Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007"

Transkripsi

1 Pengantar PENGOLAHAN CITRA Achmad Basuki PENS-ITS Surabaya 2007

2 TUJUAN Mahasiswa dapat membuat aplikasi pengolahan citra Mahasiswa dapat menerapkan konsep-konsep pengolahan citra untuk menghasilkan suatu teknologi berbasis pengolahan citra

3 MATERI 1. Introduction: Image Processing 2. Image Model 3. Gray-Scale Transformation 4. Image Statistic 5. Image Enhancement 6. Tranformasi Fourier and Image Spectrum 7. Image Filtering 8. Reduksi Noise 9. Deteksi Tepi 10. Image Feature Extraction (Color, Shape & Texture) 11. Image Segmentation 12. Image Application: Image Searching 13. Image Application: Character Recognition 14. Image Application: Deteksi Obyek Berdasarkan Warna/Bentuk

4 Materi Prasyarat Matematika Pemrograman Grafis Struktur Data

5 Pengolahan Citra Pengolahan citra adalah salah satu aplikasi yang dapat mengubah gambar menjadi suatu informasi Tujuan lebih jauh dari pengolahan citra adalah membuat suatu sistem yang bisa melihat

6 Beberapa Judul Proyek Akhir Pengolahan Citra Content Based Image Retrieval Pengenalan Wajah Tracking Wajah secara Real Time Pengenalan Tulisan dan Tanda Tangan Untuk Cek Bank Mesin Absensi Dengan Sidik Jari Deteksi dan Pengenalan Rambu-Rambu Lalu-Lintas Deteksi Gerakan Badan Untuk Kendali Game Kendali Game Dengan Gerakan Mata Filter Gambar Porno Pengenalan Buah dan Produk Menggunakan Fitur Warna Deteksi Jumlah Obyek Gambar Video Panorama Menggunakan Image Mosaic Mesin Pembaca Not Jawa Sistem Keamanan Terpadu Dengan Deteksi Gerakan Pengenalan Wajah Untuk Pencarian Data Buron Melalui Gambar Sketsa Navigasi Cerdas Pada Robot Pengenalan Golongan Darah Dll.

7 Referensi Gonzales, Rafael C, Woods, Richard E, Digital Image Processing, Prentice-Hall Inc., 2 nd Edition, 2002 Nixon Mark, Aguando, Alberto, Feature Extraction and Image Processing, 1 st Edition, 2002 Awcock GJ., Thomas R., Applied Image Processing, McGraw-Hill, 2001 Parker JR., Algorithm For Image Processing and Computer Vision, John Wiley & Sons, Achmad Basuki, Fathurrochman, Joshua F Palandi, Pengolahan Citra Digital Menggunakan Visual Basic 6, Graha Ilmu, 2005 Riyanto Sigit, Achmad Basuki, Nana Ramadijanti, Dadet Pramadihanto, Step by step Pengolahan Citra Digital, Penerbit Andi, Jogjakarta, 2006

8 Pengolahan Data Berdasarkan Input/Output OUTPUT IMAGE DESKRIPSI INPUT IMAGE DESKRIPSI Image Processing Grafika Komputer Computer Vision Data Mining dll.

9 Image Processing Image processing adalah suatu pengolahan data yang masukannya berupa gambar dan luarannya juga gambar Tujuan dari image processing adalah memperbaiki informasi pada gambar sehingga mudah terbaca atau memperbaiki kualitas dari gambar itu sendiri Image Enhancement Color Image Processing Image Feature Extraction Image Segmentation Image Compression Computer Vision

10 Model Image Sampling Kuantisasi Sampling menunjukkan banyaknya pixel (blok) untuk mendefinisikan suatu gambar Kuantisasi menunjukkan banyaknya derajat nilai pada setiap pixel (menunjukkan jumlah bit pada gambar digital b/w dengan 2bit, grayscale dengan 8 bit, true color dengan 24 bit

11 Image Enhancement Proses untuk memperbaiki gambar seperti brightness, contrast, mengubah gambar menjadi gray-scale, inversi, reduksi noise,deteksi tepi dan sharpness Masukan Image Enhancement Luaran Brightness & Contrast Gray Scale Sharpness

12 Image Segmentation Proses untuk mengelompokkan gambar sesuai dengan onyek gambarnya

13 Persoalan di dalam Image Processing Capture Modeling Feature Extraction Image Segmentation

14 Permasalahan Capture Capture (Menangkap Gambar) merupakanprosesawaldariimage processing untuk mendapatkan gambar. Proses capture membutuhkan alat-alat capture yang baik seperti kamera, scanner, light-pen dan lainnya, agar diperoleh gambar yang baik. Gambar yang baik akan banyak membantu dalam proses selanjutnya.

15 Alat-Alat Capture Sesuai Frekwensinya Diambil dari modul pelatihan image processing yang disusun oleh bapak Dadet Pramadihanto

16 Hasil Capture

17 Hasil Capture

18 Hasil Capture

19 Hasil Capture

20 Hasil Capture

21 Permasalahan Modeling Dalam modeling diperlukan analisa matematika yang cukup rumit, khususnya pemakaian kalkulus, dan transformasi geometri. (inilah sebabnya di jurusan TI mata kuliah matematika menjadi sangat penting!!)

22 Permasalahan Feature Extraction Setiap gambar mempunyai karakteristik tersendiri, sehingga fitur tidak dapat bersifat general tetapi sangat tergantung pada model dan obyek gambar yang digunakan. Fitur dasar yang bisa diambil adalah warna, bentuk dan tekstur. Fitur yang lebih kompleks menggunakan segmentasi, clustering dan motion estimation. Pemakaian statistik dan probabilitas, pengolahan sinyal sampai pada machine learning diperlukan di sini.

23 Fitur Warna Fitur ini digunakan bila setiap obyek gambar mempunyai warna yang spesifik Color Thresholding Merah Color Histogram Color Thresholding Hijau Gray-scale Histogram

24 Fitur Bentuk Fitur ini digunakan bila gambar setiap obyek mempunyai bentuk yang spesifik Deteksi Tepi Integral Proyeksi Kuantisasi Rata-rata

25 Fitur Tekstur Beberapa algoritma untuk mendapatkan fitur tekstur: (1) FFT (2) Wavelets (3) Image Filter (4) Filter Gabor

26 Permasalahan Image Segmentation Bagaimana memisahkan obyek gambar dengan backgroundnya Bagaimana memisahkan setiap obyek gambar. Teknik clustering apa yang sesuai dengan model dan obyek gambar yang digunakan

27 APLIKASI IMAGE PROCESSING Biometric Medical Image Image Databases Robot Vision Motion Capture Document Analysis

28 Biometric

29 Medical Image

30 Image Databases

31 Robot Vision

32 Motion Capture

33 Document Analysis

Pengantar Mata Kuliah Pengolahan Citra

Pengantar Mata Kuliah Pengolahan Citra Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Pengantar Mata Kuliah Pengolahan Citra Content: 1. Tujuan mata kuliah Pengolahan Citra 2. Apa saja yang bisa dikerjakan dengan

Lebih terperinci

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010 Image Processing Nana Ramadijanti Politeknik Elekltronika Negeri Surabaya PENS-ITS 2010 Referensi 1. Rafael C. Gonzales E.Woods, Digital Image Processing,2 nd Edition,Prentice Hall,2001 2. Wanasanan Thongsongkrit,

Lebih terperinci

Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya

Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya Pengolahan Citra - Pertemuan 1 Nana Ramadijanti Politeknik Elektronika Negeri Surabaya Materi: 1. Pendahuluan 2. Formasi Citra 3. Pemrosesan Citra dan Ekualisasi 4. Koreksi Warna 5. Konvolusi 6. Spatial

Lebih terperinci

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Sigit Wasista, Siwi Dian Priyanti Jurusan Teknik Elektronika Politeknik Elektronika Negeri Surabaya- Institut Teknologi

Lebih terperinci

IMAGE COLOR FEATURE. Achmad Basuki Politeknik Elektronika Negeri Surabaya

IMAGE COLOR FEATURE. Achmad Basuki Politeknik Elektronika Negeri Surabaya IMAGE COLOR FEATURE Achmad Basuki Politeknik Elektronika Negeri Surabaya Materi: 1. Image Color Feature 2. Application Using Image Color Feature 3. RGB-Cube 4. Histogram RGB Gabungan Layer Color Indeks

Lebih terperinci

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA

SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA SISTEM PENGENALAN BUAH ON-LINE MENGGUNAKAN KAMERA Nana Ramadijanti, Achmad Basuki Politeknik Eletronika Negeri Surabaa, Institut Teknologi Sepuluh Nopember Surabaa Kampus PENS-ITS, Keputih, Sukolilo, Surabaa

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING

SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING SISTEM PENGENALAN WAJAH MENGGUNAKAN WEBCAM UNTUK ABSENSI DENGAN METODE TEMPLATE MATCHING Mohamad Aditya Rahman, Ir. Sigit Wasista, M.Kom Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya

Lebih terperinci

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-5 1 Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Shabrina Mardhi Dalila, Handayani Tjandrasa, dan Nanik

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 Computer Vision Komputerisasi memiliki ketelitian yang jauh lebih tinggi bila dibandingkan dengan cara manual yang dilakukan oleh mata manusia, komputer dapat melakukan berbagai

Lebih terperinci

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera.

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera. BAB II DASAR TEORI Pada bab ini akan dibahas teori yang berkaitan dengan skripsi ini, meliputi pustaka OpenCV, citra, yaitu citra grayscale dan citra berwarna, pengolahan citra meliputi image enhancement

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR

PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR PENGELOMPOKAN GAMBAR BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN FGKA (FAST GENETIC KMEANS ALGORITHM) UNTUK PENCOCOKAN GAMBAR Farah Zakiyah Rahmanti 1, Entin Martiana K. 2, S.Kom, M.Kom, Nana Ramadijanti

Lebih terperinci

Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi

Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi Millatul Maziyah dan Andy Noortjahja Jurusan Fisika,

Lebih terperinci

PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI

PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI PENDETEKSIAN HALANGAN PADA ROBOT CERDAS PEMADAM API MENGGUNAKAN KAMERA DENGAN INTEGRAL PROYEKSI Setiawardhana 1), Nana Ramadijanti 2), Rizky Yuniar Hakkun 3), Aji Seto Arifianto 4) 1,2,3) Dosen Jurusan

Lebih terperinci

Oleh: Riza Prasetya Wicaksana

Oleh: Riza Prasetya Wicaksana Oleh: Riza Prasetya Wicaksana 2209 105 042 Pembimbing I : Dr. I Ketut Eddy Purnama, ST., MT. NIP. 196907301995121001 Pembimbing II : Muhtadin, ST., MT. NIP. 198106092009121003 Latar belakang Banyaknya

Lebih terperinci

Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer

Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer Pengolahan Citra / Image Processing : Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer Teknik pengolahan citra dengan mentrasformasikan citra menjadi citra lain, contoh

Lebih terperinci

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008

Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008 Fitur Bentuk Pada Citra Achmad Basuki, Nana R PENS-ITS, 008 Materi Fitur Bentuk Deteksi Tepi Histogram Proyeksi Histogram Sudut Aplikasi Pengenalan Angka Fitur Bentuk Fitur bentuk adalah fitur dasar dalam

Lebih terperinci

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya 5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada

Lebih terperinci

TIP 243 Computer Vision. 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama

TIP 243 Computer Vision. 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama TIP 243 Computer Vision 3 SKS Semester 5 and up Prasyarat disarankan: Pengolahan Citra Digital Dosen: Aditya Wikan Mahastama Computer Vision Mata kuliah ini bersifat 'inspiring subject' yang memperkenalkan

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL Murien Nugraheni Prodi Teknik Informatika Fak FTI UAD Jl. Prof. Dr. Soepomo, Janturan, Yogyakarta 55164,

Lebih terperinci

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 MKB3383 - Teknik Pengolahan Citra Pengolahan Citra Digital Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 CITRA Citra (image) = gambar pada bidang 2 dimensi. Citra (ditinjau dari sudut pandang matematis)

Lebih terperinci

Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan Metode Optical Flow

Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan Metode Optical Flow The 3 th Industrial Electronics Seminar 2 (IES 2) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2 Tracking Arah Gerakan Telunjuk Jari Berbasis Webcam Menggunakan

Lebih terperinci

Kesepakatan. Kuliah Sopan : Toleransi terlambat masuk kelas : 15 Menit Duduk terpisah : laki - perempuan

Kesepakatan. Kuliah Sopan : Toleransi terlambat masuk kelas : 15 Menit Duduk terpisah : laki - perempuan Kesepakatan Kuliah Sopan : Tidak bersandal dan berkaos Busana muslimah yang pantas Toleransi terlambat masuk kelas : 15 Menit Duduk terpisah : laki - perempuan 3 1. PENDAHULUAN A. Signal Processing B.

Lebih terperinci

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009

Image Processing. Nana Ramadijanti Laboratorium Computer Vision Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009 Image Processing Nana Ramadijanti Politeknik Elekltronika Negeri Surabaya PENS-ITS 2009 Referensi 1. Rafael C. Gonzales E.Woods, Digital Image Processing,2 nd Edition,Prentice Hall,2001 2. Dadet Pramadihanto,

Lebih terperinci

CS3214 Pengolahan Citra - UAS. CHAPTER 1. Pengantar Pengolahan Citra

CS3214 Pengolahan Citra - UAS. CHAPTER 1. Pengantar Pengolahan Citra CS3214 Pengolahan Citra - UAS CHAPTER 1. Pengantar Pengolahan Citra Fakultas Informatika IT Telkom CITRA Citra (image) = gambar pada bidang 2 dimensi. Citra (ditinjau dari sudut pandang matematis) = fungsi

Lebih terperinci

TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW

TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW TRACKING ARAH GERAKAN TELUNJUK JARI BERBASIS WEBCAM MENGGUNAKAN METODE OPTICAL FLOW Ubaidillah Umar, Reni Soelistijorini, B. Eng, MT, Haryadi Amran Darwito, S.ST Jurusan Teknik Telekomunkasi - Politeknik

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : - Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54521 / Pengolahan Citra Digital 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer

Lebih terperinci

BAB III PROSEDUR DAN METODOLOGI. Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala

BAB III PROSEDUR DAN METODOLOGI. Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala 52 BAB III PROSEDUR DAN METODOLOGI 3.1 ANALISA MASALAH Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala melakukan proses retrival citra dan bagaimana solusi untuk memecahkan masalah

Lebih terperinci

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi Nur Nafi iyah 1, Yuliana Melita, S.Kom, M.Kom 2 Program Pascasarjana Sekolah Tinggi Teknik Surabaya Email: nafik_unisla26@yahoo.co.id 1, ymp@stts.edu

Lebih terperinci

Pengolahan Citra : Konsep Dasar

Pengolahan Citra : Konsep Dasar Pengolahan Citra Konsep Dasar Universitas Gunadarma 2006 Pengolahan Citra Konsep Dasar 1/14 Definisi dan Tujuan Pengolahan Citra Pengolahan Citra / Image Processing Proses memperbaiki kualitas citra agar

Lebih terperinci

Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya

Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya Pengenalan Wajah Menggunakan Metode Adjacent Pixel Intensity Difference Quantization Histogram Generation Oleh : ANDIK MABRUR 1206 100 716 Dosen Pembimbing : Drs. Soetrisno, MI.Komp. Jurusan Matematika

Lebih terperinci

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION

PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK-PROPAGATION Suhendry Effendy Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Bina Nusantara University

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) CIG4E3 PENGOLAHAN CITRA DIGITAL Disusun oleh: Bedy Purnama PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran

Lebih terperinci

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera

Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Sistem Moving Detection dan Image Stabilizer pada Sistem Pengaman Lingkungan Menggunakan Kamera Zahir arsya #1, Eru Puspita #2, Ronny Susetyoko #3 # Jurusan Teknik Elektronika, Politeknik Elektronika Negeri

Lebih terperinci

Cb Cb. jarak = x = w b. SNR(dB) = log( I N ) (1) (y y k) 2 n MSE = Y = 0.59G R B Cr = (R Y ) (3) Cb = 0.

Cb Cb. jarak = x = w b. SNR(dB) = log( I N ) (1) (y y k) 2 n MSE = Y = 0.59G R B Cr = (R Y ) (3) Cb = 0. JURNAL FISIKA DAN APLIKASINYA VOLUME 3, NOMOR 2 JUNI 2007 Implementasi VB 6.0 pada face detection Berbasis image processing untuk Sistem Identikasi Millatul Maziyah dan Andy Noortjahja Jurusan Fisika,

Lebih terperinci

KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL

KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL Rudy Adipranata Universitas Kristen Petra Jl. Siwalankerto 121-131, Surabaya. Telp. (031) 8439040

Lebih terperinci

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006

Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006 Sesi 2: Image Formation Achmad Basuki PENS-ITS 2006 Materi Representasi Penglihatan Model Kamera Sampling Dan Kuantisasi Jenis-JenisCitra Mdel Citra Berwarna Format Warna RGB Membaca dan Menampilkan Citra

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh

Lebih terperinci

Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features).

Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features). Pola adalah entitas yang terdefinisi dan dapat diidentifikasi melalui ciri-cirinya (features). Ciri-ciri tersebut digunakan untuk membedakan suatu pola dengan pola lainnya. Ciri yang bagus adalah ciri

Lebih terperinci

Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata

Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata Arif Senja Fitrani 1, Hindarto 2, Endang Setyati 3 1,2, Jurusan Teknik Informatika Universitas Muhammadiyah Sidoarjo,

Lebih terperinci

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram

Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Modifikasi Algoritma Pengelompokan K-Means untuk Segmentasi Citra Ikan Berdasarkan Puncak Histogram Shabrina Mardhi Dalila (5109100049) Dosen Pembimbing 1 Prof. Ir. Handayani Tjandrasa, M.Sc., Ph.D. Dosen

Lebih terperinci

Analisa dan Pemodelan Kerumunan Orang pada Video Digital

Analisa dan Pemodelan Kerumunan Orang pada Video Digital Sidang Tugas Akhir Analisa dan Pemodelan Kerumunan Orang pada Video Digital Oleh: Nick Darusman (2209106015) Dosen Pembimbing Dr. Ir. Wirawan, DEA Jumat, 24 Januari 2012 Surabaya 1 Latar Belakang Angka

Lebih terperinci

PERBANDINGAN PERFORMANCE IMAGE MATCHING MENGGUNAKAN KESAMAAN LANGSUNG DAN KESAMAAN SETELAH SEGMENTASI

PERBANDINGAN PERFORMANCE IMAGE MATCHING MENGGUNAKAN KESAMAAN LANGSUNG DAN KESAMAAN SETELAH SEGMENTASI Seminar asional Ilmu Komputer dan eknologi Informasi 003 PERBADIGA PERFORMACE IMAGE MACHIG MEGGUAKA KESAMAA LAGSUG DA KESAMAA SEELAH SEGMEASI AA RAMADIJAI, ACHMAD BASUKI Jurusan eknologi Informasi Lab

Lebih terperinci

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Seminar Nasional Teknologi Terapan SNTT 2013 (26/10/2013) COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Isnan Nur Rifai *1 Budi Sumanto *2 Program Diploma Elektronika & Instrumentasi Sekolah

Lebih terperinci

Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0

Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0 Pemantauan Kondisi Kepadatan Jalan Kelurahan Sawojajar dengan menggunakan Image Processing Berbasis Visual Basic 6.0 Kholilatul Wardani, Aditya Kurniawan Politeknik Kota Malang Kompleks Pendidikan Internasional

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET

APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET APLIKASI ABSENSI KULIAH BERBASIS IDENTIFIKASI WAJAH MENGGUNAKAN METODE GABOR WAVELET Agus Kurniawan, Akuwan Saleh, Nana Ramadijanti Jurusan Teknik Telekomunikasi, Politeknik Elektronika Negeri Surabaya,

Lebih terperinci

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 1 Konsep Dasar Pengolahan Citra Pengertian Citra Citra atau Image merupakan istilah lain dari gambar, yang merupakan

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I

corak lukisan dengan seni dekorasi pakaian, muncul seni batik tulis seperti yang kita kenal sekarang ini. Kain batik merupakan ciri khas dari bangsa I Pembuatan Perangkat Lunak Untuk Menampilkan Deskripsi Mengenai Batik dan Pola Citra Batik Berdasarkan Segmentasi Objek Maulana Sutrisna, maulanasutrisna@gmail.com Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Mata indera yang dimiliki manusia sehingga suatu citra (gambar) memegang peranan penting dalam prespektif manusia. Pengolahan Citra Digital * Citra suatu representasi (gambaran/ gambar), kemiripan atau

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan 6907040024 Fajar Indra 6907040026 ABSTRACT Face recognition

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54521 / Pengolahan Citra Digital Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam kehidupan sehari-hari semakin banyak masalah yang terjadi seiring meningkatnya populasi di daerah perkotaan, akibatnya lalu lintas menjadi lebih padat karena

Lebih terperinci

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD Murinto, Resa Fitria Rahmawati Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad

Lebih terperinci

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 3 NO. 1 MARET 2011

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 3 NO. 1 MARET 2011 PERANCANGAN DAN IMPLEMENTASI SISTEM PENGENALAN GAMBAR KATA DAN BILANGAN DENGAN KELUARAN SUARA Muhammad Ilhamdi Rusydi 1 Hendra Syahputra 2 ABSTRACT The development of computer technology has triggered

Lebih terperinci

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN Rudy Adipranata 1, Liliana 2, Gunawan Iteh Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra Jl. Siwalankerto

Lebih terperinci

IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA

IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA Murinto 1), Eko Aribowo, Elena Yustina Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad Dahlan Yogyakarta Email : murintokusno@yahoo.com

Lebih terperinci

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1

BAB II. Computer vision. teknologi. yang. dapat. Vision : Gambar 2.1 BAB II LANDASAN TEORI Computer vision adalah bagian dari ilmu pengetahuan dan teknologi yang membuat mesin seolah-olah dapat melihat. Komponen dari Computer Vision tentunya adalah gambar atau citra, dengan

Lebih terperinci

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson

Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson Veronica Lusiana Program Studi Teknik Informatika, Universitas Stikubank email: verolusiana@yahoo.com Abstrak Segmentasi citra sebagai

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA :38:54 Rekonstruksi Citra pada Super Resolusi menggunakan Projection onto Convex Sets (Image Reconstruction in Super Resolution using Projection onto Convex Sets) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR. Abstrak

VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR. Abstrak VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR Resmana Lim & Santoso Jurusan Teknik Elektro Universitas Kristen Petra Siwalankerto 11-131 Surabaya Fax: 031-8436418 resmana@petra.ac.id

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI Nama Mahasiswa : Yuliono NRP : 1206 100 720 Jurusan : Matematika Dosen Pembimbing : Drs. Soetrisno, M.IKomp

Lebih terperinci

PENJEJAKAN POSISI BOLA PADA MODUL PHYCORE IMX31 MENGGUNAKAN EMBEDDED OPENCV

PENJEJAKAN POSISI BOLA PADA MODUL PHYCORE IMX31 MENGGUNAKAN EMBEDDED OPENCV PENJEJAKAN POSISI BOLA PADA MODUL PHYCORE IMX31 MENGGUNAKAN EMBEDDED OPENCV Aditya Pratama 1, Bima Sena Bayu. D 2, Setiawardhana 2 1 Mahasiswa D4 Teknik Komputer, 2 Dosen Teknik Komputer Politeknik Elektronika

Lebih terperinci

LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN

LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN LAPORAN AKHIR RANCANGAN SISTEM VISION UNTUK KEPERLUAN GRADING DALAM MENGANTISIPASI KEBUTUHAN INDUSTRI PERIKANAN Diusulkan oleh: Dini Pratiwi 1401130181 2010 Priyangkah Hartawan Sim 1401115243 2010 Steven

Lebih terperinci

TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA

TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA 55 TEKNIK PENGKERANGKAAN CITRA DIGITAL MEMPERGUNAKAN ALGORITMA STENTIFORD PADA INPUT CITRA DOKUMEN TEKS JAWA A. Rudatyo Himamunanto, Elisabeth Kaka Kole Fakultas Sains dan Komputer, Universitas Kristen

Lebih terperinci

PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR PENENTUAN KUALITAS DAUN TEMBAKAU DENGAN PERANGKAT MOBILE BERDASARKAN EKSTRASI FITUR RATA-RATA RGB MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR Eko Subiyantoro, Yan Permana Agung Putra Program Studi Teknik

Lebih terperinci

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom Pengantar Pengolahan Citra Ade Sarah H., M. Kom Pendahuluan Data atau Informasi terdiri dari: teks, gambar, audio, dan video. Citra = gambar adalah salah satu komponen multimedia yang memegang peranan

Lebih terperinci

OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR

OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR Seminar Nasional Ilmu Komputer dan Aplikasinya SNIKA 2008 27/11/2008 OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR Thiang, Leonardus Indrotanoto Jurusan Teknik

Lebih terperinci

Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera

Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera Sistem Deteksi Wajah Pada Sistem Pengaman Lingkungan Berdasarkan Deteksi Obyek Bergerak Menggunakan Kamera Sandy Prayogi, Eru Puspi,ST, M.Kom, Ronny Susetyoko S.Si, M.Si # Jurusan Teknik Elektronika, Politeknik

Lebih terperinci

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL Muhammad Affandes* 1, Afdi Ramadani 2 1,2 Teknik Informatika UIN Sultan Syarif Kasim Riau Kontak Person : Muhammad

Lebih terperinci

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT...Salahuddin, dkk PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM) Salahuddin 1, Tulus 2 dan Fahmi 3 1) Magister Teknik

Lebih terperinci

KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1. Nugroho hary Mindiar,

KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1. Nugroho hary Mindiar, KAMERA PENDETEKSI GERAK MENGGUNAKAN MATLAB 7.1 Nugroho hary Mindiar, 21104209 Mahasiswa Sarjana Strata Satu (S1) Jurusan Sistem Komputer, Fakultas Ilmu Komputer Universitas Gunadarma mindiar@yahoo.com

Lebih terperinci

Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan Embedded OpenCV

Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan Embedded OpenCV The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Penjejakan Posisi Bola Pada Modul Phycore IMX31 Menggunakan

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi komputer dan internet semakin maju

BAB I PENDAHULUAN. Perkembangan teknologi komputer dan internet semakin maju BAB I PENDAHULUAN I.1 Latar Belakang Masalah Perkembangan teknologi komputer dan internet semakin maju menyebabkan data digital yang dihasilkan, disimpan, ditransmisikan, dianalisis, dan diakses menjadi

Lebih terperinci

BAB 1 PENDAHULUAN. Grafika komputer merupakan salah satu topik dalam bidang informatika.

BAB 1 PENDAHULUAN. Grafika komputer merupakan salah satu topik dalam bidang informatika. BAB 1 PENDAHULUAN 1.1 PENDAHULUAN Grafika komputer merupakan salah satu topik dalam bidang informatika. Perkembangan grafika komputer tentunya tidak lepas dari pengolahan citra secara digital. Pengolahan

Lebih terperinci

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun

BAB I PENDAHULUAN. sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun BAB I PENDAHULUAN 1.1 Latar Belakang Seiring berjalannya waktu ilmu pengetahuan semakin berkembang pesat sesuai dengan berbagai macam pemikiran manusia. Banyak teori-teori maupun aplikasi baru yang lahir

Lebih terperinci

DAFTAR ISI. Lembar Pengesahan Penguji... iii. Halaman Persembahan... iv. Abstrak... viii. Daftar Isi... ix. Daftar Tabel... xvi

DAFTAR ISI. Lembar Pengesahan Penguji... iii. Halaman Persembahan... iv. Abstrak... viii. Daftar Isi... ix. Daftar Tabel... xvi DAFTAR ISI Halaman Judul... i Lembar Pengesahan Pembimbing... ii Lembar Pengesahan Penguji... iii Halaman Persembahan... iv Halaman Motto... v Kata Pengantar... vi Abstrak... viii Daftar Isi... ix Daftar

Lebih terperinci

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET

CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET CONTENT BASED IMAGE RETRIEVAL BERDASARKAN CIRI TEKSTUR MENGGUNAKAN WAVELET Nana Ramadijanti RG. Computer Vision, Program Studi Teknologi Informasi, Politeknik Elektronika Negri Surabaya E-mail: nana@eepis-its.edu

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

Praktikum Pengolahan Citra - Pertemuan 1

Praktikum Pengolahan Citra - Pertemuan 1 Achmad Basuki Nana R Fadilah Fahrul Politeknik Elektronika Negeri Surabaya Praktikum Pengolahan Citra - Pertemuan 1 Content: 1. Instalasi dan Seting (OpenCV + GDI) baca file image 2. Membaca data RGB dan

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI Bab ini berisi analisis pengembangan program aplikasi pengenalan karakter mandarin, meliputi analisis kebutuhan sistem, gambaran umum program aplikasi yang

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pemrosesan citra adalah ilmu untuk memanipulasi gambar, yang melingkupi teknikteknik untuk memperbaiki atau mengurangi kualitas gambar, menampilkan bagian tertentu

Lebih terperinci

TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418

TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418 RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) TEKNIK PENGOLAHAN CITRA DIGITAL TPE 418 OLEH: Dr. ANDASURYANI, S.TP, M.Si PROGRAM STUDI TEKNIK PERTANIAN JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI

Lebih terperinci

Penghitung Kendaraan Menggunakan Background Substraction dengan Background Hasil Rekonstruksi

Penghitung Kendaraan Menggunakan Background Substraction dengan Background Hasil Rekonstruksi Penghitung Kendaraan Menggunakan Substraction dengan Hasil Rekonstruksi Mohammad Musa Sanjaya #1, Dr. I Ketut Eddy Purnama, ST., MT. *2, Muhtadin,ST.,MT #3 Jurusan Teknik Elektro, ITS Surabaya 1 musopotamia@gmail.com

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi...Volume..., Bulan 20..ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi...Volume..., Bulan 20..ISSN : Pembangunan Aplikasi Deteksi dan Tracking Warna Virtual Drawing Menggunakan Algoritma Color Filtering Rio Pradhitya Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung Email

Lebih terperinci

Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered- Based Retrieval of Images (CLUE)

Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered- Based Retrieval of Images (CLUE) Konferensi Nasional Sistem & Informatika 2017 STMIK STIKOM Bali, 10 Agustus 2017 Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered- Based Retrieval of Images (CLUE) I Gusti Rai Agung Sugiartha

Lebih terperinci

ROBOT CERDAS PEMADAM API MENGGUNAKAN PROYEKSI INTEGRAL

ROBOT CERDAS PEMADAM API MENGGUNAKAN PROYEKSI INTEGRAL ROBOT CERDAS PEMADAM API MENGGUNAKAN PROYEKSI INTEGRAL Setiawardhana, Riyanto Sigit, Dadet Pramadihanto Politeknik Elektronika Negeri Surabaya Kampus ITS Keputih Sukolilo Surabaya 60111, Indonesia Tel:+62-31-5947280

Lebih terperinci

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru.

Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. 1 Penggunaan Metode Template Matching Untuk Mendeteksi Cacat Pada Produksi Peluru. Amilia Khoiro Masruri dan Budi Setiyono Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi

Lebih terperinci

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness 753 GLOSARIUM Adaptive thresholding (lihat Peng-ambangan adaptif). Additive noise (lihat Derau tambahan). Algoritma Moore : Algoritma untuk memperoleh kontur internal. Array. Suatu wadah yang dapat digunakan

Lebih terperinci

Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom

Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom Sistem Penitipan Barang berdasarkan Pola Tanda Tangan Dengan menggunakan Metode Ekstraksi Ciri Nia Saurina SST., M.Kom ABSTRAK Sistem penitipan barang yang umum digunakan adalah secara manual, penjaga

Lebih terperinci

Gambar 15 Contoh pembagian citra di dalam sistem segmentasi.

Gambar 15 Contoh pembagian citra di dalam sistem segmentasi. dalam contoh ini variance bernilai 2000 I p I t 2 = (200-150) 2 + (150-180) 2 + (250-120) I p I t 2 = 28400. D p (t) = exp(-28400/2*2000) D p (t) = 8.251 x 10-4. Untuk bobot t-link {p, t} dengan p merupakan

Lebih terperinci

Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB

Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB Dani Rohpandi 1), Asep Sugiharto 2),

Lebih terperinci

Operasi Titik Kartika Firdausy

Operasi Titik Kartika Firdausy Operasi Titik Kartika Firdausy tpcitra@ee.uad.ac.id blog.uad.ac.id/kartikaf 2262230 Setelah mempelajari materi ini, mahasiswa diharapkan mampu: mengidentifikasi Fungsi Transformasi Skala Keabuan menjelaskan

Lebih terperinci

SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG

SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG Vol. 5, No. 1, Januari 2009 ISSN 0216-0544 SISTEM TEMU KEMBALI CITRA GEDUNG BERDASARKAN INFORMASI GARIS PADA BENTUK GEDUNG * Iman Sapuguh, Daniel O Siahaan, dan Chastine Fatichah Program Magister Teknik

Lebih terperinci

Pendahuluan Pengantar Pengolahan Citra. Bertalya Universitas Gunadarma, 2005

Pendahuluan Pengantar Pengolahan Citra. Bertalya Universitas Gunadarma, 2005 Pendahuluan Pengantar Pengolahan Citra Bertalya Universitas Gunadarma, 2005 Definisi Citra Citra (Image) adalah gambar pada bidang dua dimensi. Secara matematis, citra merupakan fungsi terus menerus (continue)

Lebih terperinci