II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi"

Transkripsi

1 II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Menurut Seyhan (1990), siklus atau daur hidrologi diberi batasan sebagai suksesi tahapan-tahapan yang dilalui air dari atmosfer ke bumi dan kembali lagi ke atmosfer yaitu mulai dari proses evaporasi dari tanah atau laut maupun air pedalaman, kondensasi untuk membentuk awan, presipitasi, akumulasi di dalam tanah maupun tubuh air, dan evaporasi kembali. Gambaran mengenai proses lengkap siklus hidrologi ditunjukkan pada Gambar 1. Presipitasi dalam segala bentuk (salju, hujan batu es, hujan, dan lan-lain) jauh ke atas vegetasi, batuan gandul, permukaan tanah, permukaan air dan saluran-saluran sungai. Air yang jatuh pada vegetasi disebut intersepsi. Sebagian presipitasi berevaporasi selama perjalanannya dari atmosfer dan sebagian pada permukaan tanah. Sebagian dari presipitasi yang membasahi permukaan tanah berinfiltrasi ke dalam tanah dan membentuk cadangan lengas tanah (soil water storage) yang kapasitasnya bergantung pada tekstur, jenis tanah dan jenis tanaman. Sebagian lagi bergerak menurun sebagai perkolasi ke dalam mintakat jenuh di bawah muka air tanah dan menjadi air tanah (groundwater). Air ini secara perlahan berpindah melalui aktifer ke saluran-saluran sungai yang disebut limpasan air tanah (groundwater runoff). Beberapa air yang berinfiltrasi bergerak menuju dasar sungai tanpa mencapai muka air tanah sebagai aliran bawah permukaan (subsurface runoff atau interflow). Air yang berinfiltrasi juga memberikan kehidupan pada vegetasi sebagai lengas tanah. Dengan bertambahnya kecepatan aliran, aliran air menjadi turbulen. Air yang mengalir ini disebut limpasan permukaan (surface runoff). Selama perjalanannya menuju dasar sungai, bagian dari limpasan permukaan disimpan pada depresi permukaan dan disebut cadangan depresi. Air pada sungai mungkin berevaporasi secara langsung ke atmosfer atau mengalir kembali ke laut dan selanjutnya berevaporasi. Selanjutnya, air ini kembali lagi ke permukaan bumi sebagai presipitasi.

2 Evaporasi Presipitasi Lautan dan Samudra Aliran sungai Debit mata air Intrusi garam Perembesan air tanah Aliran air tanah Cadangan air tanah Perkolasi Kenaikan kapiler Cadangan permukaan (danau, sungai, kanal, dan lain- Cadangan lengas tanah Leburan Salju Limpasan permukaan Infiltrasi Detensi permukaan dan cadangan depresi Cadangan salju Salju Evaporasi Presipitasi Evaporasi Presipitasi tanah Evaporasi Evaporasi Intersepsi Transpirasi Curah hujan Uap air di atmosfer Gambar 1. Bagan Alir Daur Hidrologi (Seyhan, 1990) 6

3 2.2 Neraca Air Menurut Mori (2006), dalam proses sirkulasi air, penjelasan mengenai hubungan antara aliran ke dalam (inflow) dan aliran keluar (outflow) di suatu daerah untuk suatu periode tertentu disebut neraca air. Seyhan (1990) mendefenisikan persamaan neraca air sebagai persamaan yang menggambarkan prinsip bahwa selama selang waktu tertentu, masukan air total pada suatu ruang tertentu harus sama dengan keluaran total ditambah perubahan bersih cadangan. Dalam perhitungan neraca air, penentuan jenis masukan dan keluaran air disesuaikan dengan ruang lingkup dimana neraca air akan dianalisis. Menurut Thornthwaite and Mather (1957), pada suatu daerah tangkapan, perhitungan neraca air dapat dilakukan dengan menggunakan persamaan (1). P = ET + St (1) dimana : P = presipitasi (mm/bulan) ET = evapotranspirasi (mm/bulan) St = perubahan cadangan air (mm/bulan) Presipitasi merupakan sumber utama pemasukan air pada suatu lahan yang masuk ke lahan dengan berbagai cara, misalnya dengan intersepsi dari tumbuhtumbuhan atau jatuh langsung ke tanah. Evapotranspirasi adalah hasil akumulasi dari semua jenis kehilangan air pada suatu lahan tertentu. Selisih antara nilai presipitasi dan evapotranspirasi pada suatu daerah tangkapan disebut cadangan air yang berarti jumlah masukan air total pada keseluruhan luas lahan yang dianalisis, yang masih tersedia dan dapat dimanfaatkan pada lahan tersebut (Parapat, 1997). Pada metode ini semua aliran masuk dan keluar air serta nilai kapasitas cadangan air tanah pada lokasi dengan kondisi tanaman tertentu digunakan untuk mendapatkan besarnya kadar air tanah, kehilangan air, surplus air, dan defisit air. Dalam proses analisis neraca air dengan persamaan Thornthwaite, diperlukan data curah hujan bulanan, suhu udara bulanan, penggunaan lahan, jenis atau tekstur tanah, serta letak lintang daerah tersebut. Perhitungan neraca air persamaan Thornthwaite dapat memberikan gambaran curah hujan lebih (CH lebih ) dan defisit air pada suatu kawasan. Setelah simpan air mencapai kapasitas cadangan lengas tanah (water holding capacity), 7

4 kelebihan curah hujan akan dihitung sebagai CH lebih. Air ini merupakan kelebihan setelah air tanah terisi kembali. Dengan demikian CH lebih dihitung sebagai nilai curah hujan dikurangi dengan nilai evapotranspirasi dan perubahan kadar air tanah. Selanjutnya, CH lebih akan menjadi limpasan dan pengisian air tanah. Surplus air dapat ditentukan dengan persamaan (2). S = P ETP - St (2) dimana : S = Surplus/ CH lebih (mm/bulan) Jika curah hujan yang turun lebih kecil dari evapotranspirasi aktual, akan terjadi defisit air. Nilai defisit air merupakan jumlah air yang perlu ditambahkan untuk memenuhi keperluan evapotrasnpirasi potensial (ETP) tanaman. Defisit air adalah selisih antara nilai evapotranspirasi potensial (ETP) dan evapotranspirasi aktual (ETA) yang ditunjukkan dengan persamaan (3). D = ETA - ETP.. (3) dimana : D = defisit air (mm/bulan) Menurut Thornthwaite and Mather (1957), mayoritas stasiun iklim hanya memiliki satu jenis musim, musim kering atau musim basah. Pada wilayah kering, curah hujan tidak cukup untuk mengembalikan lengas tanah pada kapasitas maksimum. Pada wilayah ini, selalu terjadi defisit air pada akhir periode. Sebaliknya, pada daerah daerah basah, nilai defisit air selalu nol pada akhir periode Presipitasi Mori (2006) mendefenisikan presipitasi sebagai uap yang mengkondensasi dan jatuh ke tanah dalam rangkaian proses siklus hidrologi. Jumlah presipitasi selalu dinyatakan dalam satuan mm/bulan. Seyhan (1990) menyatakan bentukbentuk presipitasi vertikal antara lain hujan, hujan gerimis, salju, hujan es batu dan sleet (campuran hujan dan salju). Sifat-sifat hujan yang penting sehubungan dengan proses terjadinya adalah jumlah dan intensitas hujan, lama hujan, serta pola distribusi hujan. Sifat-sifat tersebut mempengaruhi debit dan volume aliran permukaan (Hardjoamidjojo dan Sukartaatmadja dalam Parapat, 1997). Untuk mempelajari keadan suatu daerah 8

5 tangkapan sehubungan dengan curah hujannya, data curah hujan yang digunakan adalah data curah hujan daerah yang ditentukan dari beberapa stasiun di daerah tersebut Evapotranspirasi Peristiwa air atau es menjadi uap dan naik ke udara disebut penguapan. Penguapan terjadi pada permukaan air, permukaan tanah, padang rumput persawahan, hutan, dan lain-lain pada tiap keadaan suhu, sampai udara di atas permukaan menjadi jenuh dengan uap. Kecepatan dan jumlah penguapan tergantung dari suhu, kelembaban, kecepatan angin, dan tekanan atmosfer (Mori, 2006). Menurut Eagleson dalam Seyhan (1990), tidak semua presipitasi yang mencapai permukaan secara langsung berinfiltrasi ke dalam tanah atau melimpas di atas permukaan tanah. Sebagian dari total presipitasi, secara langsung atau setelah memenuhi simpanan permukaan dan bawah permukaan, hilang dalam bentuk evapotranspirasi. Evapotranspirasi merupakan gabungan dari evaporasi dan transpirasi. Evaporasi merupakan proses dimana air menjadi uap, sedangkan transpirasi adalah proses dimana air menjadi uap melalui metabolisme tanaman (Mori, 2006). Ada dua istilah evapotranspirasi yang umum digunakan yaitu evapotranspirasi aktual dan potensial. Evapotranspirasi aktual adalah air yang dikeluarkan yang tergantung pada kelembaban udara, suhu, dan kelembaban relatif. Evapotranspirasi aktual merupakan nilai evapotranspirasi yang sebenarnya terjadi pada suatu daerah. Sedangkan evapotranspirasi potensial adalah sejumlah air yang menguap di bawah kondisi optimal diantara persediaan air yang terbatas. Pendugaan besarnya evapotranspirasi dapat dilakukan dengan beberapa metode antara lain adalah metode Blaney Criddle, metode Thonthwaite, metode keseimbangan energi, metode Penman, metode korelasi dengan pengukuran evaporasi dan metode radiasi. Menurut Doorenbos and Pruitt (1977), untuk wilayah dimana terdapat data suhu, kelembaban, arah dan kecepatan angin, dan lama penyiranan matahari, disarankan untuk menggunakan metode Penman. Dibanding dengan metode yang lain, metode ini dianggap memberikan hasil yang 9

6 memuaskan. Pendugaan nilai evapotranspirasi dengan metode Penman menggunakan persamaan (4). ETo = c [W.Rn + (1-W).f(u).(ea-ed)].. (4) dimana : ETo = evapotransirasi tanaman acuan (mm/hari) W = suhu-berhubungan dengan faktor pembobot Rn = lama penyinaran matahari setara dengan evaporasi (mm/hari) F(u) = faktor kecepatan angin Ea-ed = perbedaan antara tekanan jenuh dan aktual rata-rata c = faktor penyesuaian Untuk mengetahui nilai ET tanaman tertentu, ETo dikalikan dengan nilai Kc yakni koefisien tanaman yang tergantung pada jenis tanaman dan tahap pertumbuhan. Nilai Kc tersedia untuk setiap jenis tanaman. Perhitungan nilai ETc dapat dilihat pada persamaan (5). Nilai ETc dapat dikonversi kedalam satuan mm/ bulan dengan cara mengalikan nilai ETc (mm/hari) dengan jumlah hari tertentu dalam suatu bulan. ETc = Kc. ETo (5) dimana : ETc = Evapotranspirasi potensial tanaman (mm/hari) Kc = koefisien pertanaman Simpanan Air (Water Storage) Simpanan atau cadangan air merupakan besaran yang menunjukkan jumlah air tersedia di dalam suatu batasan ruang tertentu, yang merupakan hasil interaksi antara aliran masuk dan aliran keluar pada ruang tersebut. Bagi suatu daerah perakaran, bila dipandang sebagai ruang tempat terjadinya proses neraca air, besarnya cadangan lengas tanah maksimum adalah hasil perkalian antara jumlah air yang tersedia dengan kedalaman zona perakaran (Parapat, 1997). Menurut Thornthwaite and Mather (1957), kapasitas cadangan lengas tanah bergantung pada dua faktor yaitu jenis dan struktur tanah serta jenis tanaman yang terdapat pada permukaan tanah tersebut. Sebagai contoh, tanah 10

7 berpasir hanya dapat menahan air sekitar satu sampai dua cm tiap 30 cm, sedangkan untuk tanah liat dapat menahan lebih dari 10 cm tiap 30 cm. Selain itu, perbedaan jenis tanaman juga menentukan kedalaman akar yang dapat dicapai oleh tanaman tersebut. Tanaman sayuran seperti bayam, buncis, dan lain-lain hanya dapat menyimpan air dalam jumlah kecil sesuai dengan kedalaman akar yang dangkal. Sebaliknya tanaman seperti pohon, perdu, rumput dapat menyimpan air dalam jumlah yang jauh lebih besar sesuai kedalaman akarnya dibanding tanaman sayuran. Namun, jenis tanaman yang sama pun akan menghasilkan kapasitas cadangan lengas tanah yang berbeda pula jika ditanam pada jenis tanah yang berbeda. Menurut Zelfi dalam Parapat (1997), besarnya cadangan lengas tanah pada suatu daerah perakaran dapat berubah-ubah dan dipengaruhi oleh kapasitas infiltrasi serta daya menahan air oleh tanah. Perubahan ini diidentifikasikan dengan adanya perubahan kelembaban pada zona perakaran. Menurut Thonthwaite and Mather (1957), kapasitas simpanan air tanah (Sto) dihitung dengan persamaan (6) STo = (KL fc KL wp )x dz (6) dimana : KL fc = kadar lengas tanah kapasitas lapang (mm) KLwp = kadar lengas tanah titik layu permanen (mm) dz = kedalaman jeluk tanah (mm) Dalam estimasi cadangan lengas tanah pada suatu daerah perakaran tertentu untuk periode tertentu, penentuan nilai daya menahan air oleh tanah adalah suatu hal yang sulit karena ditentukan oleh dua faktor yaitu klasifikasi tanaman dan tektur tanah (Thonthwaite and Mather, 1957). Untuk itu Thornthwaite and Mather (1957) telah memberikan pedoman untuk menentukan nilai kapasitas cadangan lengas tanah di daerah seperti terlihat pada Tabel 1. Analisa perubahan cadangan lengas tanah pada suatu daerah, dapat dilakukan dengan menggunakan persamaan (7). ST = ST i ST (i-1) (7) ST i = cadangan lengas tanah pada bulan ke-i (mm/bulan) 11

8 Tabel 1. Nilai kapasitas cadangan lengas tanah pada beberapa kombinasi tekstur tanah dan klasifikasi tanaman Klasifikasi tanaman Tanaman berakar dangkal Tanaman berakar sedang Tanaman berakar dalam Tanaman buahbuahan Tekstur tanah Air tersedia (mm/ m) Daerah perakaran (m) Cadangan lengas tanah (mm) Pasir halus Lempung berpasir halus Lempung berdebu Lempung berliat Liat Pasir halus Lempung berpasir halus Lempung berdebu Lempung berliat Liat Pasir halus Lempung berpasir halus Lempung berdebu Lempung berliat Liat Pasir halus Lempung berpasir halus Lempung berdebu Lempung berliat Liat Tanaman hutan Pasir halus Sumber : Thornthwaite and Mather, 1957 Lempung berpasir halus Lempung berdebu Lempung berliat Liat Thonthwaite and Mather (1957) telah mengembangkan suatu metode penghitungan neraca air yang lebih kompleks daripada metode aljabar sederhana terdahulu. Pada metode ini semua aliran masuk dan keluar air serta nilai kapasitas cadangan lengas tanah pada lokasi dengan kondisi tanaman tertentu digunakan untuk mendapatkan besarnya nilai cadangan lengas tanah, kehilangan air, CH lebih dan defisit cadangan air, limpasan dan pertambahan muka air tanah (dangkal) pada lokasi tersebut untuk setiap bulannya. Perhitungannya memerlukan 12

9 keterangan mengenai jenis tanaman, tekstur tanah dan kapasitas cadangan lengas tanah. Hasil perhitungannya akan memberikan gambaran kondisi neraca air tahunan yang lengkap untuk suatu lokasi dan dapat dijadikan acuan untuk perencanaan selanjutnya. Kapasitas simpan air akan bergantung dengan laju infiltrasi yang terjadi. Infiltrasi adalah peristiwa masuknya air ke dalam tanah, yang umumnya melalui permukaan dan secara vertikal. Sedangkan laju infiltrasi (infiltration rate) adalah banyaknya air per satuan waktu yang masuk melalui permukaan tanah, dinyatakan dalam mm/ jam. Kemampuan tanah untuk menyerap air infiltrasi pada suatu saat disebut kapasitas infiltrasi (Arsyad, 2006). Menurut Lee (1988), air yang berinfiltrasi ke dalam tanah dapat mengalir secara cepat sebagai aliran dalam (interflow), berperkolasi ke lapisan batuan di bawahnya dan reservoir air tanah, atau disimpan sementara waktu sebagai lengas tanah. Lengas tanah memainkan fungsi-fungsi yang vital dalam melarutkan unsur-unsur hara dan menyokong kehidupan tanaman. Akan tetapi secara hidrologis, lengas tanah merupakan suatu reservoir simpan yang naik turun secara cepat akibat penyerapan air oleh akarakar tanaman untuk transpirasi dan evaporasi langsung dari permukaan. Setelah kapasitas pada daerah perakaran terpenuhi, air akan mengalami perkolasi dan menjadi air tanah. Menurut Schwab et al (1960), air tanah (groundwater) merupakan air yang tersedia di bawah permukaan. Air tanah dihasilkan dari presipitasi yang mencapai batas jenuh air bawah permukaan melalui infiltrasi dan perkolasi. Air tanah dipergunakan untuk banyak hal antara lain sumur, sumber mata air dan sumber penampungan air. Di banyak wilayah, air tanah merupakan sumber air utama sehingga penggunaan atau penarikan air jauh lebih cepat dibanding pengisiannya melalui infiltrasi dan perkolasi. Hal ini yang penting diperhatikan dalam konservasi air. Air yang bergerak di tanah melalui bawah perakaran tanaman menuju lapisan batuan bawah disebut perkolasi dalam. Sebagian besar air yang mengalami perkolasi akan mencapai batas jauh di bawah wilayah perakaran dan akan mengisi cadangan air tanah. Proses ini disebut pengisian air tanah. Air tanah terdiri dari kurang lebih 4% dari total air yang ada dalam siklus air (Ward and Trimble, 1995). 13

10 2.2.4 Limpasan Jika intensitas curah hujan maupun lelehan salju melebihi laju infiltrasi, kelebihan air mulai berakumulasi sebagai cadangan permukaan. Bila kapasitas cadangan permukaan dilampaui, limpasan permukaan mulai sebagai suatu aliran lapisan yang tipis. Seyhan (1990) mendefenisikan limpasan sebagai bagian presipitasi yang terdiri atas gerakan gravitasi air baik kontribusi-kontribusi permukaan dan bawah permukaan yang nampak pada saluran permukaan dari bentuk permanen maupun terputus-putus. Menurut Schwab, et al (1981), limpasan (run off) adalah bagian dari presipitasi yang mengalir menuju saluran saluran, sungai, danau dan laut. Dalam hal ini, limpasan pada permukaan juga termasuk ke dalamnya. Faktor-faktor yang mempengaruhi limpasan terdiri dari dua hal utama yaitu presipitasi dan daerah aliran sungai (DAS). Durasi, intensitas serta sebaran curah hujan mempengaruhi laju dan volume limpasan. Faktor-faktor DAS yang mempengaruhi limpasan antara lain ukuran, bentuk, arah, topografi, geologi dan tutupan permukaan. Laju dan volume limpasan meningkat sebandingan dengan peningkatan luas DAS. DAS yang sempit akan menyebabkan laju limpasan lebih rendah dibanding pada DAS yang padat dalam luasan yang sama. Tutupan vegetasi dapat memperlambat aliran permukaan dan meningkatkan daya tahan tanah terhadap air sehingga dapat mengurangi laju limpasan puncak. Karakteristik limpasan dalam sebuah DAS dalam kaitannya dengan penutupan vegetasi ditunjukkan pada Tabel 2. Mori (2006) mengklasifikasikan limpasan ke dalam tiga bentuk yaitu limpasan permukaan, limpasan bawah permukaan dan limpasan air tanah. Limpasan permukaan adalah bagian limpasan yang melintas di atas permukaan tanah menuju saluran sungai. Limpasan bawah permukaan adalah bagian dari limpasan permukaan yang disebabkan oleh presipitasi yang berinfiltrasi ke tanah permukaan dan bergerak secara lateral melalui horison-horison tanah bagian atas menuju sungai (Chow dalam Seyhan, 1990). Limpasan air tanah adalah air tanah yang bergerak sedikit demi sedikit muncul ke permukaan pada daerah yang lebih rendah. 14

11 Tabel 2. Karakteristik hasil limpasan Karakteristik DAS Penutupan Lahan Limpasan yang dihasilkan 100 (ekstrim) 75 (tinggi) 50 (normal) 25 (rendah) tidak ada penutupan tanaman yang efektif ; lahan gundul, penutupan yang jarang Sumber : Schwab et al(1981) buruk menuju cukup; areal pertanian murni, miskin akan pentutupan vegetasi alami, kurang dari 10% dari wilayah drainase berada dalam kondisi tidak baik Cukup menuju baik ; sekitar 50% wilayah drainase terdiri dari komposisi padang rumput yang baik, areal hutan yang baik, atau tutupan lahan sejenisnya, serta tidak lebih dari 50% areal lahan merupakan areal pertanian murni baik menuju sangat baik ; sekitar 90% area drainase merupakan komposisi padang rumput yang baik, areal hutan yang baik, atau tutupan lahan sejenisnya. Menurut Troeh et al (2004), limpasan DAS (meliputi limpasan permukaan dan bawah permukaan) pada penelitian di benua Amerika memiliki kisaran antara 2,4-57%. Limpasan dipengaruhi oleh intensitas hujan, sifat-sifat tanah, susunan lahan, dan tutupan vegetasi. Limpasan yang melebihi 75% dari total curah hujan merupakan limpasan karena miskinnya vegetasi. Untuk menduga besaran limpasan yang terjadi di suatu kawasan, perlu diketahui nilai koefisien aliran permukaan. Schwab et al (1981) menyatakan bahwa koefisien aliran permukaan (C) didefenisikan sebagai nisbah laju puncak aliran permukaan terhadap intensitas hujan. Faktor utama yang mempengaruhi C adalah laju infiltrasi tanah, tanaman penutup dan intensitas hujan. Nilai C untuk daerah urban tertera pada Tabel Konservasi Tanah dan Air Menurut Arsyad (2006), konservasi tanah dalam arti yang luas adalah penempatan setiap bidang tanah pada cara penggunaan yang sesuai dengan kemampuan tanah tersebut dan memperlakukannya sesuai dengan syarat syarat yang diperlukan agar tidak terjadi kerusakan tanah. Sedangkan konservasi air pada prinsipnya adalah penggunaan air hujan yang jatuh ke tanah untuk pertanian seefisien mungkin dan mengatur waktu aliran agar tidak terjadi banjir yang merusak serta menjaga ketersediaan air agar tetap cukup pada waktu musim kemarau. 15

12 Tabel 3. Koefisien aliran permukaan (C ) untuk daerah urban Macam Daerah Koefisien C 1. Daerah perdagangan : - Pertokoan (down town) Pinggiran Pemukiman : - Perumahan satu keluarga Perumahan berkelompok, terpisah pisah Perumahan berkelompok, bersambungan Suburban Daerah apartemen Industri : - Daerah industri ringan Daerah industri berat Taman, pekuburan Tempat bermain Daerah stasiun kereta api Daerah belum diperbaiki Jalan Bata : - Jalan, hamparan Atap Sumber : Schwab, et al (1981) Konservasi tanah mempunyai hubungan yang sangat erat dengan konservasi air. Setiap perlakuan yang diberikan pada sebidang tanah akan mempengaruhi tata air pada tempat itu dan tempat-tempat hilirnya (Arsyad, 2006). Evaluasi lahan merupakan salah satu komponen yang penting dalam proses perencanaan penggunaan lahan (landuse planning). Hasil evaluasi lahan memberikan alternatif penggunaan lahan dan batas-batas kemungkinan penggunaannya serta tindakan-tindakan pengelolaan yang diperlukan agar lahan dapat digunakan secara lestari (Arsyad, 2006). Menurut Suripin (2004), strategi konservasi tanah harus mengarah pada beberapa hal antara lain melindungi tanah dari hantaman air hujan dengan penutup permukaan tanah, mengurangi aliran permukaan dengan meningkatkan kapasitas infiltrasi, meningkatkan stabilitas agregat tanah dan mengurangi kecepatan aliran permukaan dengan meningkatkan kekasaran permukaan lahan. Secara garis besar metode konservasi tanah dapat dikelompokkan menjadi tiga golongan utama yaitu secara agronomis, mekanis dan kimia. 16

13 Metode agronomis adalah memanfaatkan vegetasi untuk membantu menurunkan erosi lahan. Metode mekanis atau fisik adalah konservasi yang berkonsentrasi pada penyiapan tanah supaya dapat ditumbuhi vegetasi yang lebat dan penyiapan topografi mikro untuk mengendalikan aliran air dan angin. Sedangkan metode kimia adalah usaha konservasi yang ditujukan untuk memperbaiki struktur tanah sehingga lebih tahan terhadap erosi. Secara singkat dapat dikatakan metode agronomis ini merupakan usaha untuk melindungi tanah, mekanis untuk mengendalikan energi aliran permukaan yang erosif dan metode kimia untuk meningkatkan daya tahan tanah. Konservasi secara mekanis mempuyai fungsi untuk memperlambat aliran permukaan, menampung dan mengalirkan aliran permukaan sehingga tidak merusak, memperbesar kapasitas infiltrasi air ke dalam tanah dan memperbaiki aerasi tanah serta menyediakan air bagi tanaman. Menurut Arsyad (2006), aliran permukaan pada tanah terbuka (tanpa tumbuhan) setelah hujan dan tanpa hujan sehari sebelumnya jauh lebih besar dari tanah yang tertutup hutan atau padang rumput. Schwab et al (1981) menyatakan bahwa tutupan vegetasi dapat memperlambat aliran permukaan dan meningkatkan daya tahan tanah terhadap air pada suatu kawasan. Menurut Troeh, et al (2004), tanaman dapat menahan (intersepsi) air hujan sehingga memudahkan penyerapan air oleh tanah. Dengan begitu, air hujan akan dapat terinfiltrasi lebih banyak di tanah dibanding menjadi limpasan. Tanah sendiri bertindak sebagai penampung air dan ini bermanfaat bagi konservasi air. Berkurangnya limpasan sama artinya dengan konservasi tanah. Topografi tanah, kedalaman, permeabilitas, tekstur, struktur dan kesuburan adalah faktor penting yang mempengaruhi konservasi. Penutupan lahan dengan vegetasi yang berlimpah dapat membatasi laju erosi. Pengolahan lahan, penambangan, penebangan hutan, aktivitas pembangunan dan kebakaran yang mengurangi atau merusak vegetasi akan menyebabkan laju erosi meningkat. Kepadatan penutupan vegetasi merupakan salah satu jenis penutupan lahan yang penting. Zöbisch dalam Troeh et al (2004) dalam penelitiannya di Kenya menemukan titik batas penutupan vegetasi yang dapat menahan erosi yaitu 40%. Laju erosi akan meningkat seiring dengan pengurangan komposisi penutupan 17

14 vegatasi di bawah 40%. Duley and Kelly dalam Troeh et al (2004) membuktikan bahwa material vegetasi yang telah mati di permukaan tanah dapat meningkatkan laju infilttrasi dan menurunkan limpasan dan erosi. Kerusakan yang terjadi akibat erosi adalah kehilangan tanah, hilangnya tanah produktif, sedimentasi, polusi air dan udara dan sebagainya. Kegiatan manusia yang dapat menimbulkan erosi air maupun tanah antara lain pembangunan gedung, jalan, pengoperasian tambang dan lain-lain. Penanaman vegetasi dalam proyek-proyek tersebut dapat mengurangi erosi, sedimentasi dan masalah polusi lainnya. Salah satu rekomendasi yang dapat diberikan dalam konservasi tanah dan air khususnya untuk daerah urban adalah dengan memberikan komposisi tutupan vegetasi yang tepat. Tutupan vegetasi di kawasan perumahan dapat dimodifikasi dalam bentuk ruang terbuka hijau (RTH). Menurut Oesman (2007), ruang terbuka hijau terdiri dari taman kota, taman rekreasi, lapangan olah raga, pemakaman, cagar alam, suaka margasatwa, kebun raya, taman hutan rakyat, sempadan sungai, danau, waduk dan pantai Kondisi Ideal Daerah Aliran Sungai (DAS) Menurut Asdak (2007), dalam suatu DAS, perubahan indikator hidrologis dapat disebabkan oleh faktor input alamiah dan input artifisial atau buatan. Paramater hidrologis yang dapat dimanfaatkan untuk menelaah kondisi suatu DAS adalah data klimatologi (curah hujan, suhu, klimatologi), limpasan (run off), debit sungai, sedimentasi, potensi air tanah, koefisien regim sungai, koefisien limpasan, nisbah debit maksimum-minimum serta frekuensi dan periode banjir. Kondisi DAS dianggap normal apabila : 1. koefisien limpasan berfluktuasi secara normal (nilai C dari sungai utama di DAS yang bersangkutan dari tahun ke tahun cenderung kurang lebih sama besarnya) 2. angka koefisien varians (CV) debit aliran kecil (lebih kecil dari 10%) 3. angka koefisien regim sungai (nisbah Qmax/Qmin) juga normal (tidak terus naik dari tahun ke tahun) Menurut Falkenmark and Rockström (2004), kondisi yang biasa terjadi pada faktor curah hujan dan komponennya termasuk limpasan, pengisian air tanah 18

15 dan evapotrasnpirasi tergantung pada tipe daerah iklim dan zona penutupan lahan. Tipe pembagian curah hujan dalam komponen-komponennya untuk beberapa pembagian wilayah di dunia (rata-rata tahunan dalam mm) dapat dilihat pada Tabel 4. Tabel 4. Tipe pembagian curah hujan dalam komponen-komponennya untuk beberapa pembagian wilayah di dunia (rata-rata tahunan dalam mm) Daerah iklim Zona Curah hujan (mm/ tahun) Limpasan (mm/tahun) Air tanah (mm/tahun) Total Evapotrasnpirasi (mm/tahun) Subtropical dan tropical Desert Savanna Dry subhumid savanna Wet savanna Subartic temperate Tundra Taiga Mixed Forest Wooded Equatorial Steppes Wet evergreen equatorial forest Sumber : L vovich dalam Falkenmark and Rockström (2004) 19

II. TINJAUAN PUSTAKA 2.1 SIKLUS HIDROLOGI 2.2 DAERAH ALIRAN SUNGAI

II. TINJAUAN PUSTAKA 2.1 SIKLUS HIDROLOGI 2.2 DAERAH ALIRAN SUNGAI II. TINJAUAN PUSTAKA 2.1 SIKLUS HIDROLOGI Persediaan air segar dunia hampir seluruhnya didapatkan dalam bentuk hujan sebagai hasil dari penguapan air laut. Proses proses yang tercakup dalam peralihan uap

Lebih terperinci

AKIBAT PERUBAHAN KAPASITAS SIMPAN AIR PEMBANGUNAN KAWASAN BOGOR NIRWANA RESIDENCE SKRIPSI. Oleh : LISMA SAFITRI F

AKIBAT PERUBAHAN KAPASITAS SIMPAN AIR PEMBANGUNAN KAWASAN BOGOR NIRWANA RESIDENCE SKRIPSI. Oleh : LISMA SAFITRI F AKIBAT PERUBAHAN KAPASITAS SIMPAN AIR PEMBANGUNAN KAWASAN BOGOR NIRWANA RESIDENCE SKRIPSI Oleh : LISMA SAFITRI F14053278 DEPARTEMEN TEKNIK PERTANIANN FAKULTAS TEKNOLOGI PERTANIANN INSTITUT PERTANIAN BOGOR

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Daerah Aliran Sungai

TINJAUAN PUSTAKA. 2.1 Daerah Aliran Sungai II. TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Menurut Manan (1976) Daerah Aliran Sungai (DAS) dapat didefinisikan sebagai areal yang dibatasi oleh pemisah topografis yang menampung, menyimpan dan mengalirkan

Lebih terperinci

TINJAUAN PUSTAKA. Neraca Air

TINJAUAN PUSTAKA. Neraca Air TINJAUAN PUSTAKA Neraca Air Neraca air adalah model hubungan kuantitatif antara jumlah air yang tersedia di atas dan di dalam tanah dengan jumlah curah hujan yang jatuh pada luasan dan kurun waktu tertentu.

Lebih terperinci

ANALISIS KAPASITAS SIMPAN AIR PADA DAS CISARUA, KABUPATEN BOGOR ABDUL AZIZ

ANALISIS KAPASITAS SIMPAN AIR PADA DAS CISARUA, KABUPATEN BOGOR ABDUL AZIZ ANALISIS KAPASITAS SIMPAN AIR PADA DAS CISARUA, KABUPATEN BOGOR ABDUL AZIZ DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Menurut (Triatmodjo, 2008:1).Hidrologi merupakan ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya. Penerapan ilmu hidrologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Dalam konteksnya sebagai sistem hidrologi, Daerah Aliran Sungai didefinisikan sebagai kawasan yang terletak di atas suatu titik pada suatu sungai yang oleh

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA BAB II. TINJAUAN PUSTAKA 2.1 Definisi Daerah Aliran Sungai (DAS) Definisi daerah aliran sungai dapat berbeda-beda menurut pandangan dari berbagai aspek, diantaranya menurut kamus penataan ruang dan wilayah,

Lebih terperinci

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK II. TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK DAS Citarum merupakan DAS terpanjang terbesar di Jawa Barat dengan area pengairan meliputi Kabupaten Bandung, Bandung Barat, Bekasi, Cianjur, Indramayu,

Lebih terperinci

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan PENDAHULUAN Latar Belakang Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan gletser (2,15%), air artesis (0,62%) dan air lainnya (0,03%). Air lainnya ini meliputi danau air tawar

Lebih terperinci

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya,

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifatsifatnya dan hubungan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 )

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 ) II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Pada umumnya ketersediaan air terpenuhi dari hujan. Hujan merupakan hasil dari proses penguapan. Proses-proses yang terjadi pada peralihan uap air dari laut ke

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi dan Neraca air Menurut Mori (2006) siklus air tidak merata dan dipengaruhi oleh kondisi meteorologi (suhu, tekanan atmosfir, angin, dan lain-lain) dan kondisi

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan Curah hujan adalah volume air yang jatuh pada suatu areal tertentu (Arsyad, 2010). Menurut Tjasyono (2004), curah hujan yaitu jumlah air hujan yang turun pada

Lebih terperinci

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37 BAB I PENDAHULUAN 1.1 Latar Belakang Hujan adalah jatuhnya air hujan dari atmosfer ke permukaan bumi dalam wujud cair maupun es. Hujan merupakan faktor utama dalam pengendalian daur hidrologi di suatu

Lebih terperinci

TINJAUAN PUSTAKA Siklus Hidrologi

TINJAUAN PUSTAKA Siklus Hidrologi 4 TINJAUAN PUSTAKA Siklus Hidrologi Siklus hidrologi merupakan perjalanan air dari permukaan laut ke atmosfer kemudian ke permukaan tanah dan kembali lagi ke laut yang terjadi secara terus menerus, air

Lebih terperinci

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat 4 II. TINJAUAN PUSTAKA A. Jagung Jagung merupakan tanaman yang dapat hidup di daerah yang beriklim sedang sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat membutuhkan sinar matahari

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Perbandingan Evapotranspirasi Tanaman Acuan Persyaratan air tanaman bervariasi selama masa pertumbuhan tanaman, terutama variasi tanaman dan iklim yang terkait dalam metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Hidrologi adalah ilmu yang menjelaskan tentang kehadiran dan gerakan air di alam, yang meliputi bentuk berbagai bentuk air, yang menyangkut perubahan-perubahannya antara

Lebih terperinci

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air.

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. BAB I SIKLUS HIDROLOGI A. Pendahuluan Ceritakan proses terjadinya hujan! Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. Tujuan yang ingin dicapai

Lebih terperinci

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI Oleh : FIRDAUS NURHAYATI F14104021 2008 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 1 PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Hubungan Curah Hujan dengan Koefisien Regim Sungai (KRS) DAS Ciliwung Hulu Penggunaan indikator koefisien regim sungai pada penelitian ini hanya digunakan untuk DAS Ciliwung

Lebih terperinci

Universitas Gadjah Mada

Universitas Gadjah Mada II. DAUR HIDROLOGI A. Siklus Air di Bumi Air merupakan sumberdaya alam yang sangat melimpah yang tersebar di berbagai belahan bumi. Di bumi terdapat kurang lebih 1,3-1,4 milyard km 3 air yang terdistribusi

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat-sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

PERTEMUAN II SIKLUS HIDROLOGI

PERTEMUAN II SIKLUS HIDROLOGI PERTEMUAN II SIKLUS HIDROLOGI SIKLUS HIDROLOGI Siklus Hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi

Lebih terperinci

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban.

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban. BAB III METODOLOGI 3.1 Umum Metodologi merupakan suatu penyelidikan yang sistematis untuk meningkatkan sejumlah pengetahuan, juga merupakan suatu usaha yang sistematis dan terorganisasi untuk menyelidiki

Lebih terperinci

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993).

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993). batas topografi yang berarti ditetapkan berdasarkan aliran air permukaan. Batas ini tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian

Lebih terperinci

HUBUNGAN TANAH - AIR - TANAMAN

HUBUNGAN TANAH - AIR - TANAMAN MINGGU 2 HUBUNGAN TANAH - AIR - TANAMAN Irigasi dan Drainasi Widianto (2012) TUJUAN PEMBELAJARAN 1. Memahami sifat dan karakteristik tanah untuk menyediakan air bagi tanaman 2. Memahami proses-proses aliran

Lebih terperinci

θ t = θ t-1 + P t - (ETa t + Ro t ) (6) sehingga diperoleh (persamaan 7). ETa t + Ro t = θ t-1 - θ t + P t. (7)

θ t = θ t-1 + P t - (ETa t + Ro t ) (6) sehingga diperoleh (persamaan 7). ETa t + Ro t = θ t-1 - θ t + P t. (7) 7 Persamaan-persamaan tersebut kemudian dikonversi menjadi persamaan volumetrik (Persamaan 5) yang digunakan untuk mendapatkan nilai kadar air tanah dalam % volume. 3.3.5 Pengukuran Curah Hujan dan Tinggi

Lebih terperinci

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air BAB I PENDAHULUAN I. Umum Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air laut, 1,75% berbentuk es dan 0,73% berada di daratan sebagai air sungai, air danau, air tanah dan sebagainya.

Lebih terperinci

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di II. TINJAUAN PUSTAKA A. Embung Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di Daerah Pengaliran Sungai (DPS) yang berada di bagian hulu. Konstruksi embung pada umumnya merupakan

Lebih terperinci

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS BAB II DASAR TEORI 2.1 Perhitungan Hidrologi 2.1.1 Curah hujan rata-rata DAS Beberapa cara perhitungan untuk mencari curah hujan rata-rata daerah aliran, yaitu : 1. Arithmatic Mean Method perhitungan curah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Siklus hidrologi (hydrological cycle) merupakan rangkaian proses perubahan fase dan pergerakan air dalam suatu sistem hidrologi (Hendrayanto 2009). Menurut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Umum merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan

Lebih terperinci

Daur Siklus Dan Tahapan Proses Siklus Hidrologi

Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Hidrologi Siklus hidrologi adalah perputaran air dengan perubahan berbagai bentuk dan kembali pada bentuk awal. Hal ini menunjukkan bahwa volume

Lebih terperinci

Lebih dari 70% permukaan bumi diliputi oleh perairan samudra yang merupakan reservoar utama di bumi.

Lebih dari 70% permukaan bumi diliputi oleh perairan samudra yang merupakan reservoar utama di bumi. Sekitar 396.000 kilometer kubik air masuk ke udara setiap tahun. Bagian yang terbesar sekitar 333.000 kilometer kubik naik dari samudera. Tetapi sebanyak 62.000 kilometer kubik ditarik dari darat, menguap

Lebih terperinci

Surface Runoff Flow Kuliah -3

Surface Runoff Flow Kuliah -3 Surface Runoff Flow Kuliah -3 Limpasan (runoff) gabungan antara aliran permukaan, aliran yang tertunda ada cekungan-cekungan dan aliran bawah permukaan (subsurface flow) Air hujan yang turun dari atmosfir

Lebih terperinci

KEMAMPUAN LAHAN UNTUK MENYIMPAN AIR DI KOTA AMBON

KEMAMPUAN LAHAN UNTUK MENYIMPAN AIR DI KOTA AMBON KEMAMPUAN LAHAN UNTUK MENYIMPAN AIR DI KOTA AMBON Christy C.V. Suhendy Dosen Fakultas Pertanian Universitas Pattimura Ambon e-mail: cherrzie@yahoo.com ABSTRACT Changes in land use affects water availability

Lebih terperinci

I. PENDAHULUAN I.1 Latar Belakang I.2 Tujuan II. TINJAUAN PUSTAKA 2.1 Daur Hidrologi

I. PENDAHULUAN I.1 Latar Belakang I.2 Tujuan II. TINJAUAN PUSTAKA 2.1 Daur Hidrologi I. PENDAHULUAN I.1 Latar Belakang Jakarta adalah sebuah provinsi sekaligus ibukota Indonesia. Kedudukannya yang khas baik sebagai ibukota negara maupun sebagai ibukota daerah swantantra, menjadikan Jakarta

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Hidrologi Siklus hidrologi menunjukkan gerakan air di permukaan bumi. Selama berlangsungnya Siklus hidrologi, yaitu perjalanan air dari permukaan laut ke atmosfer kemudian ke

Lebih terperinci

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det DEBIT ANDALAN Debit Andalan (dependable discharge) : debit yang berhubungan dgn probabilitas atau nilai kemungkinan terjadinya. Merupakan debit yg kemungkinan terjadinya sama atau melampaui dari yg diharapkan.

Lebih terperinci

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*)

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*) PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS Oleh: Suryana*) Abstrak Pengelolaan Daerah Aliran Sungai (DAS) dilakukan secara integratif dari komponen biofisik dan sosial budaya

Lebih terperinci

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan sumber air yang dapat dipakai untuk keperluan makhluk hidup. Dalam siklus tersebut, secara

Lebih terperinci

dan penggunaan sumber daya alam secara tidak efisien.

dan penggunaan sumber daya alam secara tidak efisien. 1 I. PENDAHULUAN A. Latar Belakang Air merupakan komponen penting bagi proses kehidupan di bumi karena semua organisme hidup membutuhkan air dan merupakan senyawa yang paling berlimpah di dalam sistem

Lebih terperinci

I. PENDAHULUAN. Intervensi manusia dalam pemanfaatan sumberdaya alam yang makin

I. PENDAHULUAN. Intervensi manusia dalam pemanfaatan sumberdaya alam yang makin I. PENDAHULUAN 1.1. Latar Belakang Intervensi manusia dalam pemanfaatan sumberdaya alam yang makin lama semakin meningkat telah menimbulkan berbagai permasalahan lingkungan. Salah satu permasalahan lingkungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Daerah aliran sungai (DAS) adalah daerah yang dibatasi oleh punggungpunggung gunung atau pegunungan dimana air hujan yang jatuh di daerah tersebut akan

Lebih terperinci

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...)

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...) Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...) Disampaikan pada PELATIHAN PENGELOLAAN DAS (25 November 2013) KERJASAMA : FORUM

Lebih terperinci

TINJAUAN PUSTAKA. Menurut Peraturan Menteri Kehutanan Nomor: P. 39/Menhut-II/2009,

TINJAUAN PUSTAKA. Menurut Peraturan Menteri Kehutanan Nomor: P. 39/Menhut-II/2009, II. TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Menurut Peraturan Menteri Kehutanan Nomor: P. 39/Menhut-II/2009, DAS adalah suatu wilayah daratan yang merupakan satu kesatuan dengan sungai dan anak-anak

Lebih terperinci

BAB V KESIMPULAN DAN REKOMENDASI. Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan

BAB V KESIMPULAN DAN REKOMENDASI. Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan BAB V KESIMPULAN DAN REKOMENDASI 5.1 Kesimpulan Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan terhadap kondisi hidrologis di Sub Daerah Aliran Ci Karo, maka penulis dapat menarik

Lebih terperinci

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai TINJAUAN PUSTAKA Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai Kabupaten Deli Serdang memiliki iklim tropis yang kondisi iklimnya hampir sama dengan kabupaten Serdang Bedagai. Pengamatan

Lebih terperinci

TINJAUAN PUSTAKA. Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang

TINJAUAN PUSTAKA. Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang dibatasi oleh batas batas topografi secara alami sehingga setiap air hujan yang jatuh dalam

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1 Perubahan Lahan/Penggunaan Lahan di Kota

2. TINJAUAN PUSTAKA 2.1 Perubahan Lahan/Penggunaan Lahan di Kota 2. TINJAUAN PUSTAKA 2.1 Perubahan Lahan/Penggunaan Lahan di Kota Adanya aktifitas manusia dalam menjalankan kehidupan ekonomi, sosial dan budaya sehari-hari berdampak pada perubahan penutup/penggunaan

Lebih terperinci

17/02/2013. Matriks Tanah Pori 2 Tanah. Irigasi dan Drainasi TUJUAN PEMBELAJARAN TANAH DAN AIR 1. KOMPONEN TANAH 2. PROFIL TANAH.

17/02/2013. Matriks Tanah Pori 2 Tanah. Irigasi dan Drainasi TUJUAN PEMBELAJARAN TANAH DAN AIR 1. KOMPONEN TANAH 2. PROFIL TANAH. MINGGU 2 HUBUNGAN TANAH-AIR-TANAMAN Irigasi dan Drainasi Widianto (2013) Lab. Fisika Tanah FPUB TUJUAN PEMBELAJARAN 1. Memahami sifat dan karakteristik tanah untuk menyediakan air bagi tanaman 2. Memahami

Lebih terperinci

Manfaat Penelitian. Ruang Lingkup Penelitian

Manfaat Penelitian. Ruang Lingkup Penelitian 2 Manfaat Penelitian Manfaat penelitian adalah sebagai berikut : 1. Menjadi panduan untuk petani dalam pengelolaan air hujan dan aliran permukaan di kebun pala untuk menekan penurunan hasil akibat kekurangan

Lebih terperinci

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Peil Banjir Peil Banjir adalah acuan ketinggian tanah untuk pembangunan perumahan/ pemukiman yang umumnya di daerah pedataran dan dipakai sebagai pedoman pembuatan jaringan drainase

Lebih terperinci

REKAYASA HIDROLOGI SELASA SABTU

REKAYASA HIDROLOGI SELASA SABTU SELASA 11.20 13.00 SABTU 12.00 13.30 MATERI 2 PENGENALAN HIDROLOGI DATA METEOROLOGI PRESIPITASI (HUJAN) EVAPORASI DAN TRANSPIRASI INFILTRASI DAN PERKOLASI AIR TANAH (GROUND WATER) HIDROMETRI ALIRAN PERMUKAAN

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di

METODE PENELITIAN. Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan pada bulan Juli sampai dengan Agustus 2013 di Laboratorium Sumber Daya Air dan Lahan Jurusan Teknik Pertanian dan Laboratorium Ilmu

Lebih terperinci

TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI. Dosen Pembimbing : Dr. Ali Masduqi, ST. MT. Nohanamian Tambun

TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI. Dosen Pembimbing : Dr. Ali Masduqi, ST. MT. Nohanamian Tambun TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI SUMBER AIR BERSIH PDAM JAYAPURA Dosen Pembimbing : Dr. Ali Masduqi, ST. MT Nohanamian Tambun 3306 100 018 Latar Belakang Pembangunan yang semakin berkembang

Lebih terperinci

The water balance in the distric X Koto Singkarak, distric Solok. By:

The water balance in the distric X Koto Singkarak, distric Solok. By: The water balance in the distric X Koto Singkarak, distric Solok By: Sari Aini Dafitri* Erna Juita**Elsa** *Student at Geogrphy Departement of STKIP PGRI Sumatera Barat **Lecturer at Geography Departement

Lebih terperinci

DASAR-DASAR ILMU TANAH

DASAR-DASAR ILMU TANAH DASAR-DASAR ILMU TANAH OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 KONSERVASI TANAH 1. Pengertian Konservasi Tanah Penempatan setiap bidang tanah pada cara penggunaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang terjadinya, pergerakan dan distribusi air di bumi, baik di atas maupun di bawah permukaan bumi, tentang sifat fisik,

Lebih terperinci

DASAR-DASAR ILMU TANAH

DASAR-DASAR ILMU TANAH DASAR-DASAR ILMU TANAH OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 KONSERVASI TANAH 1. Pengertian Konservasi Tanah Penempatan setiap bidang tanah pada cara penggunaan

Lebih terperinci

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah II. TINJAUAN PUSTAKA 2.1. Analisis Kebutuhan Air Irigasi Kebutuhan air tanaman adalah banyaknya air yang dibutuhkan tanaman untuk membentuk jaringan tanaman, diuapkan, perkolasi dan pengolahan tanah. Kebutuhan

Lebih terperinci

BAB I PENDAHULUAN. 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di

BAB I PENDAHULUAN. 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di BAB I PENDAHULUAN 1.1. URAIAN UMUM Danau Toba adalah sebuah danau vulkanik dengan ukuran luas 100 km x 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di tengah danau terdapat

Lebih terperinci

TINJAUAN PUSTAKA. Faktor Lingkungan Tumbuh Kelapa Sawit

TINJAUAN PUSTAKA. Faktor Lingkungan Tumbuh Kelapa Sawit TINJAUAN PUSTAKA Faktor Lingkungan Tumbuh Kelapa Sawit Tanaman kelapa sawit semula merupakan tanaman yang tumbuh liar di hutan-hutan maupun daerah semak belukar tetapi kemudian dibudidayakan. Sebagai tanaman

Lebih terperinci

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1. tetap

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1. tetap SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 6. DINAMIKA HIDROSFERLATIHAN SOAL 6.1 1. Keberadaan air yang terdapat di permukaan bumi jumlahnya... tetap semakin berkurang semakin bertambah selalu berubah-ubah

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER)

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) 1. Pengertian Atmosfer Planet bumi dapat dibagi menjadi 4 bagian : (lithosfer) Bagian padat

Lebih terperinci

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian TINJAUAN PUSTAKA Daerah Aliran Sungai Sungai merupakan jaringan alur-alur pada permukaan bumi yang terbentuk secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian hilir. Air hujan

Lebih terperinci

NERACA AIR. Adalah perincian dari masukan (input) dan keluaran (output) air pada suatu permukaan bumi

NERACA AIR. Adalah perincian dari masukan (input) dan keluaran (output) air pada suatu permukaan bumi NERACA AIR Adalah perincian dari masukan (input) dan keluaran (output) air pada suatu permukaan bumi 1. Neraca Air Umum Tanpa memperhatikan pengaruh faktor tanah serta perilaku air di dalam dan di atas

Lebih terperinci

Bab III TINJAUAN PUSTAKA

Bab III TINJAUAN PUSTAKA aliran permukaan (DRO) Bab II BAB II Bab III TINJAUAN PUSTAKA Bab IV 2. 1 Umum Hidrologi adalah suatu ilmu tentang kehadiran dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti

Lebih terperinci

Evapotranspirasi. 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi

Evapotranspirasi. 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi Evapotranspirasi 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi Departemen Geofisika dan Meteotologi, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

ANALISIS KAPASITAS SIMPAN AIR DI WILAYAH KAMPUS IPB DRAMAGA, BOGOR SKRIPSI. Oleh: SEKAR DWI RIZKI F

ANALISIS KAPASITAS SIMPAN AIR DI WILAYAH KAMPUS IPB DRAMAGA, BOGOR SKRIPSI. Oleh: SEKAR DWI RIZKI F ANALISIS KAPASITAS SIMPAN AIR DI WILAYAH KAMPUS IPB DRAMAGA, BOGOR SKRIPSI Oleh: SEKAR DWI RIZKI F44080019 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2012 ANALYSIS OF WATER STORAGE CAPACITY

Lebih terperinci

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1 DAFTAR ISI ABSTRAK... i KATA PENGANTAR..... ii DAFTAR ISI...... iv DAFTAR TABEL..... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN.... 1 A. Latar Belakang Masalah 1 B. Rumusan Masalah. 7 C. Tujuan Penelitian......

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang 1 PENDAHULUAN Latar Belakang Hutan tropis di Indonesia meliputi areal seluas 143 juta hektar dengan berbagai tipe dan peruntukan (Murdiyarso dan Satjaprapdja, 1997). Kerusakan hutan (deforestasi) masih

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Air merupakan salah satu sumberdaya alam dan elemen penting untuk menunjang keberlanjutan kehidupan di muka bumi. Manusia memanfaatkan sumberdaya air untuk memenuhi

Lebih terperinci

III. DATA DAN METODE 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 2.11 Kapasitas Lapang dan Titik Layu Permanen

III. DATA DAN METODE 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 2.11 Kapasitas Lapang dan Titik Layu Permanen 7 radiasi surya, suhu udara, kecepatan angin, dan kelembaban udara dalam penentuan evapotranspirasi. Sedangkan faktor tanah yang mempengaruhi seperti tekstur, kedalaman tanah, dan topografi. Kebutuhan

Lebih terperinci

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG BAB I PENDAHULUAN 1.1 Latar Belakang Air merupakan sumber kehidupan bagi manusia. Dalam melaksanakan kegiatannya, manusia selalu membutuhkan air bahkan untuk beberapa kegiatan air merupakan sumber utama.

Lebih terperinci

ESTIMASI NERACA AIR DENGAN MENGGUNAKAN METODE THORNTHWAITE MATTER. RAHARDYAN NUGROHO ADI BPTKPDAS

ESTIMASI NERACA AIR DENGAN MENGGUNAKAN METODE THORNTHWAITE MATTER. RAHARDYAN NUGROHO ADI BPTKPDAS ESTIMASI NERACA AIR DENGAN MENGGUNAKAN METODE THORNTHWAITE MATTER RAHARDYAN NUGROHO ADI (dd11lb@yahoo.com) BPTKPDAS Pendahuluan Analisis Neraca Air Potensi SDA Berbagai keperluan (irigasi, mengatur pola

Lebih terperinci

I. PENDAHULUAN. angin bertiup dari arah Utara Barat Laut dan membawa banyak uap air dan

I. PENDAHULUAN. angin bertiup dari arah Utara Barat Laut dan membawa banyak uap air dan 1 I. PENDAHULUAN A. Latar Belakang Sebagai sebuah negara kepulauan yang secara astronomis terletak di sekitar garis katulistiwa dan secara geografis terletak di antara dua benua dan dua samudra, Indonesia

Lebih terperinci

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem BERITA NEGARA REPUBLIK INDONESIA No.1267, 2014 KEMENHUT. Pengelolaan. Daerah Aliran Sungai. Evaluasi. Monitoring. PERATURAN MENTERI KEHUTANAN REPUBLIK INDONESIA NOMOR P. 61 /Menhut-II/2014 TENTANG MONITORING

Lebih terperinci

BAB I PENDAHULUAN. Pertanian merupakan salah satu sektor penting dalam ekonomi Indonesia. Potensi

BAB I PENDAHULUAN. Pertanian merupakan salah satu sektor penting dalam ekonomi Indonesia. Potensi BAB I PENDAHULUAN 1.1 Latar Belakang Pertanian merupakan salah satu sektor penting dalam ekonomi Indonesia. Potensi pertanian tersebut sangat besar, namun masih diperlukan penanganan yang baik agar kebutuhan

Lebih terperinci

DAFTAR ISI. 1.1 Latar Belakang Perumusan Masalah Tujuan Penelitian Manfaat Penelitian... 4

DAFTAR ISI. 1.1 Latar Belakang Perumusan Masalah Tujuan Penelitian Manfaat Penelitian... 4 DAFTAR ISI Halaman Halaman Judul... i Halaman Pengesahan Skripsi... ii Halaman Pernyataan... iii Halaman Persembahan... iv Kata Pengantar... vi Daftar Isi... vii Daftar Tabel... ix Daftar Gambar... x Daftar

Lebih terperinci

PENDUGAAN EROSI DAN SEDIMENTASI PADA DAS CIDANAU DENGAN MENGGUNAKAN MODEL SIMULASI AGNPS (Agricultural Non Points Source Pollution Model)

PENDUGAAN EROSI DAN SEDIMENTASI PADA DAS CIDANAU DENGAN MENGGUNAKAN MODEL SIMULASI AGNPS (Agricultural Non Points Source Pollution Model) PENDUGAAN EROSI DAN SEDIMENTASI PADA DAS CIDANAU DENGAN MENGGUNAKAN MODEL SIMULASI AGNPS (Agricultural Non Points Source Pollution Model) Oleh : AI MARLINA F14102084 2006 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS

Lebih terperinci

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR 3.1. Kebutuhan Air Untuk Irigasi BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR Kebutuhan air irigasi adalah jumlah volume air yang diperlukan untuk memenuhi kebutuhan evapotranspirasi, kehilangan

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Kadar Air Tanah Air merupakan salah satu komponen penting yang dibutuhkan oleh tanaman baik pohon maupun tanaman semusim untuk tumbuh, berkembang dan berproduksi. Air yang

Lebih terperinci

HIDROSFER I. Tujuan Pembelajaran

HIDROSFER I. Tujuan Pembelajaran KTSP & K-13 Kelas X Geografi HIDROSFER I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut. 1. Memahami pengertian hidrosfer dan siklus hidrologi.

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR DAFTAR ISI Halaman HALAMAN JUDUL i HALAMAN PENGESAHAN ii PERNYATAAN BEBAS PLAGIASI iii MOTTO iv DEDIKASI v KATA PENGANTAR vi DAFTAR ISI viii DAFTAR TABEL xi DAFTAR GAMBAR xii DAFTAR LAMPIRAN xiv DAFTAR

Lebih terperinci

BAB I PENDAHULUAN. dalam mengatur tata air, mengurangi erosi dan banjir. Hutan mempunyai

BAB I PENDAHULUAN. dalam mengatur tata air, mengurangi erosi dan banjir. Hutan mempunyai BAB I PENDAHULUAN 1.1 Latar Belakang Hutan sebagai komunitas tumbuhan juga memiliki fungsi hidrologis dalam mengatur tata air, mengurangi erosi dan banjir. Hutan mempunyai peran yang sangat penting dalam

Lebih terperinci

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN Kompetensi dasar Mahasiswa mampu melakukan analisis evapotranspirasi pengertian dan manfaat faktor 2 yang mempengaruhi evapotranspirasi pengukuran evapotranspirasi pendugaan evapotranspirasi JURUSAN TEKNIK

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Permukaan bumi kita sebagian besar tertutupi oleh air sehingga sangat mudah terjadinya proses penguapan air ke atmosfer, kondensasi, kemudian terjadilah hujan. Hujan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 12 BAB III LANDASAN TEORI 3.1. TINJAUAN UMUM Irigasi adalah pemberian air secara buatan untuk memenuhi kebutuhan pertanian, air minum, industri dan kebutuhan rumah tangga. Sumber air yang digunakan untuk

Lebih terperinci

BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN

BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN Tujuan Pembelajaran Khusus Setelah mengikuti diklat ini peseta diharapkan mampu Menjelaskan tentang kebutuhan air tanaman A. Deskripsi Singkat Kebutuhan air tanaman

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kehilangan air pada suatu sistem hidrologi. panjang, untuk suatu DAS atau badan air seperti waduk atau danau.

BAB II TINJAUAN PUSTAKA. kehilangan air pada suatu sistem hidrologi. panjang, untuk suatu DAS atau badan air seperti waduk atau danau. BAB II TINJAUAN PUSTAKA 2.1 Neraca Air Triatmodjo (2010) menjelaskan neraca air dapat menggambarkan bahwa di dalam suatu sistem hidrologi (DAS, waduk, danau, aliran permukaan) dapat dievaluasi air yang

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL

BAB IV PEMBAHASAN DAN HASIL BAB IV PEMBAHASAN DAN HASIL 4.1. Analisis Curah Hujan 4.1.1. Ketersediaan Data Curah Hujan Untuk mendapatkan hasil yang memiliki akurasi tinggi, dibutuhkan ketersediaan data yang secara kuantitas dan kualitas

Lebih terperinci

ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN

ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN Jonizar 1,Sri Martini 2 Dosen Fakultas Teknik UM Palembang Universitas Muhammadiyah Palembang Abstrak

Lebih terperinci

BAB I PENDAHULUAN. Dalam daur hidrologi, energi panas matahari dan faktor faktor iklim

BAB I PENDAHULUAN. Dalam daur hidrologi, energi panas matahari dan faktor faktor iklim BAB I PENDAHULUAN 1.1 Latar Belakang Dalam daur hidrologi, energi panas matahari dan faktor faktor iklim lainnya menyebabkan terjadinya proses evaporasi pada permukaan vegetasi tanah, di laut atau badan-

Lebih terperinci

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir JURNAL ILMIAH SEMESTA TEKNIKA Vol. 16, No. 1, 57-64, Mei 2013 57 Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir (The Effect of Rain to the Change

Lebih terperinci

ANALISIS PERUBAHAN KAPASITAS SIMPAN AIR PADA DAS CISADANE HULU, JAWA BARAT ARRASYID MAULANA

ANALISIS PERUBAHAN KAPASITAS SIMPAN AIR PADA DAS CISADANE HULU, JAWA BARAT ARRASYID MAULANA ANALISIS PERUBAHAN KAPASITAS SIMPAN AIR PADA DAS CISADANE HULU, JAWA BARAT ARRASYID MAULANA DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2016 ii PERNYATAAN

Lebih terperinci