TINJAUAN PUSTAKA Spesifikasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA Spesifikasi"

Transkripsi

1 II. TINJAUAN PUSTAKA 2.1. Spesifikasi Perpustakaan merupakan bangunan yang dibuat untuk mengumpulkan buku buku pengetahuan jenis apapun, dalam arti tradisional. Perpustakaan adalah sebuah koleksi buku dan majalah, walaupun dapat diartikan sebagai koleksi pribadi perseorangan, namun perpustakaan lebih umum dikenal sebagai sebuah koleksi besar yang dibiayai dan dioperasikan oleh sebuah kota atau institusi, dan dimanfaatkan oleh masyarakat yang rata-rata tidak mampu membeli sekian banyak buku atas biaya sendiri. Perpustakaan tidak hanya menyimpan buku buku dan artikel dalam bentuk kasar, perpustakaan juga menyimpan informasi dalam bentuk softcopy dengan berbagai format. Perpustakaan modern didefinisikan sebagai tempat untuk mengakses informasi dalam format apapun, dalam perpustakaan ini selain kumpulan buku tercetak, sebagian buku dan koleksinya ada dalam perpustakaan digital yang bisa diakses melalui jaringan komputer. Institut Pertanian Bogor merupakan perguruan tinggi yang sedang membangun perpustakaan baru setelah perpustakaan LSI. Pembangunan perpustakaan baru ditujukan untuk menambah dan mempermudah mahasiswa dalam mengumpulkan informasi yang mereka butuhkan serta menambah daya saing terhadap perguruan tinggi lain. Bangunan ini memiliki lantai dasar, empat lantai utama dan lift machine room. Perpustakaan ini memiliki bentuk yang berbeda dengan bangunan lainnya yang ada di IPB, yang berbentuk lingkaran pada bagian node, bangunan ini menggunakan struktur beton bertulang dengan kerangka portal serta menggunakan konstruksi baja ringan yang didukung dengan kolom pedestal pada bagian atap. Perpustakaan ini dilengkapi dengan fasilitas lift sebagai penghubung antar level selain menggunakan tangga. Konstruksi gedung ini menggunakan beton bertulang dengan mutu K 350 pada struktur kolom, balok, pelat, sedangkan pada konstruksi pondasi menggunakan tiang pancang dengan beton bertulang mutu K 500. Jenis baja tulangan yang digunakan pada konstruksi ini adalah BJTP 40 pada tulangan lentur dan torsi dengan tegangan leleh 4000 kg/cm 2 dan BJTP 24 pada tulangan geser dengan tegangan leleh 2400 kg/cm 2. Dinding bangunan ini menggunakan kaca clear glass dengan tebal 8 mm. McCormac (2002) menyatakan bahwa terdapat dua jenis beban yang bekerja pada struktur, yaitu beban statis dan dinamis. Pembebanan dapat ditinjau menurut arah beban yang bekerja yaitu beban vertikal dan horizontal. Beban vertikal pada suatu struktur adalah beban yang bekerja pada arah tegak lurus permukaan bumi, yaitu beban mati dan beban hidup. Beban mati adalah beban yang sifatnya tidak dapat berpindah, beban mati pada struktur yaitu berat sendiri bangunan dan berat komponen gedung. Berat sendiri bangunan dan komponen gedung dapat dilihat pada Tabel 1 dan Tabel 2. Beban hidup adalah semua beban yang terjadi akibat penghunian atau penggunaan suatu gedung termasuk dari barang yang dapat berpindah pindah, mesin mesin serta peralatan yang tak terpisahkan dari gedung. Beban hidup menurut PPIUG 1983 dapat dilihat pada Tabel 3. 2

2 Tabel 1. Berat sendiri bahan bangunan BAHAN BANGUNAN BERAT/m 3 Baja Batu Alalm Batu belah, batu bulat, batu gunung (berat tumpuk) Batu karang (berat tumpuk) Batu pecah besi tuang Beton (1) Beton bertulang (2) Kayu (kelas I) (3) Kerikil, koral (Kering udara sampai lembab, tanpa diayak) Pasangan batu merah) Pasangan batu belah, batu belat, batu gunung Pasangan batu cetak Pasangan batu karang Pasir (Kering udara sampai lembab) Pasir (jenuh air) Pasir kerikil, koral (kering udara, sampai lembab) Tanah lempung dan lanau (Kering udara sampai lembab) Tanah lempung dan lanau (basah) Tanah Hitam (tumbel) ( sumber : PPIUG 1983) 7850 kg 2600 kg 1500 kg 700 kg 1450 kg 7250 kg 2200 kg 2400 kg 1000 kg 1650 kg 1700 kg 2200 kg 2200 kg 1450 kg 1600 kg 1800 kg 1850 kg 1700 kg 2000 kg kg Beban horizontal pada suatu struktur adalah beban yang bekerja pada arah sejajar permukaan bumi yaitu beban angin dan beban gempa. Peraturan Pembebanan Indonesia untuk Gedung menyebutkan bahwa beban angin ditentukan dengan menganggap adanya tekanan positif dan tekanan negatif yang bekerja tegak lurus terhadap bangunan. Besarnya beban angin ditentukan minimum 25 kg/m 2, sedangkan pada jarak 5 km dari pantai diambil minimum 40 kg/m 2. Daerah tertentu dimana tekanan angin jauh lebih besar dihitung dengan menggunakan rumus : Pw = d೬ (2.1) Beban gempa merupakan salah satu jenis beban luar yang berasal dari gerakan tanah yang bekerja tegak lurus arah bangunan. Beban gempa dapat dihitung dengan metode statik ekivalen dan respon dinamik. Analisa statik ekivalen hanya dapat digunakan pada bangunan yang beraturan sedangkan pada bangunan yang tidak beraturan menggunakan analisa respon dinamik (SNI ). Menurut SNI suatu bangunan dikatakan beraturan apabila memenuhi ketentuan sebagai berikut : 1. Gedung dengan tinggi maksimum 40 m. 2. Denah gedung seragam dan bentuk persegi panjang. 3. Bentuk portal seragam tiap tingkat. 4. Kekakuan lateral seragam tiap tingkat. 3

3 Tabel 2. Berat sendiri komponen gedung ( sumber : PPIUG 1983) Kekuatan karakteristik beton (fc ) didasarkan atas kekuatan beton pada umur 28 hari untuk sampel silinder yang mengacu pada Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung 1991 (SK SNI T ). Kuat tekan Beton fc' = 0,83 x s bk Modulus Elastisitas Beton : Ec = 4700,k Dalam perhitungan suatu struktur harus berpedoman pada peraturan-peraturan yang berlaku, yang pada hakikatnya bertujuan untuk menghasilkan struktur bangunan yang ekonomis dan memberikan kenyamanan serta keamanan bagi pemakainya. 4

4 Tabel 3. Berat hidup pada lantai gedung (sumber : PPIUG 1983) Dalam penelitian ini, peraturan-peraturan yang digunakan adalah sebagai berikut : Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung (SK-SNI T ). Peraturan Pembebanan Indonesia untuk Gedung Peraturan Perencanaan Beton Bertulang (SNI ) Peraturan Perencanaan Beban Gempa (SNI dan RSNI ). Perhitungan yang dilakukan sesuai dengan fungsi bangunan direncanakan, baik perencanaan beban hidup maupun beban mati didasarkan pada Peraturan Perencanaan Indonesia Untuk Gedung (PPIUG 1983). 5

5 2.2. Desain Struktur Balok Balok didefinisikan sebagai salah satu dari elemen struktur portal yang arahnya horizontal, sedangkan portal merupakan kerangka utama dari struktur bangunan, khususnya bangunan gedung (Asroni 2010). Gaya yang bekerja pada balok adalah gaya geser, momen lentur dan torsi, sehingga perlu baja tulangan untuk menahan beban - beban tersebut agar tidak terjadi keruntuhan. Tulangan memanjang/longitudinal pada bagian atas dan bawah balok adalah tulangan yang digunakan untuk menahan momen tarik dan momen tekan pada balok. Tulangan sengkang/begel digunakan untuk menahan beban geser pada balok dan tulangan tengah digunakan untuk menahan beban torsi pada balok. A. Beban Lentur Pada Balok Jika sebuah balok beton (tanpa tulangan) ditumpu oleh tumpuan sederhana (sendi rol), dan di atas balok bekerja beban terpusat P serta beban merata q seperti pada Gambar 1 maka akan timbul momen luar sehingga balok akan melengkung ke bawah seperti tampak pada Gambar 2. Balok yang melengkung kebawah akibat beban luar ini ditahan oleh kopel kopel gaya dalam yang berupa tegangan tekan dan tarik. Serat serat beton bagian atas akan menahan tegangan tekan dan semakin kebawah tegangan tekan tersebut akan semakin mengecil, sebaliknya pada serat serat tepi bawah akan menahan tegangan tarik dan semakin ke atas maka semakin kecil pula tegangan tariknya, ilustrasi ini dapat dilihat pada Gambar 3. Serat serat bagian bawah beton akan mengalami tegangan tarik yang besar saat diberikan beban yang cukup besar sehingga dapat terjadi retakan pada beton bagian bawah. Keadaan ini terjadi pada beton memiliki momen besar. Gambar 1. Beban Terpusat dan Beban Merata pada Balok (sumber : Asroni 2010) Gambar 2. Perubahan Bentuk Balok Akibat Gaya Dalam (sumber : Asroni 2010) 6

6 Gambar 3. Diagram Tegangan Beton (sumber : Asroni 2010) Beton yang mengalami tegangan tarik yang berlebihan akibat pembebanan akan mengalami keruntuhan karena sifat beton yang lemah terhadap tegangan tarik, untuk menangani masalah ini perlu diberi baja tulangan sehingga disebut dengan istilah beton bertulang. Baja pada beton bertulang digunakan untuk menahan tegangan tarik yang berada dibawah garis netral, sedangkan tegangan tekan yang berada diatas garis netral akan ditahan oleh beton. Distribusi tegangan dan regangan pada beton dapat dilihat pada Gambar 4. Menurut SNI pada perhitungan struktur beton bertulang ada beberapa istilah untuk menyatakan kekuatan suatu penampang beton bertulang sebagai berikut : 1. Kuat nominal (Pasal 3.28) 2. Kuat rencana (Pasal 3.30) 3. Kuat perlu (Pasal 3.29) Kuat nominal (Rn) diartikan sebagai kekuatan suatu komponen struktur atau penampang dihitung berdasarkan ketentuan dan asumsi metode perencanaan sebelum dikalikan dengan nilaifaktor reduksi kekuatan yang sesuai. Kuat nominal pada penampang beton bertulang bergantung pada dimensi, jumlah dan letak tulangan, serta mutu beton dan baja tulangan. Kuat nominal ini biasanya ditulis dengan simbol Mn, Vn, Tn dan Pn, dengan subscript n menunjukkan bahwa nilai nilai momen M, gaya geser V, torsi ( momen puntir) T, dan gaya aksial P diperoleh dari beban nominal suatu struktur atau komponen struktur. Kuat rencana (Rr) adalah kekuatan penampang struktur yang didapat dari hasil perkalian antara kuat nominal Rn dengan faktor reduksi kekuatan ø. Kuat rencana ini biasanya ditulis dengan simbol Mr, Vr, Tr dan Pr, dengan subscript r menunjukkan bahwa nilai nilai momen M, gaya geser V, torsi ( momen puntir) T, dan gaya aksial P diperoleh dari beban rencana yang boleh bekerja pada suatu struktur atau komponen struktur. Kuat perlu (Ru) diartikan sebagai kekuatan penampang yang diperlukan untuk menahan beban terfaktor atau momen dan gaya dalam yang berkaitan dengan beban tersebut. Kuat perlu ini biasanya ditulis dengan simbol Mu, Vu, Tu dan Pu, dengan subscript u menunjukkan bahwa nilai nilai momen M, gaya geser V, torsi ( momen puntir) T, dan gaya aksial P diperoleh dari beban terfaktor yang bekerja pada suatu struktur atau komponen struktur. 7

7 Perhitungan balok pada perpustakaan lima lantai Agrotropika ini mengacu pada SNI , data dimensi dan momen perlu serta hasil perhitungan luas tulangan yang diperlukan balok. Dimana : Gambar 4. Distribusi tegangan dan regangan pada balok Cs = As.fy (2.2.1) Cc = 0,85.fc.a.b (2.2.2) Ts = As.fy (2.2.3) Nilai a merupakan nilai kedalaman tinggi blok tekan beton yang didapat dari perkalian antara β dan c. SK SNI menetapkan nilai β sebagai berikut : β = 0,85 untuk fc 30 MPa β = 0,85 0,008(fc 30) untuk 30 fc 55 MPa Nilai minimum β ditentukan 0,65 jika nilai β 0,65 pada 30 fc 55 MPa Koefisien ketahanan dapat dihitung dengan menggunakan persamaan (2.2.4) : K = Mn bd 2 (2.2.4) m = fy 0,85.fc (2.2.5) ρ perlu = 1 2m.Rn (1-1 ) (2.2.6) m fy ρ min = 1,4 fy fy 31,36 MPa (2.2.7) bandingkan nilai ρ perlu dengan ρ min dan gunakan ρ yang lebih besar lalu hitung nilai luas tulangan yang diperlukan dengan menggunakan persamaan (2.2.8) dan jumlah tulangan perlu dengan menggunakan persamaan (2.2.9): Ast = ρ perlu. b.d (2.2.8) n = Ast As (2.2.9) 8

8 B. Gaya Geser Pada Balok Balok yang ditumpu secara sederhana yaitu tumpuan sendi rol kemudian diberi beban cukup berat maka balok akan mengalami 2 jenis retakan yaitu retak vertikal dan retak miring seperti pada Gambar 5. Gambar 5. Jenis retakan pada balok (sumber : Asroni 2010) Retak vertikal terjadi akibat kegagalan balok menahan beban lentur, sedangkan retak miring terjadi akibat kegagalan balok menahan beban geser. Beban geser yang melebihi batas kekuatan geser beton dapat menimbulan retak geser pada beton, untuk mengatasi hal ini maka dibutuhkan tulangan khusus yang disebut tulangan geser/sengkang. Tulangan geser diperlukan saat gaya geser ultimate (Vu) melebihi gaya geser yang dimiliki beton (Vc) ditambah tulangan lentur (Vs), persamaan tulangan geser pada balok dapat dilihat pada persamaan (2.2.10) : Vu Vn (2.2.10) Vn = Vc + Vs (2.2.11) Vc = ( fc.b.d)/6 (2.2.12) Av.fy.d Vs = S (2.2.13) SK SNI pasal ayat (1) menyatakan jarak maksimum antar tulangan geser disyaratkan tidak boleh melebihi nilai setengah tinggi efektif balok (d/2) atau 600 mm. S max = d atau d < 600 mm (2.2.14) 2 A vmin = b.smax 3.fy (2.2.15) C. Momen Puntir Pada Balok Torsi adalah momen yang bekerja terhadap sumbu longitudinal balok, torsi dapat terjadi akibat adanya beban eksentrik yang bekerja pada balok tersebut. Pengaruh torsi pada suatu penampang dapat menimbulkan tegangan geser yang berlebihan dan dapat menyebabkan keretakan pada penampang yang tidak diberi tulangan secara khusus. Persamaam keseimbangan puntir dapat dilihat pada persamaan (2.2.16) : Tu Tn (2.2.16) Tn = Tc + Ts (2.2.17) 9

9 Suatu struktur dapat dikatakan memerlukan tulangan puntir apabila nilai Tu > Tn. SK SNI menyatakan bahwa nilai Tn untuk beton non pra tegang dapat dihitung dengan persamaan (2.2.18) : Tu Tn = fc 12 ( Acp 2 Pcp ) (2.2.18) Nilai Tn dapat ditentukan menurut SK SNI pasal 13.6, dengan persamaan (2.2.19) : 2Ao.At.fyv Tn =. cot θ (2.2.19) s At = b smin 6fyv (2.2.20) Keterangan : θ = 45 untuk komponen struktur non prategang. A o = 0,85 A oh (2.2.21) A oh adalah luas penampang balok yang dibatasi sampai batas terluar tulangan seperti Gambar 6. Gambar 6. Definisi A oh (sumber : SK SNI ) Luas total minimum tulangan puntir longitudinal harus dihitung dengan ketentuan persamaan (2.2.22) : A t = ( At s ).p h. fyv fyl.cot2 θ (2.2.22) Keliling dari pusat garis tulangan sengkang puntir terluar (Ph) dapat dihitung dengan persamaan (2.2.23) : Ph = 2 (b (2d )) + 2 (h (2d )) (2.2.23) Jumlah tulangan puntir (n) yang diperlukan dalam suatu struktur balok dapat dihitung dengan persamaan (2.2.24) : n = At Ast (2.2.24) 10

10 Kolom Definisi kolom menurut SK SNI adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial desak vertikal dengan tinggi yang paling tidak tiga kali dimensi lateral terkecil, apabila rasio bagian tinggi dengan dimensi lateral terkecil kurang dari tiga disebut pedestal. (Nasution 2009). Hubungan tegangan dan regangan pada kolom beton dimodelkan seperti Gambar 7. Gambar 7. Distribusi tegangan penampang kolom (sumber : Asroni 2010) Suatu kolom dapat digolongkan menjadi kolom pendek dan kolom langsing. Kolom digolongkan pendek apabila kolom tersebut memiliki kelangsingan kecil sedangkan kolom dikatakan langsing apabila kolom tersebut memiliki kelangsingan besar. Tingkat kelangsingan suatu kolom dilukiskan sebagai rasio kelangsingan dapat dilihat pada persamaan (2.2.25) : K.lu r (2.2.25) SK SNI pasal memberikan ketentuan bahwa untuk komponen struktur tekan dengan pengaku lateral, efek kelangsingan dapat diabaikan apabila rasio kelangsingan memenuhi persamaan (2.2.26) : K.lu r < ( M1b M2b ) (2.2.26) Penampang kolom dalam perencanaanya memiliki berbagai macam bentuk penampang, salah satu bentuk penampang tersebut adalah lingkaran. Penampang lingkaran untuk penulangan kolom bundar dapat diekivalensikan dengan sebuah penampang persegi dengan persamaan (2.2.27) dan persamaan (2.2.28) : Tinggi = 0,8 D (2.2.27) Lebar = Agr 0,8 D (2.2.28) Penampang lingkaran yang sudah diekivalensikan menjadi penampang segi empat ekivalen ini dapat di desain seperti kolom segi empat biasa. Kondisi yang harus diperhitungkan pada perencanaan kolom beton bertulang adalah kondisi penulangan lentur klom dan penulangan geser. 11

11 A. Tulangan Lentur Kolom Perencanaan tulangan lentur kolom dapat dilakukan dengan bantuan grafik perencanaan. Tulangan lentur pada penampang persegi dapat dilakukan dengan bantuan grafik perencanaan pada Gambar 8 dan pada penampang lingkaran dapat dilakukan dengan bantuan grafik perencanaan sesuai dengan Gambar 9 sesuai mutu beton dan tulangan longitudinal. Diagram interaksi adalah diagram yang menyatakan kombinasi pembebanan antara momen dan beban aksial yang dapat ditahan oleh kolom. Nilai sumbu vertikal pada grafik perencanaan dinyatakan dengan persamaan (2.2.29) : Pu Agr (2.2.29) Sedangkan nilai pada sumbu horizontal dinyatakan dengan persamaan (2.2.30) : Mu Agr. (2.2.30) Nilai r akan dapat dibaca dengan memasukkan kedua nilai di atas pada grafik perencanaan. Rasio tulangan perlu (ρ) dapat dihitung dengan persamaan, dengan nilai β tergantung pada mutu beton yang dipakai. ρ = r. β (2.2.31) Penentuan luas tulangan perlu kolom dinyatakan dengan persamaan (2.2.32), persamaan (2.2.33), dan persamaan (2.2.34) : As = ρ. A gr (2.2.32) As min = 1%.A gr (2.2.33) As max = 8%.A gr (2.2.34) Jumlah tulangan yang dibutuhkan dengan menggunakan persamaan (2.2.35) : n = As Ast (2.2.35) 12

12 Gambar 8. Grafik perencanaan tulangan lentur kolom persegi (sumber : McCormac 2002) Gambar 9. Grafik perencanaan tulangan lentur kolom lingkaran (sumber : McCormac 2002) 13

13 B. Tulangan Geser Kolom Kuat geser kolom merupakan jumlah dari kuat geser yang disumbangkan oleh beton dan tulangan yang dinotasikan persamaan (2.2.36) : Vn = Vc + Vs (2.2.36) Vc = ( fc ).b.d (2.2.37) 6 Besarnya jarak tulangan geser kolom ditentukan berdasarkan persamaan (2.2.38) : Av.fy.d S = Vs (2.2.38) Kolom dikatakan kuat menahan gaya geser apabila gaya geser yang terjadi pada kolom kurang dari gaya geser yang dimiliki kolom seperti persamaan (2.2.39) : Vn Vu (2.2.39) Tulangan geser kolom yang ditentukan dalam SK SNI adalah : 1. Untuk tulangan longitudinal yang lebih kecil dari D 32, maka dapat diikat dengan sengkang paling sedikit dengan D Spasi vertikal sengkang harus 16 kali diameter tulangan longitudinal Pelat Pelat adalah struktur tipis dengan bidang yang arahnya horizontal dan beban yang bekerja tegak lurus arah tersebut. Pelat lantai ini berfungsi sebagai pengaku horizontal yang bermanfaat untuk mendukung ketegaran balok portal. (Asroni 2010). Dimensi terpanjang pada pelat lantai dilambangkan ly dan dimensi yang terkecil disebut lx seperti terlihat pada Gambar 10. Sistem perencanaan pelat terbagi menjadi dua macam yaitu : 1. Pelat satu arah (one way slab) 2. Pelat dua arah (two way slab). Gambar 10. Dimensi pelat lantai Pelat satu arah adalah pelat yang perbandingan antara panjang bentang terpanjang dengan yang terpendek lebih dari 3.0, jika perbandingannya kurang dari 3.0 maka pelat ini merupakan pelat dua arah (Pratikto 2009). 14

14 A. Pelat Satu Arah Pelat dengan tulangan pokok satu arah dijumpai jika beton lebih dominan menahan beban yang berupa momen lentur pada bentang satu arah saja, contohnya adalah pelat kantilever dan pelat yang ditumpu oleh dua tumpuan sejajar (Asroni 2010). Tebal minimum pelat satu arah bila lendutan tidak dihitung, menurut SK SNI dapat ditentukan dari Tabel 4. Tabel 4. Tebal Minimum Pelat Satu Arah Dua tumpuan Satu ujung Kedua ujung Kantilever Sederhana Menerus menerus komponen Struktur Komponen yang tidak menahan atau tidak disatukan dengan partisi atau konstruksi lain yang mungkin rusak oleh lendutan yang besar Pelat masif satu arah L/20 L/24 L/28 L/10 Balok atau pelat rusuk satu arah L/16 L/18,5 L/21 L/8 Syarat yang ditentukan oleh SK SNI pasal 9.12 pada pelat struktural dimana tulangan lenturnya dipasang satu arah adalah : 1. Harus disediakan tulangan susut dan suhu yang arahnya tegak lurus terhadap tulangan lentur tersebut. 2. Tulangan susut dan tulangan suhu harus memiliki rasio tulangan terhadap luas bruto penampang terhadap beton sebagai berikut, namun rasio tulangan tidak kurang dari 0,0014 : a. Pelat yang menggunakan tulangan ulir mutu 300 MPa (ρ = 0,002). b. Pelat yang menggunakan tulangan ulir mutu 400 MPa (ρ = 0,0018). c. Pelat yang menggunakan tulangan ulir mutu > 400 MPa (ρ = 0,001 x 400/fy). 3. Tulangan susut dan suhu harus dipasang dengan jarak tidak lebih dari lima kali tebal pelat atau 450 mm. B. Pelat Dua Arah Pelat dengan tulangan pokok dua arah dijumpai jika beton menahan beban berupa momen lentur pada bentang dua arah, contohnya adalah pelat yang ditumpu oleh empat sisi saling sejajar (Asroni 2010). Perencanaan pelat dua arah. Perencanaan pelat dua arah dapat direncanakan dengan metode koefisien momen dimanasetiap panel pelat dianalisis sendiri sendiri. Momen lentur pada masing masing bentang dapat dihitung dengan persamaan (2.2.40) : Mi = 0,001.Ci.q.li2 (2.2.40) Koefisien momen sesuai arah bentang i (Ci) dapat dilihat pada Tabel 6. Rasio tulangan untuk menahan lentur (ρ) pelat dapat dihitung dengan menggunakan persamaan (2.2.43) : K = Mn bd 2 (2.2.41) m = fy 0,85.fc (2.2.42) 15

15 ρ perlu = 1 2m.K (1-1 ) (2.2.43) m fy ρ min = 1,4 fy => fy 31,36 MPa bandingkan nilai ρ perlu dengan ρ min dan gunakan ρ yang lebih besar lalu hitung nilai luas tulangan yang diperlukan menggunakan persamaan (2.2.44) : Ast = ρ perlu. b.d (2.2.44) n = Ast As (2.2.45) Rasio tulangan (%) maksimum dapat dicari dengan Tabel 5. Tabel 5. Rasio Tulangan Maksimum (%) Mutu Beton Mutu baja tulangan (MPa) (MPa) ,419 1,805 1,467 1,219 1,032 0, ,225 2,408 1,956 1,626 1,376 1, ,032 3,01 2,445 2,032 1,72 1, ,838 3,616 2,933 2,438 2,064 1, ,405 4,036 3,277 2,724 2,306 1, ,912 4,414 3,585 2,98 2,522 2, ,344 4,737 3,846 3,197 2,707 2, ,707 5,008 4,067 3,38 2,862 2, ,002 5,228 4,245 3,529 2,988 2, ,4 5,525 4,486 3,729 3,157 2,712 Luas tulangan yang diperlukan dapat dihitung dengan menggunakan persamaan (2.2.46) : A = ρ.b.d (2.2.46) Dari nilai As akan didapatkan nilai Momen Nominal menggunakan persamaan (2.2.47) : Mn = As.fy.(d a/2) (2.2.47) Dimana nilai Mn > Mu untuk memenuhi kondisi aman Pondasi Pondasi adalah struktur yang digunakan untuk menumpu kolom dan dinding yang memindahkan beban struktur bangunan ke lapisan tanah. (Hardiyatmo 2008) menyatakan secara umum pondasi dapat dikelompokkan menjadi dua macam yaitu pondasi dangkal dan pondasi dalam. Pondasi dangkal dipakai untuk daerah yang memiliki kedalaman tanah keras yang dekat dari permukaan atau untuk jenis bangunan biasa dimana beban yang dipikul tidak terlalu besar. Pondasi dalam dipakai untuk bangunan dengan kedalaman tanah keras yang jauh dari permukaan. Pada perencanaan pondasi yang harus dipertimbangkan adalah daya dukung pondasi tiang. Desain tiang group, gaya geser pilecap dan penulangan lentur pile caps. Pile caps adalah komponen struktur yang digunakan untuk menghubungkan kolom dengan pondasi yang berfungsi untuk menyebarkan beban vertikal dan momen ke semua tiang pancang yang berada di group tersebut. 16

16 Tabel 6. Koefisien pelat lantai dua arah A. Daya Dukung Tiang Tunggal 1. Daya Dukung Ujung Tiang Daya dukung ujung tiang (Qtip) adalah sumbangan daya dukung pondasi yang diberikan oleh ujung tiang pancang. Persamaan daya dukung ujung tiang pada jenis tanah kohesif menurut metode Meyerhoff dapat dilihat pada persamaan (2.2.48) : Qtip = C.Nc.Ap (2.2.48) Nilai Nc umumnya diambil sama dengan 9 (Skempton 1959). 2. Daya Dukung Sisi Tiang Daya dukung sisi tiang (Qfriction) merupakan penjumlahan dari tahanan tiang pada tiap tiap elemen kedalaman tiang dan dapat dihitung dengan dua kondisi yaitu menggunakan persamaan (2.2.49) : Qfriction = α.c.atp (2.2.49) Daya dukung pondasi adalah jumlah dari daya dukung ujung tiang dan daya dukung sisi tiang dapat dinyatakan pada persamaan (2.2.50) : Qu = Qfriction + Qtip (2.2.50) 17

17 3. Kapasitas Uji Tiang Kapasitas ultimit tiang pancang dapat juga dihitung secara empiris berdasarkan nilai N dari uji SPT. Persamaan menurut Meyerhoff berdasarkan nilai SPT dapat dilihat pada persamaan (2.2.51) : B. Daya Dukung Kelompok Tiang Qu = 4.Nb.Ap + 1.Np.As (2.2.51) 50 Daya dukung kelompok tiang tidak selalu sama dengan jumlah daya dukung tiang tunggal yang berada dalam kelompoknya (Hardiyatmo 2008). Daya dukung ultimit kelompok tiang tergantung dari kedalaman tiang pancang (D), lebar pile caps (B), panjang pile caps (L), kohesi di ujung tiang (C) menurut Craig RF sebesar 150 kn/m 2, dan koefisien kapasitas dukung (Nc) yang nilainya tergantung dari sudut geser tanah telah dinyatakan oleh persamaan Terzaghi seperti pada persamaan (2.2.52) : Qg = 2D (B + L)C + 1,3C.Nc.B.L (2.2.52) Nilai daya dukung pondasi yang dipilih untuk mewakili adalah nilai terkecil dari kapasitas tiang tunggal dan kapasitas kelompok tiang (Hardiyatmo 2008). Daya dukung pondasi direduksi dengan nilai faktor keamanan (FS) yaitu koefisien yang didapat dari rasio kapasitas daya dukung dengan beban, sehingga nilai Qdesain seperti pada persamaan (2.2.53) : Qdesain = Q FS (2.2.53) C. Desain Tiang Group Berat sendiri tiang pancang (Rv) dapat dihitung dengan persamaan (2.2.54) : Rv = P + berat sendiri tiang (2.2.54) Spasi antar tiang dalam satu group yang umum digunakan adalah 2,5 D sampai 3 D dengan D adalah diameter atau panjang sisi tiang. Efisiensi tiang group (Eg) dalam mendesain tiang kelompokdapat dihitung dengan metode conversi Labarre pada persamaan (2.2.55) : Eg = 1 - θ 90 ( n 1.m + m 1.n m.n ) (2.2.55) Dimana n adalah jumlah tiang pancang dalam satu baris dan m adalah jumlah baris tiang. Langkah selanjutnya setelah mendapatkan nilai dari efisiensi tiang group (Eg), maka dihitung daya dukung pondasi. Daya dukung ini harus lebih besar dari berat sendiri tiang pancang (Rv). Langkah selanjutnya adalah menghitung kapasitas tiang (Q). Persamaan kapasitas tiang dapat dihitung dengan persamaan (2.2.56) : Dimana Q Q tiang Q = P N My.Xmax Mx.Ymax ± ± (2.2.56) Ʃx 2 Ʃy 2 18

18 1. Gaya Geser Pile Caps Pertimbangan yang diperlukan dalam merencanakan konstruksi pile caps beton bertulang adalah : a. Pile caps harus diletakkan sekurang kurangnya 150 mm diluar muka sebelah luar dari tiang pancang tersebut. b. Geseran pile caps dihitung pada bagian bagian kritis c. Tiang pancang harus ditanam sekurang kurangnya 150mm ke dalam pile caps. d. Momen lentur diambil pada bagian yang sama seperti pada telapak beton bertulang. Geseran pile caps disekitar kolom ditentukan oleh kondisi terberat dari dua hal berikut yaitu : 1. Aksi satu arah, dengan masing masing penampang kritis yang akan ditinjau, menjangkau sepanjang bidang yang memotong seluruh lebar pile caps. 2. Aksi dua arah, dengan penampang kritis yang ditinjau ditempatkan sedemikian, sehingga perimeter penampang (bo) adalah minimum, tetapi tidak lebih dekat dari d/2 ke tepi atau sudut kolom. Gambar 11. Daerah daerah kritis pile caps untuk geser dan momen Perencanaan penampang terhadap gaya geser didasarkan pada persamaan (2.2.57) : Vn Vu (2.2.57) Vu adalah gaya geser terfaktor pada penampang yang ditinjau dan Vn adalah kuat geser nominal yang dihitung menggunakan persamaan (2.2.58) : Vn = Vc + Vs (2.2.58) Kuat geser beton (Vc) diambil dari nilai terkecil dari 3 persamaan, yaitu persamaan (2.2.59), persamaan (2.2.60), dan persamaan (2.2.61) : Vc = (1-2 fc.bo.d ) β.c 6 αs.d Vc = ( + 2) 2 fc.bo.d 6 (2.2.59) (2.2.60) Vc = fc.bo.d 3 (2.2.61) 19

19 Keterangan : αs = 40 untuk kolom dalam, 30 untuk kolom tepi dan 20 untuk kolom sudut Bila kuat geser beton tidak mencukupi untuk menahan gaya geser Vu, maka diperlukan tambahan tulangan penahan gaya geser yang dihitung dengan persamaan (2.2.62) : Vs = Av.fy.d s (2.2.62) 2. Penulangan lentur pile caps Penulangan lentur pilecaps dilakukan dilakukan dengan menggunakan rangkap seperti prosedur pada balok penulangan ganda yaitu menggunakan momen ultimate untuk menentukan nilai faktor tahanan dan menentukan rasio tulangan, selanjutnya dihitung jumlah tulangan yang dibutuhkan dengan diameter tulangan baja sesuai dengan As built drawing, perhitungan dilakukan sama seperti pergitungan tulangan lentur balok menggunakan persamaan (2.2.1) sampai dengan persamaan (2.2.9). 20

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

EVALUASI STRUKTUR PERPUSTAKAAN AGROTROPIKA INSTITUT PERTANIAN BOGOR SKRIPSI CHAIRUL IKHWAN F

EVALUASI STRUKTUR PERPUSTAKAAN AGROTROPIKA INSTITUT PERTANIAN BOGOR SKRIPSI CHAIRUL IKHWAN F EVALUASI STRUKTUR PERPUSTAKAAN AGROTROPIKA INSTITUT PERTANIAN BOGOR SKRIPSI CHAIRUL IKHWAN F44080063 DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR 2012 AGROTROPICA

Lebih terperinci

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm² Ag = Luas bruto penampang (mm²) An = Luas bersih penampang (mm²) Atp = Luas penampang tiang pancang (mm²) Al = Luas total

Lebih terperinci

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cd = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas bruto

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²) DAFTAR NOTASI A cp Acv Ag An Atp Al Ao Aoh As As At Av b = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas bruto penampang

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa BAB III LANDASAN TEORI 3.1. Pembebanan Beban yang ditinjau dan dihitung dalam perancangan gedung ini adalah beban hidup, beban mati dan beban gempa. 3.1.1. Kuat Perlu Beban yang digunakan sesuai dalam

Lebih terperinci

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²). DAFTAR NOTASI A cp Ag An Atp Luas yang dibatasi oleh keliling luar penampang beton (mm²). Luas bruto penampang (mm²). Luas bersih penampang (mm²). Luas penampang tiang pancang (mm²). Al Luas total tulangan

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Deskripsi umum Desain struktur merupakan salah satu bagian dari keseluruhan proses perencanaan bangunan. Proses desain merupakan gabungan antara unsur seni dan sains yang membutuhkan

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1

DAFTAR ISI. HALAMAN JUDUL.. i. LEMBAR PENGESAHAN ii. KATA PENGANAR.. iii ABSTRAKSI... DAFTAR GAMBAR Latar Belakang... 1 DAFTAR ISI HALAMAN JUDUL.. i LEMBAR PENGESAHAN ii KATA PENGANAR.. iii ABSTRAKSI... DAFTAR ISI DAFTAR GAMBAR.. DAFTAR NOTASI. v vi xii xiii BAB I PENDAHULUAN 1.1. Latar Belakang...... 1 1.2. Maksud dan

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai 8 BAB III LANDASAN TEORI A. Pembebanan Pada Pelat Lantai Dalam penelitian ini pelat lantai merupakan pelat persegi yang diberi pembebanan secara merata pada seluruh bagian permukaannya. Material yang digunakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Perhitungan Struktur Perhitungan struktur meliputi perencanaan atap, pelat, balok, kolom dan pondasi. Perhitungan gaya dalam menggunakan bantuan program SAP 2000 versi 14.

Lebih terperinci

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom... DAFTAR ISI Lembar Pengesahan Abstrak Daftar Isi... i Daftar Tabel... iv Daftar Gambar... vi Daftar Notasi... vii Daftar Lampiran... x Kata Pengantar... xi BAB I PENDAHULUAN 1.1 Latar Belakang... I-1 1.2

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir

DAFTAR ISTILAH. Al = Luas total tulangan longitudinal yang memikul puntir DAFTAR ISTILAH A0 = Luas bruto yang dibatasi oleh lintasan aliran geser (mm 2 ) A0h = Luas daerah yang dibatasi oleh garis pusat tulangan sengkang torsi terluar (mm 2 ) Ac = Luas inti komponen struktur

Lebih terperinci

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton

= keliling dari pelat dan pondasi DAFTAR NOTASI. = tinggi balok tegangan beton persegi ekivalen. = luas penampang bruto dari beton DAI'TAH NOTASI DAFTAR NOTASI a = tinggi balok tegangan beton persegi ekivalen Ab = luas penampang satu bentang tulangan, mm 2 Ag Ah AI = luas penampang bruto dari beton = luas dari tulangan geser yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton SNI 03-1974-1990 memberikan pengertian kuat tekan beton adalah besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani dengan gaya

Lebih terperinci

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan

DAFfAR NOTASI. = Luas total tulangan longitudinal yang menahan torsi ( batang. = Luas dari tulangan geser dalam suatu jarak s. atau luas dari tulangan NOTASI 1 DAFfAR NOTASI a = Tinggi blok tegangan beton persegi ekivalen Ab = Luas penampang satu batang tulangan. mm 2 Ag Ah AI = Luas penampang bruto dari beton = Luas dari tulangan geser yang pararel

Lebih terperinci

BAB VII PENUTUP 7.1 Kesimpulan

BAB VII PENUTUP 7.1 Kesimpulan BAB VII PENUTUP 7.1 Kesimpulan Dari keseluruhan pembahasan yang telah diuraikan merupakan hasil dari perhitungan perencanaan struktur gedung Fakultas Teknik Informatika ITS Surabaya dengan metode SRPMM.

Lebih terperinci

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03

BAB II BAB 1 TINJAUAN PUSTAKA. 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 BAB II BAB 1 TINJAUAN PUSTAKA 2.1. Peraturan-Peraturan yang Dugunakan 1. Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03 2847 2002), 2. Peraturan Pembebanan Indonesia Untuk Bangunan

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

c. Semen, pasta semen, agregat, kerikil

c. Semen, pasta semen, agregat, kerikil Hal: 1 dari 17 1. Penggunaan beton dan bahan-bahan vulkanik sebagai pembentuknya sudah dimulai sejak zaman Yunani maupun Romawi atau bahkan sebelumnya, namun penggunaan beton tersebut baru dapat berkembang

Lebih terperinci

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL DAFTAR ISI HALAMAN JUDUL HALAMAN PERSETUJUAN DOSEN PEMBIMBING HALAMAN PENGESAHAN TIM PENGUJI LEMBAR PERYATAAN ORIGINALITAS LAPORAN LEMBAR PERSEMBAHAN INTISARI ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi

Lebih terperinci

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Surat Pernyataan iv Kata Pengantar v DAFTAR ISI vii DAFTAR TABEL x DAFTAR GAMBAR xiv DAFTAR NOTASI xviii DAFTAR LAMPIRAN xxiii ABSTRAK xxiv ABSTRACT

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Perhitungan Struktur Akibat Gaya Gempa Beban gempa adalah semua beban statik ekivalen yang bekerja pada gedung tersebut atau bagian dari gedung tersebut yang menirukan pengaruh

Lebih terperinci

1.6 Tujuan Penulisan Tugas Akhir 4

1.6 Tujuan Penulisan Tugas Akhir 4 DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERSEMBAHAN i ii in KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI INTISARI v viii xii xiv xvii xxii BAB I PENDAHIJLUAN 1 1.1 Latar

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Dalam perencanaan struktur bangunan harus mengikuti peraturanperaturan pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman. Pengertian

Lebih terperinci

Struktur Balok-Rusuk (Joist) 9 BAB 3. ANALISIS DAN DESAIN Uraian Umum Tinjauan Terhadap Lentur 17

Struktur Balok-Rusuk (Joist) 9 BAB 3. ANALISIS DAN DESAIN Uraian Umum Tinjauan Terhadap Lentur 17 DAFTAR ISI HALAMAN JUDUL LEMBAR PENGESAHAN MOTTO DAN PERSEMBAHAN ABSTRAKSI PRAKATA DAFTAR -ISI i i i iii iv v vii DAFTAR NOTASI DAN SIMBOL ix DAFTAR GAMBAR xii BAB 1. TENDAHULUAN 1 1.1 Latar Belakang 1

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori BAB II Dasar Teori 2.1 Umum Jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya beberapa rintangan seperti lembah yang dalam, alur

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar :

5.2 Dasar Teori Perilaku pondasi dapat dilihat dari mekanisme keruntuhan yang terjadi seperti pada gambar : BAB V PONDASI 5.1 Pendahuluan Pondasi yang akan dibahas adalah pondasi dangkal yang merupakan kelanjutan mata kuliah Pondasi dengan pembahasan khusus adalah penulangan dari plat pondasi. Pondasi dangkal

Lebih terperinci

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan 5 II. TINJAUAN PUSTAKA A. Jembatan Jembatan adalah suatu konstruksi untuk meneruskan jalan melalui suatu rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan air / lalu lintas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG

PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG PERENCANAAN STRUKTUR GEDUNG ASRAMA MAHASISWA UNIVERSITAS DIPONEGORO SEMARANG TUGAS AKHIR Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik

Lebih terperinci

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI 03-2847-2002 ps. 12.2.7.3 f c adalah kuat tekan beton yang diisyaratkan BAB III A cv A tr b w d d b adalah luas bruto penampang beton yang

Lebih terperinci

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2)

BAB III LANDASAN TEORI. dan pasal SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2. U = 1,2 D + 1,6 L (3-2) 8 BAB III LANDASAN TEORI 3.1. Elemen Struktur 3.1.1. Kuat Perlu Kuat yang diperlukan untuk beban-beban terfaktor sesuai pasal 4.2.2. dan pasal 7.4.2 SNI 1726:2012 sebagai berikut: 1. U = 1,4 D (3-1) 2.

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG

PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG PERANCANGAN STRUKTUR GEDUNG LIPPO CENTER BANDUNG TUGAS AKHIR SARJANA STRATA SATU Oleh : KIKI NPM : 98 02 09172 UNIVERSITAS ATMA JAYA YOGYAKARTA Fakultas Teknik Program Studi Teknik Sipil Tahun 2009 PENGESAHAN

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Pada perencanaan bangunan bertingkat tinggi, komponen struktur direncanakan cukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu

Lebih terperinci

BAB V ANALISIS PEMBEBANAN

BAB V ANALISIS PEMBEBANAN BAB V ANALISIS PEMBEBANAN Analisis pembebanan pada penelitian ini berupa beban mati, beban hidup, beban angin dan beban gempa. 3,5 m 3,5 m 3,5 m 3,5 m 3,5 m 3,5 m 4,5 m 3,25 m 4,4 m 4,45 m 4 m Gambar 5.1.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung, BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara kontruksi. Struktur

Lebih terperinci

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN Diajukan oleh : ABDUL MUIS 09.11.1001.7311.046 JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa

fc ' = 2, MPa 2. Baja Tulangan diameter < 12 mm menggunakan BJTP (polos) fy = 240 MPa diameter > 12 mm menggunakan BJTD (deform) fy = 400 Mpa Peraturan dan Standar Perencanaan 1. Peraturan Perencanaan Tahan Gempa untuk Gedung SNI - PPTGIUG 2000 2. Tata Cara Perhitungan Struktur Beton Untuk Gedung SKSNI 02-2847-2002 3. Tata Cara Perencanaan Struktur

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN III.. Gambaran umum Metodologi perencanaan desain struktur atas pada proyek gedung perkantoran yang kami lakukan adalah dengan mempelajari data-data yang ada seperti gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencanaan suatu struktur bangunan gedung bertingkat tinggi sebaiknya mengikuti peraturan-peraturan pembebanan yang berlaku untuk mendapatkan suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

TUGASAKHffi PERENCANAAN STRUKTUR GEDUNG KANTOR Y.KP.P. DENGAN SISTEM PRACETAK. Luas bagian penampang antara muka serat lentur tarik dan titik berat

TUGASAKHffi PERENCANAAN STRUKTUR GEDUNG KANTOR Y.KP.P. DENGAN SISTEM PRACETAK. Luas bagian penampang antara muka serat lentur tarik dan titik berat TUGASAKHffi DAF TAR NOTASI A Luas bagian penampang antara muka serat lentur tarik dan titik berat penampang bruto (mm 2 ) Ab Luas penampang satu batang tulangan (mm 2 ) Ac Luas penampang yang menahan pemindahan

Lebih terperinci

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi BAB IV POKOK PEMBAHASAN DESAIN 4.1 Perencanaan Awal (Preliminary Design) Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi rencana struktur, yaitu pelat, balok dan kolom agar diperoleh

Lebih terperinci

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450 PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI 02-1726-2002 DAN FEMA 450 Eben Tulus NRP: 0221087 Pembimbing: Yosafat Aji Pranata, ST., MT JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB III LANDASAN TEORI. dibebani gaya tekan tertentu oleh mesin tekan.

BAB III LANDASAN TEORI. dibebani gaya tekan tertentu oleh mesin tekan. BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton Berdasarkan SNI 03 1974 1990 kuat tekan beton merupakan besarnya beban per satuan luas, yang menyebabkan benda uji beton hancur bila dibebani gaya tekan tertentu

Lebih terperinci

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR

BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR BAB III ESTIMASI DIMENSI ELEMEN STRUKTUR 3.. Denah Bangunan Dalam tugas akhir ini penulis merancang suatu struktur bangunan dengan denah seperti berikut : Gambar 3.. Denah bangunan 33 34 Dilihat dari bentuk

Lebih terperinci

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK Tugas Akhir ini diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata-1

Lebih terperinci

PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG

PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG TUGAS AKHIR Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Program Studi Teknik Sipil Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. beban angin. Menurut PPI 1983, pengertian dari beban adalah: lantai yang berasal dari barang-barang yang dapat berpindah.

BAB II TINJAUAN PUSTAKA. beban angin. Menurut PPI 1983, pengertian dari beban adalah: lantai yang berasal dari barang-barang yang dapat berpindah. BAB II TINJAUAN PUSTAKA 2.1. Dasar dasar Pembebanan Menurut Peraturan Pembebanan Indonesia (PPI) untuk gedung 1983, struktur gedung harus direncanakan terhadap beban mati, beban hidup, beban gempa dan

Lebih terperinci

Universitas Sumatera Utara

Universitas Sumatera Utara ABSTRAK Jembatan merupakan suatu struktur yang memungkinkan transportasi yang menghubungkan dua bagian jalan yang terputus melintasi sungai, danau, kali jalan raya, jalan kereta api dan lain lain. Jembatan

Lebih terperinci

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II STUDI PUSTAKA

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Definisi Jembatan merupakan satu struktur yang dibuat untuk menyeberangi jurang atau rintangan seperti sungai, rel kereta api ataupun jalan raya. Ia dibangun untuk membolehkan

Lebih terperinci

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke

BAB III LANDASAN TEORI. beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke BAB III LANDASAN TEORI 3.1. Pelat Pelat beton (concrete slabs) merupakan elemen struktural yang menerima beban hidup dan beban mati pada lantai yang selanjutnya akan disalurkan ke balok dan kolom sampai

Lebih terperinci

RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung

RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung RANGKUMAN Peraturan Pembebanan Indonesia untuk Gedung - 1983 Kombinasi Pembebanan Pembebanan Tetap Pembebanan Sementara Pembebanan Khusus dengan, M H A G K = Beban Mati, DL (Dead Load) = Beban Hidup, LL

Lebih terperinci

PRAKATA. Akhirnya penulis berharap semoga laporan tugas akhir ini dapat bermanfaat bagi semua pihak khususnya insan Teknik Sipil.

PRAKATA. Akhirnya penulis berharap semoga laporan tugas akhir ini dapat bermanfaat bagi semua pihak khususnya insan Teknik Sipil. PRAKATA Puji syukur penyusun panjatkan ke hadirat Tuhan Yang Maha Esa atas segala rahmat-nya, karena hanya atas izin-nya tugas akhir yang berjudul Perencanaan Struktur Gedung Bank Mandiri Jalan Veteran

Lebih terperinci

Jl. Banyumas Wonosobo

Jl. Banyumas Wonosobo Perhitungan Struktur Plat dan Pondasi Gorong-Gorong Jl. Banyumas Wonosobo Oleh : Nasyiin Faqih, ST. MT. Engineering CIVIL Design Juli 2016 Juli 2016 Perhitungan Struktur Plat dan Pondasi Gorong-gorong

Lebih terperinci

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal ABSTRAK Penelitian ini bertujuan untuk mengetahui beban yang mampu diterima serta pola kegagalan pengangkuran pada balok dengan beton menggunakan dan tanpa menggunakan bahan perekat Sikadur -31 CF Normal

Lebih terperinci

1. Rencanakan Tulangan Lentur (D19) dan Geser (Ø =8 mm) balok dengan pembebanan sbb : A B C 6 m 6 m

1. Rencanakan Tulangan Lentur (D19) dan Geser (Ø =8 mm) balok dengan pembebanan sbb : A B C 6 m 6 m Ujian REMIDI Semester Ganjil 013/014 Mata Kuliah : Struktur Beton Bertulang Hari/Tgl/ Tahun : Jumat, 7 Pebruari 014 Waktu : 10 menit Sifat Ujian : Tutup Buku KODE : A 1. Rencanakan Tulangan Lentur (D19)

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA

PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA PERANCANGAN STRUKTUR GEDUNG FAKULTAS KEDOKTERAN GIGI UNIVERSITAS GADJAH MADA YOGYAKARTA TUGAS AKHIR SARJANA STRATA SATU Oleh : DANY HERDIANA NPM : 02 02 11149 UNIVERSITAS ATMA JAYA YOGYAKARTA Fakultas

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Kuat Tekan Beton Sifat utama beton adalah memiliki kuat tekan yang lebih tinggi dibandingkan dengan kuat tariknya. Kekuatan tekan beton adalah kemampuan beton untuk menerima

Lebih terperinci

Perhitungan Struktur Bab IV

Perhitungan Struktur Bab IV Permodelan Struktur Bored pile Perhitungan bore pile dibuat dengan bantuan software SAP2000, dimensi yang diinput sesuai dengan rencana dimensi bore pile yaitu diameter 100 cm dan panjang 20 m. Beban yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Struktur Dalam perencaaan struktur bangunan harus mengikuti peraturan pembebanan yang berlaku untuk mendapatkan struktur bangunan yang aman. Pengertian beban adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Dalam perencanaan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku untuk mendapatkan suatu struktur bangunan yang aman secara konstruksi berdasarkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pembebanan Suatu struktur bangunan yang direncanakan harus sesuai dengan peraturan - peraturan yang berlaku, sehingga mendapatkan suatu struktur bangunan yang aman secara kontruksi.

Lebih terperinci

BAB III ANALISA PERENCANAAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR BAB III ANALISA PERENCANAAN STRUKTUR 3.1. ANALISA PERENCANAAN STRUKTUR PELAT Struktur bangunan gedung pada umumnya tersusun atas komponen pelat lantai, balok anak, balok induk, dan kolom yang merupakan

Lebih terperinci

3.1. Penyajian Laporan BAB III METODE KAJIAN. Gambar 3.1 Bagan alir metode penelitian

3.1. Penyajian Laporan BAB III METODE KAJIAN. Gambar 3.1 Bagan alir metode penelitian 3.1. Penyajian Laporan BAB III METODE KAJIAN Gambar 3.1 Bagan alir metode penelitian 7 3.2. Data Yang Diperlukan Untuk kelancaran penelitian maka diperlukan beberapa data yang digunakan sebagai sarana

Lebih terperinci

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i ) DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERSETUJUAN... iii PERNYATAAN BEBAS PLAGIARISME... iv KATA PENGANTAR... v HALAMAN PERSEMBAHAN... vii DAFTAR ISI... viii DAFTAR GAMBAR... xii

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembebanan Komponen Struktur Pada perenanaan bangunan bertingkat tinggi, komponen struktur direnanakan ukup kuat untuk memikul semua beban kerjanya. Pengertian beban itu sendiri

Lebih terperinci

BAB III METODOLOGI PERANCANGAN

BAB III METODOLOGI PERANCANGAN BAB III METODOLOGI PERANCANGAN 3.1 Diagram Alir Perancangan Mulai Pengumpulan Data Perencanaan Awal Pelat Balok Kolom Flat Slab Ramp Perhitungan beban gempa statik ekivalen Analisa Struktur Cek T dengan

Lebih terperinci

BAB V PEMBAHASAN. bahan yang dipakai pada penulisan Tugas Akhir ini, untuk beton dipakai f c = 30

BAB V PEMBAHASAN. bahan yang dipakai pada penulisan Tugas Akhir ini, untuk beton dipakai f c = 30 BAB V PEMBAHASAN 6.1 UMUM Dalam perencanaan ulang (re-desain) Bangunan Ramp Proyek Penambahan 2 Lantai Gedung Parkir Di Tanjung Priok menggunakan struktur beton bertulang, spesifikasi bahan yang dipakai

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas Teknik Program Studi Teknik Sipil

Lebih terperinci

PERBANDINGAN PERANCANGAN JUMLAH DAN LUASAN TULANGAN BALOK DENGAN CARA ACI DAN MENGGUNAKAN PROGRAM STAAD2004

PERBANDINGAN PERANCANGAN JUMLAH DAN LUASAN TULANGAN BALOK DENGAN CARA ACI DAN MENGGUNAKAN PROGRAM STAAD2004 PERBANDINGAN PERANCANGAN JUMLAH DAN LUASAN TULANGAN BALOK DENGAN CARA ACI DAN MENGGUNAKAN PROGRAM STAAD2004 Achmad Saprudin, Nurul Chayati Alumni Jurusan Teknik Sipil Fakultas Teknik UIKA Bogor Jurusan

Lebih terperinci

PERENCANAAN STRUKTUR PROYEK PEMBANGUNAN BANK DANAMON JL PEMUDA-JEPARA

PERENCANAAN STRUKTUR PROYEK PEMBANGUNAN BANK DANAMON JL PEMUDA-JEPARA TUGAS AKHIR PERENCANAAN STRUKTUR PROYEK PEMBANGUNAN BANK DANAMON JL PEMUDA-JEPARA Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata1 (S-1) Pada Jurusan Teknik Sipil Fakultas

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1)

LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) LEMBAR PENGESAHAN Tugas Akhir Sarjana Strata Satu (S-1) PERENCANAAN STRUKTUR GEDUNG B POLITEKNIK KESEHATAN SEMARANG Oleh: Sonny Sucipto (04.12.0008) Robertus Karistama (04.12.0049) Telah diperiksa dan

Lebih terperinci

BAB III LANDASAN TEORI. A. Analisis Pembetonan Struktur Portal

BAB III LANDASAN TEORI. A. Analisis Pembetonan Struktur Portal BAB III LANDASAN TEORI A. Analisis Pembetonan Struktur Portal Menurut SNI 03 2847 2013 pasal 1 menjelaskan persyaratan minimum untuk desain dan konstruksi komponen struktur yang dibangun menurut persyaratan

Lebih terperinci

Yogyakarta, Juni Penyusun

Yogyakarta, Juni Penyusun KATA PENGANTAR Assalamu Alaikum Warahmatullahi Wabarakatuh Alhamdulillah, dengan segala kerendahan hati serta puji syukur, kami panjatkan kehadirat Allah SWT, karena atas segala kasih sayang-nya sehingga

Lebih terperinci