKASI & PENGENALAN POLA. Tatap Muka 2

KLASIFIKASI & PENGENALAN POLA. Tatap Muka 2 KLASIFIKASI & PENGENALAN POLA Tatap Muka 2 1 Pendahuluan Bagaimana manusia mengenali Wajah Kata yang didengar Huruf yang ditulis tangan/mesin Bentuk benda Buah yang sudah masak (masih mentah?) Pengenalan

Lebih terperinci

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Menggunakan Webcam Albert Haryadi [1], Andrizal,MT [2], Derisma,MT [3] [1] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas Andalas,

Lebih terperinci

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru.

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. 1 Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. Amilia Khoiro Masruri dan Budi Setiyono Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Histogram dan Operasi Dasar Pengolahan Citra Digital 3 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 MAMPIR SEB EN TAR Histogram Histogram citra

Lebih terperinci

DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM

DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM DESIGN AND IMPLEMENTATION OBJECT TRACKING SYSTEM ON BALANCING ROBOT USING HOUGH TRANSFORM Tidar Haryo Sularso

Lebih terperinci

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi wwnkurnia79@gmail.com Abstrak

Lebih terperinci

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang 17 BAB II REKOGNISI KARAKTER NUMERIK 2.1 Gambaran Singkat Rekognisi Karakter Optik Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang dirancang untuk menerjemahkan teks baik berupa

Lebih terperinci

Analisa Gerakan Manusia Pada Video Digital

Analisa Gerakan Manusia Pada Video Digital Analisa Gerakan Manusia Pada Video Digital Abstrak - Pengenalan cara bergerak tubuh manusia (human motion) dari video stream memiliki beberapa aplikasi dalam video surveillance (pengawasan), dunia hiburan,

Lebih terperinci

Image Filtering. Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 2005

Image Filtering. Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 2005 Image Filtering Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 25 Materi Prinsip Filtering Di Dalam Image Processing Konvolusi Low-Pass Filter High-Pass Filter Prinsip Filter Dalam Image

Lebih terperinci

INDIKATOR MUSIK MELALUI EKSPRESI WAJAH

INDIKATOR MUSIK MELALUI EKSPRESI WAJAH INDIKATOR MUSIK MELALUI EKSPRESI WAJAH Riyanto Sigit, Achmad Basuki Politeknik Elektronika Negeri Surabaya Kampus ITS Keputih Sukolilo Surabaya 60111, Indonesia Tel:+62-31-5947280 Fax:+62-31-5946114; E-mail:riyanto@eepis-its.edu

Lebih terperinci

PENGOLAHAN CITRA DIGITAL MENGGUNAKAN TEKNIK FILTERING ADAPTIVE NOISE REMOVAL PADA GAMBAR BERNOISE

PENGOLAHAN CITRA DIGITAL MENGGUNAKAN TEKNIK FILTERING ADAPTIVE NOISE REMOVAL PADA GAMBAR BERNOISE PENGOLAHAN CITRA DIGITAL MENGGUNAKAN TEKNIK FILTERING ADAPTIVE NOISE REMOVAL PADA GAMBAR BERNOISE Aeri Rachmad Jurusan Teknik Informatika Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Lebih terperinci

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching)

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching) Nur Wakhidah Fakultas Teknologi Informasi dan Komunikasi Universitas Semarang

Lebih terperinci

Mengenal Lebih Jauh Apa Itu Point Process

Mengenal Lebih Jauh Apa Itu Point Process Mengenal Lebih Jauh Apa Itu Point Process Faisal Ridwan FaizalLeader99@yahoo.com Lisensi Dokumen: Copyright 2003-2007 IlmuKomputer.Com Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi

Lebih terperinci

FAKULTAS TEKNIK (FT) PROGRAM TEKNIK INFORMATIKA UNIVERSITAS NUSANTARA PGRI KEDIRI 2016

FAKULTAS TEKNIK (FT) PROGRAM TEKNIK INFORMATIKA UNIVERSITAS NUSANTARA PGRI KEDIRI 2016 DETEKSI KEMUNCULAN BULAN SABIT MENGGUNAKAN METODE CIRCULAR HOUGH TRANSFORM ARTIKEL Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PERKULIAHAN (GBPP)

GARIS-GARIS BESAR PROGRAM PERKULIAHAN (GBPP) GARIS-GARIS BESAR PROGRAM PERKULIAHAN (GBPP) Mata Kuliah: Pengolahan dan Pengenalan Pola; Kode/Bobot : TSK 713/ 2 sks; Deskripsi Mata Kuliah: Mata kuliah ini berisi konsep teori, teknik-teknik dan aplikasi

Lebih terperinci

One picture is worth more than ten thousand words

One picture is worth more than ten thousand words Budi Setiyono One picture is worth more than ten thousand words Citra Pengolahan Citra Pengenalan Pola Grafika Komputer Deskripsi/ Informasi Kecerdasan Buatan 14/03/2013 PERTEMUAN KE-1 3 Image Processing

Lebih terperinci

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI Marina Gracecia1, ShintaEstriWahyuningrum2 Program Studi Teknik Informatika Universitas Katolik Soegijapranata 1 esthergracecia@gmail.com,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

SISTEM PENDETEKSI PENANDA POSISI KAKI SEBAGAI PENGGANTI JOYSTICK PADA DANCE DANCE REVOLUTION GAME

SISTEM PENDETEKSI PENANDA POSISI KAKI SEBAGAI PENGGANTI JOYSTICK PADA DANCE DANCE REVOLUTION GAME SISTEM PENDETEKSI PENANDA POSISI KAKI SEBAGAI PENGGANTI JOYSTICK PADA DANCE DANCE REVOLUTION GAME Innocentia Bounty (1), Fernando Ardilla (2), Bima Sena Bayu Dewantara (2) (1) Mahasiswa Program Studi Teknik

Lebih terperinci