Bab III TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab III TINJAUAN PUSTAKA"

Transkripsi

1 aliran permukaan (DRO) Bab II BAB II Bab III TINJAUAN PUSTAKA Bab IV 2. 1 Umum Hidrologi adalah suatu ilmu tentang kehadiran dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti suatu aliran yang dinamakan siklus hidrologi. Siklus Hidrologi adalah suatu proses yang berkaitan, dimana air diangkut dari lautan ke atmosfer (udara), ke darat dan kembali lagi ke laut,seperti digambarkan pada Gambar 2.1. WS = Rnet - SS hujan (R) transpirasi infiltrasi evaporasi m.a.t perkolasi kandungan air tanah (V) dv t = V t - V t-1 aliran air tanah (BF) RO = BF + DRO Q = Ro. A/H sumber : Google Earth Hujan yang jatuh ke bumi baik langsung menjadi aliran maupun tidak langsung yaitu melalui vegetasi atau media lainnnya akan membentuk siklus aliran air mulai dari tempat yang tinggi menuju ke tempat yang rendah baik di permukaan tanah maupun di dalam tanah yang berakhir di laut. Secara gravitasi air mengalir dari daerah yang tinggi ke daerah yang rendah, dari pegunungan ke lembah, lalu ke daerah yang lebih rendah, sampai ke daerah 6

2 pantai dan akhirnya akan bermuara ke laut. Aliran air ini disebut aliran permukaan tanah karena bergerak di atas muka tanah. Aliran ini biasanya akan memasuki daerah tangkapan atau daerah aliran menuju kesistem jaringan sungai, sistem danau atau waduk. Air hujan sebagian mengalir meresap kedalam tanah atau yang sering disebut dengan infiltrasi, dan bergerak terus kebawah. Air hujan yang jatuh ke bumi sebagian menguap dan membentuk uap air. Sebagian lagi mengalir masuk ke dalam tanah. Air tanah adalah air yang bergerak di dalam tanah yang terdapat di dalam ruangruang antara butir tanah dan di dalam retak-retak dari batuan disebut air celah (fissure water). Aliran air tanah dapat dibedakan menjadi aliran tanah dangkal, aliran tanah antara dan aliran dasar (base flow). Disebut aliran dasar karena aliran ini merupakan aliran yang mengisi sistem jaringan sungai. Hal ini dapat dilihat pada musim kemarau, ketika hujan tidak turun untuk beberapa waktu, pada suatu sistem sungai tertentu aliran masih tetap dan berkesinambungan. Pada retensi atau tempat penyimpanan, air akan menetap untuk beberapa waktu. Retensi dapat berupa retensi alam seperti darah-daerah cekungan, danau tempattempat yang rendah, maupun retensi buatan seperti tampungan, sumur, embung, waduk dll. Sebagian air yang tersimpan sebagai air tanah (groundwater) yang akan keluar ke permukaan tanah sebagai limpasan, yakni limpasan permukaan (surface runoff), aliran dalam tanah (interflow) dan limpasan air tanah (groundwater runoff) yang terkumpul di sungai yang akhirnya akan mengalir ke laut kembali terjadi penguapan dan begitu seterusnya mengikuti siklus hidrologi. 7

3 Penyimpanan air tanah besarnya tergantung dari kondisi geologi setempat dan waktu. Kondisi tata guna lahan juga berpengaruh terhadap tampungan air tanah, misalnya lahan hutan yang beralih fungsi mejadi daerah pemukiman dan curah hujan daerah tersebut. Hujan jatuh ke bumi baik secara langsung maupun melalui media misalnya melalui tanaman, masuk ke tanah begitu juga hujan yang terinfiltrasi. Sedangkan air yang tidak terinfiltrasi yang merupakan limpasan mengalir ke tempat yang lebih rendah, mengalir ke danau dan tertampung. Dan hujan yang langsung jatuh di atas sebuah danau (reservoir) air hujan (presipitasi) yang langsung jatuh diatas danau menjadi tampungan langsung. Air yang tertahan di danau akan mengalir melalui sistem jaringan sungai, permukaan tanah dan merembes melalui tanah. Dalam hal ini air yang tertampung di danau adalah inflow sedangkan yang mengalir atau merembes adalah outflow. Gambar 2.1 menunjukkan proses yang dijelaskan di atas. Bentuk persaman neraca air suatu danau atau reservoir: Perolehan (inflow) = Kehilangan (outflow) (2.1) Q i + Q g + P - ΔS = Q o + SQ + E o......(2.2) Q in Q out = ΔS......(2.3) dimana: Q i = masukan air/ direct run-off (inflow) Q g = base flow (inflow) Q o = outflow P = presipitasi SQ = perembesan E o = evaporasi air permukaan bebas ΔS = perubahan dalam cadangan t 1 = muka air setelah kehilangan t 2 = muka air sebelum kehilangan 8

4 Gambar Parameter Neraca Air Akibat panas matahari air dipermukaan bumi juga akan berubah wujud menjadi gas/uap dalam proses evaporasi dan bila melalui tanaman disebut transpirasi. Air akan di ambil oleh tanaman melalui akar-akarnya yang dipakai untuk kebutuhan hidup dari tanaman tersebut, lalu air di dalam tanaman juga akan keluar berupa uap akibat energi panas matahari. Proses pengambilan air oleh akar tanaman kemudian terjadinya penguapan dari dalam tanaman disebut transpirasi. Evaporasi yang lain dapat terjadi pada sistem sungai, embung, reservoir, waduk maupun air laut yang merupakan sumber air terbesar. Walaupun laut adalah tempat dengan sumber air terbesar namun tidak bisa langsung di manfaatkan sebagai sumber kehidupan karena mengandung garam atau air asin (salt water). 2.2 Daerah Aliran Sungai Daerah Aliran Sungai (DAS) merupakan unit hidrologi dasar. Bila kita memandang suatu sistem yang mengalir yang dapat diterapkan pada suatu daerah aliran sungai, maka akan nampak struktur sistem dari daerah ini adalah daerah aliran sungai yang merupakan lahan total dan permukaan air yang di batasi oleh suatu batas air, topografi dan dengan salah satu cara memberikan sumbangan 9

5 terhadap debit sungai pada suatu daerah. Daerah aliran sungai merupakan dasar pengelolaan untuk sumber daya air. Gabungan beberapa DAS menjadi Satuan Wilayah Sungai. Dalam mempelajari ekosistem DAS, dapat diklasifikasikan menjadi daerah hulu, tengah dan hilir. DAS bagian hulu dicirikan sebagai daerah konservasi, DAS bagian hilir merupakan daerah pemanfaatan. DAS bagian hulu mempunyai arti penting terutama dari segi perlindungan fungsi tata air, karena itu setiap terjadinya kegiatan di daerah hulu akan menimbulkan dampak di daerah hilir dalam bentuk perubahan fluktuasi debit dan transport sedimen serta material terlarut dalam sistem aliran airnya. Dengan kata lain ekosistem DAS, bagian hulu mempunyai fungsi perlindungan terhadap keseluruhan DAS. Perlindungan ini antara lain dari segi fungsi tata air, dan oleh karenanya pengelolaan DAS hulu seringkali menjadi fokus perhatian mengingat dalam suatu DAS, bagian hulu dan hilir mempunyai keterkaitan biofisik melalui siklus hidrologi. Dalam rangka memberikan gambaran keterkaitan secara menyeluruh dalam pengelolaan DAS, terlebih dahulu diperlukan batasan-batasan mengenai DAS berdasarkan fungsi, yaitu DAS bagian hulu didasarkan pada fungsi konservasi yang dikelola untuk mempertahankan kondisi lingkungan DAS agar tidak terdegradasi, yang antara lain dapat diindikasikan dari kondisi tutupan vegetasi lahan DAS, kualitas air, kemampuan menyimpan air dan curah hujan. DAS bagian tengah didasarkan pada fungsi pemanfaatan air sungai yang dikelola untuk dapat memberikan manfaat bagi kepentingan sosial dan ekonomi, yang antara lain dapat diindikasikan dari kuantitas air, kualitas air, kemampuan 10

6 menyalurkan air, dan ketinggian muka air tanah, serta terkait pada prasarana pengairan seperti pengelolaan sungai, waduk, dan danau. DAS bagian hilir didasarkan pada fungsi pemanfaatan air sungai yang dikelola untuk dapat memberikan manfaat bagi kepentingan sosial dan ekonomi, yang diindikasikan melalui kuantitas dan kualitas air, kemampuan menyalurkan air, ketinggian curah hujan, dan terkait untuk kebutuhan pertanian, air bersih, serta pengelolaan air limbah. Kebutuhan akan air bagi kehidupan manusia secara langsung atau tidak langsung makin meningkat. Untuk meningkatkan ketersediaan air permukaan perlu ada tindakan yaitu dengan memperbaiki kondisi Daerah Aliran Sungai (DAS) yang sudah memburuk menjadi hijau kembali dengan membuat storage di permukaan dalam bentuk waduk. 2.3 Jaringan Irigasi Irigasi atau pengairan adalah suatu usaha untuk memberikan air guna keperluan pertanian yang dilakukan dengan tertib dan teratur untuk daerah pertanian yang membutuhkannya dan kemudian air itu dipergunakan secara tertib dan teratur dan dibuang kesaluran pembuangan. Istilah irigasi diartikan suatu bidang pembinaan atas air dari sumber sumber air, termasuk kekayaan alam hewani yang terkandung didalamnya, baik yang alamiah maupun yang diusahakan manusia. Pengairan selanjutnya diartikan sebagai pemanfaatan serta pengaturan air dan sumber sumber air yang meliputi irigasi, pengembangan daerah rawa, pengendalian banjir, serta usaha perbaikan sungai, waduk dan pengaturan penyediaan air minum, air perkotaan dan air industri. 11

7 Jaringan Irigasi adalah saluran, bangunan, dan bangunan pelengkap yang merupakan satu kesatuan yang diperlukan untuk penyediaan, pembagian, pemberian, penggunaan, dan pembuangan air irigasi. Jaringan utama adalah jaringan irigasi yang berada dalam satu sistem irigasi, mulai dari bangunan utama, saluran induk atau primer, saluran sekunder, dan bangunan sadap serta bangunan pelengkapnya. Jaringan tersier adalah jaringan irigasi yang berfungsi sebagai prasarana pelayanan air di dalam petak tersier yang terdiri dari saluran pembawa yang disebut saluran tersier, saluran pembagi yang disebut saluran kuarter dan saluran pembuang berikut, saluran turutan serta bangunan pelengkapnya, termasuk jaringan irigasi pompa yang luas areal pelayanannya disamakan dengan areal tersier. Dari segi konstruksi jaringan irigasi, Pasandaran (1991) mengklasifikasikan sistem irigasi menjadi empat jenis yaitu : 1. Irigasi Sederhana Adalah sistem Irigasi yang sitem konstruksinya tidak menggunakan alat ukur atau pintu-pintu masih sangat sederhana dan pada umumnya dimulai dari bangunan utama sampai dengan saluran tersier masih sangat sederhana dan sebahagian asli dari bangunan alam, sehingga efisiensinya rendah. 2. Irigasi Setengah Teknis Adalah sistem Irigasi dengan sistem konstruksi pintu pengatur dan alat pengukur pada bangunan pengambilan (head work) saja, sehingga air hanya teratut dan terukur pada bangunan pengambilan saja dengan demikian efesiensinya sedang. 3. Irigasi Teknis 12

8 Adalah sistem irigasi yang dilengkapi dengan alat pengatur dan pengukur air pada bangunan pengambilan, bangunan bagi dan bangunan sadap sehingga air terukur dan teratur sampai bangunan bagi dan sadap, diharapkan efesiensinya tinggi. 4. Irigasi Teknis Maju Adalah sistem irigasi yang airnya dapat diatur dan terukurpada seluruh jaringan dan diharapkan efisiensinya sangat tinggi. Petak irigasi adalah petak lahan yang memperoleh air irigasi. Petak tersier adalah kumpulan petak irigasi yang merupakan kesatuan dan mendapatkan air irigasi melalui saluran tersier yang sama. Petak tersier terdiri dari beberapa petak kuarter masing masing seluas 8 sampai dengan 15 hektar. Tabel 2.1 Klasifikasi Irigasi 1. Bangunan utama Bangunan permanen 2. Kemampuan bangunan dalam mengukur & mengatur debit KLASIFIKASI JARINGAN IRIGASI Teknis Semiteknis Sederhana Bangunan permanent atau semi permanen Bangunan sementara baik sedang Jelek 3. Jaringan saluran Saluran irigasi dan pembuang terpisah Saluran irigasi dan pembuang tidak sepenuhnya terpisah Saluran irigasi dan pembuang jadi satu 4. Petak tersier Dikembangkan sepenuhnya 5. Efisiensi secara keseluruhan Belum dikembangkan atau densitas bangunan tersier jarang % % < 40 % Belum ada jaringan terpisah yang dikembangkan 13

9 6. Ukuran Tak ada batasan Sampai ha Tak lebih dari 500 ha Sumber:Direktorat Jendral Pengairan, Standart Perencanaan Irigasi KP-01: Analisa Hidrologi Curah Hujan Rata Rata Curah hujan rata rata adalah tinggi air hujan yang jatuh pada suatu wilayah, dihitung setiap periode waktu. Data hujan yang tercatat di setiap stasiun penakar hujan adalah tinggi hujan di sekitar stasiun tersebut. Salah satu cara untuk menghitung hujan rata-rata daearah aliran yang bisa dilakukan adalah dengan Metode Poligon Thiessen. Cara ini memasukkan faktor pengaruh daerah yang diwakili oleh stasiun penakar hujan yang disebut weighting factor atau disebut juga Koefisien Thiessen. Cara ini biasanya digunakan apabila titik-titik pengamatan di dalam daerah studi tidak tersebar secara merata. Metode Theissen akan memberikan hasil yang lebih teliti daripada cara aljabar tetapi untuk penentuan titik pengamatannya dan pemilihan ketinggian akan mempengaruhi ketelitian yang akan didapat juga seandainya untuk penentuan kembali jaringan segitiga jika terdapat kekurangan pengamatan pada salah satu titik pengamatan. Luas masing-masing daerah tersebut diperoleh dengan cara berikut: Semua stasiun yang di dalam atau di luar DAS dihubungkan dengan garis, sehingga terbentuk jaringan segitiga-segitiga. Hendaknya dihindari terbentuknya segitiga dengan sudut sangat tumpul. Pada masing-masing segitiga ditarik garis sumbunya, dan semua garis sumbu tersebut membentuk poligon. 14

10 Luas daerah yang hujannya dianggap diwakili oleh salah satu stasiun yang bersangkutan adalah daerah yang dibatasi oleh garis-garis poligon tersebut (atau dengan batas DAS). Luas relatif daerah ini dengan luas DAS merupakan faktor koreksinya. R = W 1 R 1 + W 2 R W n R n... (2.4) Ai W i =... (2.5) A dimana : total R : Curah hujan maksimum harian rata-rata W i : Faktor pembobot A 1 : Luas daerah pengaruh stasiun i A total : Luas daerah aliran R : Tinggi hujan pada stasiun n : Jumlah titik pengamat Gambar 2.2. Cara Poligon Thiessen Cara di atas dipandang cukup baik karena memberikan koreksi terhadap kedalaman hujan sebagai fungsi luas daerah yang dianggap diwakili. Akan tetapi cara ini dipandang belum memuaskan karena pengaruh topografi tidak tampak. Demikian pula apabila salah satu stasiun tidak berfungsi, misalnya rusak atau data tidak benar, maka poligon harus diubah. Contoh pembuatan poligon Thiessen dapat dilihat pada Gambar

11 2.4.2 Debit Andalan Debit andalan (dependable flow) adalah debit minimum untuk kemungkinan terpenuhi yang sudah ditentukan yang dapat dipakai untuk irigasi. Misalnya ditetapkan debit andalan 80% berarti akan dihadapi resiko adanya debit-debit yang lebih kecil dari debit andalan sebesar 20% pengamatan. Debit tersebut digunakan sebagai patokan ketersediaan debit yang masuk ke waduk pada saat pengoperasiannya. Untuk menghitung debit andalan tersebut, dihitung peluang 80 % dari debit infow sumber air pada pencatatan debit pada periode tertentu. Debit andalan 80% ialah debit dengan kemungkinan terpenuhi 80% atau tidak terpenuhi 20% dari periode waktu tertentu. Untuk menentukan kemungkinan terpenuhi atau tidak terpenuhi, debit yang sudah diamati disusun dengan urutan dari terbesar menuju terkecil. Volume andalan ialah volume dengan kemungkinan terpenuhi atau tidak terpenuhi 20% dari periode waktu tertentu. Untuk menentukan kemungkinan terpenuhi atau tidak terpenuhi, volume yang sudah diamati disusun dengan urutan besar ke kecil. Catatan n tahun sehingga nomor tingkatan m debit dengan kemungkinan tak terpenuhi 20%, dapat dihitung volume andalan dengan menggunakan pendekatan empiris dengan rumus : dimana : m = 0,20 n...(2.6) m = tingkatan tak terpenuhi n = jumlah tahun pengamatan Jumlah kejadian yang dimaksud adalah jumlah data yang digunakan untuk menganalisis probabilitas tersebut. Jumlah data minimum yang diperlukan untuk 16

12 analisis adalah lima tahun dan pada umumnya untuk memperoleh nilai yang baik data yang digunakan hendaknya berjumlah 10 tahun data. Dari data debit inflow yang diperoleh pada studi ini, maka diketahui pengisian waduk berlangsung tiap bulannya selama setahun. Data ini nantinya akan dipakai dalam perhitungan debit yang masuk ke waduk Ketersediaan Air Ketersediaan air adalah jumlah debit air yang diperkirakan terus menerus ada di suatu lokasi bendung atau di bangunan air lainnya, dengan jumlah tertentu dan dalam jangka waktu/periode tertentu. Untuk pemanfaatan air, perlu diketahui informasi ketersediaan air andalan. Debit andalan adalah debit minimum dengan besaran tertentu yang mempunyai kemungkinan terpenuhi yang dapat digunakan untuk berbagai keperluan Metode Meteorological Water Balance Dr. F.J. Mock Metode ini ditemukan oleh Dr. F.J. Mock pada tahun 1973 dimana metode ini didasarkan atas fenomena alam dibeberapa tempat di Indonesia. Dengan metode ini, besarnya aliran dari data curah hujan, karakteristik hidrologi daerah pengaliran dan evapotranspirasi dapat dihitung. Pada dasarnya metode ini adalah hujan yang jatuh pada catchment area sebagian akan hilang sebagai evapotranspirasi, sebagian akan langsung menjadi aliran permukaan (direct run off) dan sebagian lagi akan masuk kedalam tanah (infiltrasi), dimana infiltrasi 17

13 pertama-tama akan menjenuhkan top soil, kemudian menjadi perkolasi membentuk air bawah tanah (ground water) yang nantinya akan keluar ke sungai sebagai aliran dasar (base flow). Dalam hal ini harus ada keseimbangan antara hujan yang jatuh dengan evapotranspirasi, direct run off dan infiltrasi sebagai soil moisture dan ground water discharge. Aliran dalam sungai adalah jumlah aliran yang langsung di permukaan tanah (direct run off) dan base flow. Metode Mock mempunyai dua prinsip pendekatan perhitungan aliran permukaan yang terjadi di sungai, yaitu neraca air di atas permukaan tanah dan neraca air bawah tanah yang semua berdasarkan hujan, iklim dan kondisi tanah. Rumus untuk menghitung aliran per-mukaan terdiri dari: Hujan netto (R net ) = R ET a...(2.7) Et a = ET o E...(2.8) E = ET o. N d /N.m...(2.9) Neraca air di atas permukaan : (WS) = R net SS...(2.10) SS = SM t + SM t -1...(2.11) SM t = SM t -1 + R net...(2.12) Neraca air di bawah permukaan dv t = V t V t-1...(2.13) I = C i. WS...(2.14) V t = ½ (1+k).I + k. V t-1...(2.15) Aliran permukaan: RO = BF + DRO...(2.16) 18

14 BF = I-dV t...(2.17) DRO = WS-I...(2.18) Dalam satuan debit: Q = 0,0116. RO. A/H...(2.19) dimana: R net = hujan netto, mm; R = hujan, mm Et o = evapotranspirasi potensial, mm Et a = evapotranspirasi aktual, mm N = jumlah hari dalam satu bulan, hari N d = jumlah hari kering (tidak hujan), hari N r = jumlah hari hujan, hari WS = kelebihan air, mm SS = daya serap tanah atas air, mm SM = kelembaban tanah, mm dv =perubahan kandungan air tanah, mm V t = kandungan air tanah, mm I = laju infiltrasi, mm C i = koefisien infiltrasi (<1) k = koefisien resesi aliran air tanah (<1) DRO = aliran langsung, mm BF = aliran air tanah (mm) RO = aliran permukaan, mm H = jumah hari kalender dalam sebulan, hari m = bobot lahan tak tertutup vegetasi (0 < m< 40%) A = luas DAS, km2 Q = debit aliran permukaan, m 3 /det t = waktu tinjau (periode sekarang t dan yang lalu t-1) 19

15 aliran permukaan (DRO) WS = Rnet - SS hujan (R) transpirasi infiltrasi evaporasi m.a.t perkolasi kandungan air tanah (V) dv t = V t - V t-1 aliran air tanah (BF) RO = BF + DRO Q = Ro. A/H Gambar 2.3. Struktur Model F.J. Mock Pada model F.J. Mock ada lima parameter yang menggambarkan karak teristik DAS yang besar pengaruhnya terhadap keluaran sistem (Gambar 2.3), yaitu : a. Singkapan lahan (m). b. Koefisien Infiltrasi. c. Kapasitas kelembaban tanah (soil moisture capacity) d. Initial Storage e. Faktor Resesi Air tanah Analisa Evapotranspirasi Evaporasi merupakan peristiwa ber-ubahnya air menjadi uap dan bergerak dari permukaan tanah dan permukaan air ke udara. Faktor meteorologi yang mempengaruhi besarnya evaporasi adalah sebagai berikut: 1. Radiasi matahari. 2. Angin. 20

16 3. Kelembaban relatif. 4. Suhu (temperatur). Transpirasi adalah suatu proses yang air di dalam tumbuh tumbuhan dilimpah kan dalam atmosfer sebagai uap air. Umumnya transpirasi sulit diukur secara langsung, oleh karena itu untuk tujuan praktis digabungkan dengan penguapan di permukaan bumi sehingga dinyatakan sebagai evapotranspirasi. Gabungan dari dua peristiwa yakni evaporasi dan transpirasi yang terjadi secara bersamaan disebut juga peristiwa evapotranspirasi. Kedua proses ini sulit untuk dibedakan karena keduanya terjadi secara simultan. Di dalam perhitungan dikenal ada dua istilah evapotranspirasi yaitu: Evapotranspirasi potensial, terjadi apabila tersedia cukup air untuk memenuhi pertumbuhan optimal. Evapotranspirasi aktual, terjadi dengan kondisi pemberian air seadanya untuk memenuhi pertumbuhan. Faktor iklim yang sangat mempengaruhi peristiwa ini, diantaranya adalah suhu udara, kelembaban, kecepatan angin, tekanan udara, dan sinar matahari Evapotranspirasi Potensial (ET o ) Evapotranspirasi Potensial dapat dihitung dengan menggunakan Metode Penman modifikasi sebagai berikut: dimana : ET o = c [ w Rn + (1 w) f(u) (ea ed)]......(2.20) ET o : Evapotranspirasi acuan (mm/hari) w : Faktor koreksi terhadap temperatur 21

17 Rn : Radiasi netto (mm/hari) f(u) : Fungsi angin (ea ed) : Perbedaan tekanan uap air jenuh dengan tekanan uap air nyata (mbar) c : Faktor pergantian cuaca akibat siang dan malam Evapotranspirasi Aktual (ET a ) Evapotranspirasi aktual adalah evapotranspirasi yang terjadi sesungguhnya sesuai dengan keadaan persediaan air dan kelembaban tanah yang tersedia. Persamaan evapotranspirasi aktual adalah sebagai berikut: ET a = ET o - ET o (m/20)(18 - Nr)...(2.21) dimana: Et a = evapotranspirasi aktual (mm/bulan) Et o = evapotranspirasi potensial (mm/bulan) m = luas kawasan tidak bervegetasi (%) Nr = jumlah hari hujan/bulan 2.5 Analisa Kebutuhan Air untuk Irigasi Curah Hujan Efektif Turunnya curah hujan pada suatu areal lahan mempengaruhi pertumbuhan tanaman di areal tersebut. Curah hujan tersebut dapat dimanfaatkan oleh tanaman untuk mengganti kehilangan air yang terjadi akibat evapotranspirasi, perkolasi, kebutuhan pengolahan tanah dan penyiapan lahan. Curah hujan efektif adalah curah hujan yang jatuh selama masa tumbuh tanaman, yang dapat digunakan untuk memenuhi air konsumtif tanaman. Jumlah hujan yang dapat dimanfaatkan oleh tanaman tergantung pada jenis tanaman. Namun, tidak semua jumlah curah hujan yang turun pada daerah tersebut dapat dipergunakan untuk tanaman dalam 22

18 pertumbuhannya, maka disini perlu diperhitungkan dan dicari curah hujan efektifnya. Curah hujan efektif (R eff ) ditentukan berdasarkan besarnya R 80 yang merupakan curah hujan yang besarnya dapat dilampaui sebanyak 80% atau dengan kata lain dilampauinya 8 kali kejadian dari 10 kali kejadian. Artinya, bahwa besarnya curah hujan yang terjadi lebih kecil dari R 80 mempunyai kemungkinan hanya 20%. Untuk menghitung besarnya curah hujan efektif berdasarkan R 80 (Rainfall equal or exceeding in 8 years out of 10 years), dinyatakan dengan rumus sebagai berikut : R 80 = (n/5) (2.22) dimana : R eff = R 80 : curah hujan efektif 80 % (mm/hari) (n/5) + 1 : Rangking curah hujan efektif di hitung dari curah hujan terkecil n : jumlah data Analisa curah hujan efektif ini dilakukan dengan maksud untuk menghitung kebutuhan air irigasi. Curah hujan efektif atau andalan ialah bagian dari keseluruhan curah hujan yang secara efektif tersedia untuk kebutuhan air tanaman. Untuk irigasi padi curah hujan efektif bulanan diambil 70% dari curah hujan minimum dengan periode ulang rencana tertentu dengan kemungkinan kegagalan 20%. Re padi = (R 80 x 70%) mm/hari...(2.23) Efisiensi Irigasi 23

19 Hampir seluruh air irigasi berasal dari pembagian dari saluran-saluran dari reservoir. Kehilangan air terjadi ketika air berlebih. Efisiensi irigasi dapat dicari dengan menggunakan rumus: Wf E C = x 100 %...(2.24) Wr dimana : E c : efisiensi irigasi Wf : jumlah air yang terdapat di areal persawahan Wr : jumlah air yang tersedia yang berasal dari reservoir Efisiensi pengairan merupakan suatu rasio atau perbandingan antar jumlah air yang nyata bermanfaat bagi tanaman yang diusahakan terhadap jumlah air yang tersedia atau yang diberikan dinyatakan dalam satuan persentase. Dalam hal ini dikenal 3 macam efisiensi yaitu efisiensi penyaluran air, efisiensi pemberian air dan efisiensi penyimpanan air. Jumlah air yang tersedia bagi tanaman di areal persawahan dapat berkurang karena adanya evaporasi permukaan, limpasan air dan perkolasi. Efisiensi irigasi adalah perbandingan antara air yang digunakan oleh tanaman atau yang bermanfaat bagi tanaman dengan jumlah air yang tersedia yang dinyatakan dalam satuan persentase. Efisiensi irigasi adalah angka perbandingan dari jumlah air irigasi nyata yang terpakai untuk kebutuhan pertumbuhan tanaman dengan jumlah air yang keluar dari pintu pengambilan (intake). Efisiensi irigasi terdiri atas efisiensi pengaliran yang pada umumnya terjadi di jaringan utama dan efisiensi di jaringan sekunder yaitu dari bangunan pembagi sampai petak sawah. Efisiensi irigasi didasarkan asumsi sebagian dari jumlah air yang diambil akan hilang baik di saluran maupun 24

20 di petak sawah. Kehilangan air yang diperhitungkan untuk operasi irigasi meliputi kehilangan air di tingkat tersier, sekunder dan primer. Besarnya masing-masing kehilangan air tersebut dipengaruhi oleh panjang saluran, luas permukaan saluran, keliling basah saluran dan kedudukan air tanah. Pada dasarnya, semua kehilangan air yang mempengaruhi efisiensi irigasi berlangsung selama proses pemindahan air dari sumbernya kelahan pertanian dan selama pengolahan lahan pertanian Kebutuhan Air di Sawah Kebutuhan air untuk tanaman pada suatu jaringan irigasi merupakan air yang dibutuhkan untuk tanaman untuk pertumbuhan yang optimal tanpa kekurangan air yang dinyatakan dalam Netto Kebutuhan Air Lapangan (Net Field Requirement, NFR). Kebutuhan air bersih disawah (NFR) dipengaruhi oleh faktor-faktor seperti penyiapan lahan, pemakaian konsumtif, penggenangan, efisiensi irigasi, perkolasi dan infiltrasi, dengan memperhitungkan curah hujan efektif (Re). Bedanya kebutuhan pengambilan air irigasi (DR) juga ditentukan dengan memperhitungkan faktor efisiensi irigasi secara keseluruhan. Perhitungan kebutuhan air irigasi dengan rumus sebagai berikut: NFR = Et c + P + WLR Re.....(2.25) DR = (NFR x A)/e...(2.26) dimana: NFR = kenutuhan air irigasi disawah (lt/det/ha) DR = kebutuhan air di pintu pengambilan (lt/det/ha) Et c = penggunaan konsumtif (mm/hari) P = perkolasi (mm/hari) 25

21 WLR = penggantian lapisan air (mm/hari) Re = curah hujan efektif A = luas areal irigasi rencana (ha) e = efisiensi irigasi Bab V Kebutuhan Air di Pintu Pengambilan Kebutuhan air di pintu pengambilan merupakan jumlah kebutuhan air di sawah dibagi dengan effisiensi irigasinya. Kebutuhan air di pintu pengambilan dapat dihitung dengan rumus sebagai berikut : DR = NFR / 8.64 x EI.....(2.27) dimana : DR : Kebutuhan air di pintu pengambilan (lt/dt/ha) NFR : Kebutuhan air di sawah (mm/hari) EI : Efisiensi irigasi secara total (%) 8.68 : Angka konversi satuan dari mm/hari ke lt/dt/hari Bab VI Kebutuhan Penyiapan Lahan Pada Standar Perencanaan irigasi disebutkan bahwa kebutuhan air untuk penyiapan lahan umumnya menentukan kebutuhan maksimum air irigasi pada suatu proyek irigasi. Ada 2 faktor penting yang menentukan besarnya kebutuhan air untuk penyiapan lahan ialah: a. Lamanya waktu yang dibutuhkan untuk penyiapan lahan. b. Jumlah air yang diperlukan untuk penyiapan lahan. Metode yang dapat digunakan untuk perhitungan kebutuhan air irigasi selama penyiapan lahan. Metode ini didasarkan pada laju air konstan dalam l/dt selama penyiapan lahan dan menghasilkan rumus berikut : LP = M. e k / ( e k 1 )... (2.28) dimana : 26

22 LP : Kebutuhan air irigasi untuk pengolahan tanah (mm/hari) M : Kebutuhan air untuk mengganti kehilangan air akibat evaporasi dan perkolasi di sawah yang telah di jenuhkan E o : Evaporasi air terbuka (mm/hari) P : Perkolasi (mm/hari) T : Jangka waktu penyiapan lahan (hari) S : Kebutuhan air, untuk penjenuhan ditambah dengan lapisan air 50 mm, yakni = 300 mm k : MT / S Kebutuhan Air untuk Konsumtif Tanaman Kebutuhan air untuk konsumtif tanaman merupakan kedalaman air yang diperlukan untuk memenuhi evapotranspirasi tanaman yang bebas penyakit, tumbuh di areal pertanian pada kondisi cukup air dari kesuburan tanah dengan potensi pertumbuhan yang baik dan tingkat lingkungan pertumbuhan yang baik. Untuk menghitung kebutuhan air untuk konsumtif tanaman digunakan persamaan empiris dan perlu diketahui nilai koefisien tanaman (Tabel 2.1) sebagai berikut : Et c = Kc x Et o.....(2.29) dimana : Kc : Koefisien tanaman Et o : Evapotranspirasi potensial (mm/hari) Et c : Evapotranspirasi tanaman (mm/hari) Tabel 2.2 Tabel Koefisien Tanaman Padi dan Jagung Periode Padi tengah bulan Variasi biasa Variasi unggul Jagung 1 1,1 1,1 0,5 2 1,1 1,1 0,95 3 1,1 1,05 0,96 4 1,1 1,05 1,05 5 1,1 0,95 1,02 6 1,05 0 0,95 7 0,

23 Sumber : Diktorat Jendral Pengairan. Standar Perencanaan Irigasi KP-01 : Perkolasi Proses masuknya air kedalam tanah dinamakan infiltrasi atau perkolasi. Kapasitas infiltrasi air atau curah hujan berbeda-beda antara satu tempat dan tempat lain, tergantung pada kondisi tanahnya. Apabila tanahnya cukup permeabel, cukup mudah ditembus air, maka laju infiltrasinya akan tinggi. Semakin tinggi tingkat permeabilitas tanah semakin tinggi pula laju infiltrasinya. Perkolasi merupakan gerakan air ke bawah dari zona air tidak jenuh yaitu daerah antara permukaan tanah sampai ke permukaan air tanah, ke dalam daerah yang jenuh dibawah permukaan air. Proses ini merupakan proses kehilangan air yang terjadi pada penanaman padi di sawah. Istilah perkolasi kurang mempunyai arti penting pada kondisi alam, tetapi dalam kondisi buatan, perkolasi mempunyai arti penting, dimana karena alasan teknis, dibutuhkan proses infiltrasi yang terus menerus. Besarnya perkolasi dinyatakan dalam mm/hari.perkolasi atau peresapan air kedalam tanah dibedakan menjadi dua, yaitu perkolasi vertikal dan perkolasi horizontal. Perkolasi adalah gerakan air ke bawah dari zona tidak jenuh yang terletak diantara permukaan tanah ke permukaan air tanah. Daya perkolasi adalah laju maksimum yang dimungkinkan, yang besarnya dipengaruhi oleh kondisi tanah dalam zona tidak jenuh yang terletak diantara permukaan tanah dengan permukaan air tanah, Laju perkolasi sangat bergantung pada sifat-sifat tanah. Dari hasil penyelidikan tanah pertanian dan penyelidikan kelulusan, besarnya laju perkolasi serta tingkat kecocokan tanah untuk pengolahan tanah dapat ditetapkan dan dianjurkan pemakaiannya. Guna menentukan laju perkolasi, tinggi muka air tanah juga harus 28

24 diperhitungkan. Perembesan terjadi akibat meresapnya air melalui tanggul sawah. Laju perkolasi normal pada tanah lempung sesudah dilakukan genangan berkisar antara 1 sampai 3 mm/hari. Di daerah dengan kemiringan diatas 5 %, paling tidak akan ter terjadi kehilangan 5 mm/hari akibat perkolasi dan rembesan. Faktor yang mempengaruhi perkolasi adalah : Tekstur tanah Permeabilitas tanah Letak permukaan air tanah Tebal lapisan tanah bagian atas Pergantian Lapisan Air a) Setelah pemupukan, usahakan untuk menjadwalkan dan mengganti lapisan air menurut kebutuhan. b) Jika tidak ada penjadwalan semacam itu, lakukan penggantian sebanyak 2 kali, masing masing 50 mm ( 3,3 mm/hari selama 1/2 bulan ) selama sebulan dan dua bulan setelah transplatasi. 2.6 Pola Tanam Pola tanam ialah susunan rencana penanaman berbagai jenis tanaman selama satu tahun yang umumnya di Indonesia dikelompokkan dalam tiga jenis tanaman, yaitu padi, tebu, dan palawija. Umumnya pola tanam mengikuti debit andalan yang tersedia untuk mendapatkan luas tanam yang seluas-luasnya. Terbatasnya persediaan air adalah alasan yang mempengaruhi penyusunan pola tanam dalam satu tahun. Rencana tata tanam bagi daerah irigasi berguna untuk menyusun suatu 29

25 pola pemanfaatan air irigasi yang tersedia untuk memperoleh hasil produksi tanam yang sebesar-besarnya bagi usaha pertanian. Agar kebutuhan pengambilan puncak dapat dikurangi, maka areal irigasi harus dibagi-bagi menjadi sedikitnya tiga atau empat golongan. Hal ini dilakukan agar bisa mendapatkan luas lahan tanam maksimal dari debit yang tersedia. Perencanaan golongan dilakukan dengan cara membagi lahan tanam dengan masa awal tanam yang berbeda. Langkah ini ditempuh dengan alasan tidak mencukupinya jumlah kebutuhan air apabila dilakukan penanaman secara serentak atau bisa juga dengan asumsi apabila tidak turunnya hujan untuk beberapa saat ke depan. Termasuk juga dikarenakan keterbatasan dari sumber daya manusianya maupun bangunan pelengkap yang ada. 30

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2. 1 Umum Hidrologi adalah suatu ilmu tentang kehadiran dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti suatu aliran yang dinamakan siklus

Lebih terperinci

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS BAB II DASAR TEORI 2.1 Perhitungan Hidrologi 2.1.1 Curah hujan rata-rata DAS Beberapa cara perhitungan untuk mencari curah hujan rata-rata daerah aliran, yaitu : 1. Arithmatic Mean Method perhitungan curah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Hidrologi adalah ilmu yang menjelaskan tentang kehadiran dan gerakan air di alam, yang meliputi bentuk berbagai bentuk air, yang menyangkut perubahan-perubahannya antara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Hidrologi Siklus hidrologi menunjukkan gerakan air di permukaan bumi. Selama berlangsungnya Siklus hidrologi, yaitu perjalanan air dari permukaan laut ke atmosfer kemudian ke

Lebih terperinci

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993).

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993). batas topografi yang berarti ditetapkan berdasarkan aliran air permukaan. Batas ini tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian

Lebih terperinci

Tabel 4.31 Kebutuhan Air Tanaman Padi

Tabel 4.31 Kebutuhan Air Tanaman Padi Tabel 4.31 Kebutuhan Air Tanaman Padi Kebutuhan Tanaman Padi UNIT JAN FEB MAR APR MEI JUNI JULI AGST SEPT OKT NOV DES Evapotranspirasi (Eto) mm/hr 3,53 3,42 3,55 3,42 3,46 2,91 2,94 3,33 3,57 3,75 3,51

Lebih terperinci

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR 3.1. Kebutuhan Air Untuk Irigasi BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR Kebutuhan air irigasi adalah jumlah volume air yang diperlukan untuk memenuhi kebutuhan evapotranspirasi, kehilangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kembali lagi ke laut, seperti digambarkan pada Gambar 2.1. Gambar 2.1. Ilustrasi Siklus Hidrologi

BAB II TINJAUAN PUSTAKA. kembali lagi ke laut, seperti digambarkan pada Gambar 2.1. Gambar 2.1. Ilustrasi Siklus Hidrologi BAB II TINJAUAN PUSTAKA 2.1. Siklus Hidrologi Hidrologi adalah suatu ilmu tentang proses terjadinya air dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti suatu aliran

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR DAFTAR ISI Halaman HALAMAN JUDUL i HALAMAN PENGESAHAN ii PERNYATAAN BEBAS PLAGIASI iii MOTTO iv DEDIKASI v KATA PENGANTAR vi DAFTAR ISI viii DAFTAR TABEL xi DAFTAR GAMBAR xii DAFTAR LAMPIRAN xiv DAFTAR

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL

BAB IV PEMBAHASAN DAN HASIL BAB IV PEMBAHASAN DAN HASIL 4.1. Analisis Curah Hujan 4.1.1. Ketersediaan Data Curah Hujan Untuk mendapatkan hasil yang memiliki akurasi tinggi, dibutuhkan ketersediaan data yang secara kuantitas dan kualitas

Lebih terperinci

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det DEBIT ANDALAN Debit Andalan (dependable discharge) : debit yang berhubungan dgn probabilitas atau nilai kemungkinan terjadinya. Merupakan debit yg kemungkinan terjadinya sama atau melampaui dari yg diharapkan.

Lebih terperinci

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian TINJAUAN PUSTAKA Daerah Aliran Sungai Sungai merupakan jaringan alur-alur pada permukaan bumi yang terbentuk secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian hilir. Air hujan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. berkaitan, dimana air diangkut dari lautan ke atmosfer (udara), ke darat dan

BAB II TINJAUAN PUSTAKA. berkaitan, dimana air diangkut dari lautan ke atmosfer (udara), ke darat dan BAB II TINJAUAN PUSTAKA 2.1. Siklus Hidrologi Hidrologi adalah suatu ilmu tentang kehadiran dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti suatu aliran yang dinamakan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Tangkapan Hujan BAB IV HASIL DAN PEMBAHASAN Berdasarkan stasiun curah hujan Jalaluddin dan stasiun Pohu Bongomeme. Perhitungan curah hujan rata-rata aljabar. Hasil perhitungan secara lengkap

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 )

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 ) II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Pada umumnya ketersediaan air terpenuhi dari hujan. Hujan merupakan hasil dari proses penguapan. Proses-proses yang terjadi pada peralihan uap air dari laut ke

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Irigasi Irigasi merupakan usaha-usaha yang dilakukan untuk membawa air dari sumbernya (usaha penyediaan) dan kemudian diberikan pada tanaman (mengairi) di lahan pertanian dengan

Lebih terperinci

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai

TINJAUAN PUSTAKA. Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai TINJAUAN PUSTAKA Gambaran Umum Daerah Irigasi Ular Kabupaten Serdang Bedagai Kabupaten Deli Serdang memiliki iklim tropis yang kondisi iklimnya hampir sama dengan kabupaten Serdang Bedagai. Pengamatan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 12 BAB III LANDASAN TEORI 3.1. TINJAUAN UMUM Irigasi adalah pemberian air secara buatan untuk memenuhi kebutuhan pertanian, air minum, industri dan kebutuhan rumah tangga. Sumber air yang digunakan untuk

Lebih terperinci

ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BENDUNG MRICAN1

ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BENDUNG MRICAN1 ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BENDUNG MRICAN1 Purwanto dan Jazaul Ikhsan Jurusan Teknik Sipil, Universitas Muhammadiyah Yogyakarta Jl. Lingkar Barat, Tamantirto, Yogyakarta (0274)387656

Lebih terperinci

DAFTAR ISI. Halaman JUDUL PENGESAHAN PERSEMBAHAN ABSTRAK KATA PENGANTAR

DAFTAR ISI. Halaman JUDUL PENGESAHAN PERSEMBAHAN ABSTRAK KATA PENGANTAR ix DAFTAR ISI Halaman JUDUL i PENGESAHAN iii MOTTO iv PERSEMBAHAN v ABSTRAK vi KATA PENGANTAR viii DAFTAR ISI ix DAFTAR TABEL xiii DAFTAR GAMBAR xvi DAFTAR LAMPIRAN xvii DAFTAR NOTASI xviii BAB 1 PENDAHULUAN

Lebih terperinci

ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN

ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN ANALISA KETERSEDIAAN AIR SAWAH TADAH HUJAN DI DESA MULIA SARI KECAMATAN MUARA TELANG KABUPATEN BANYUASIN Jonizar 1,Sri Martini 2 Dosen Fakultas Teknik UM Palembang Universitas Muhammadiyah Palembang Abstrak

Lebih terperinci

ANALISA KEBUTUHAN AIR DALAM KECAMATAN BANDA BARO KABUPATEN ACEH UTARA

ANALISA KEBUTUHAN AIR DALAM KECAMATAN BANDA BARO KABUPATEN ACEH UTARA ANALISA KEBUTUHAN AIR DALAM KECAMATAN BANDA BARO KABUPATEN ACEH UTARA Susilah Dosen Jurusan Teknik Sipil, Universitas Malikussaleh email: zulfhazli.abdullah@gmail.com Abstrak Kecamatan Banda Baro merupakan

Lebih terperinci

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI Oleh : FIRDAUS NURHAYATI F14104021 2008 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 1 PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN

Lebih terperinci

TUGAS KELOMPOK REKAYASA IRIGASI I ARTIKEL/MAKALAH /JURNAL TENTANG KEBUTUHAN AIR IRIGASI, KETERSEDIAAN AIR IRIGASI, DAN POLA TANAM

TUGAS KELOMPOK REKAYASA IRIGASI I ARTIKEL/MAKALAH /JURNAL TENTANG KEBUTUHAN AIR IRIGASI, KETERSEDIAAN AIR IRIGASI, DAN POLA TANAM TUGAS KELOMPOK REKAYASA IRIGASI I ARTIKEL/MAKALAH /JURNAL TENTANG KEBUTUHAN AIR IRIGASI, KETERSEDIAAN AIR IRIGASI, DAN POLA TANAM NAMA : ARIES FIRMAN HIDAYAT (H1A115603) SAIDATIL MUHIRAH (H1A115609) SAIFUL

Lebih terperinci

Faktor-faktor yang Mempengaruhi Kebutuhan Air Tanaman 1. Topografi 2. Hidrologi 3. Klimatologi 4. Tekstur Tanah

Faktor-faktor yang Mempengaruhi Kebutuhan Air Tanaman 1. Topografi 2. Hidrologi 3. Klimatologi 4. Tekstur Tanah Kebutuhan Air Irigasi Kebutuhan air sawah untuk padi ditentukan oleh faktor-faktor berikut : 1.Penyiapan lahan 2.Penggunaan konsumtif 3.Perkolasi dan rembesan 4.Pergantian lapisan air 5.Curah hujan efektif

Lebih terperinci

BAB I PENDAHULUAN. Evaluasi Ketersediaan dan Kebutuhan Air Daerah Irigasi Namu Sira-sira.

BAB I PENDAHULUAN. Evaluasi Ketersediaan dan Kebutuhan Air Daerah Irigasi Namu Sira-sira. BAB I PENDAHULUAN 1.1 Latar Belakang Ketersediaan air (dependable flow) suatu Daerah Pengaliran Sungai (DPS) relatif konstan, sebaliknya kebutuhan air bagi kepentingan manusia semakin meningkat, sehingga

Lebih terperinci

TINJAUAN PUSTAKA. Neraca Air

TINJAUAN PUSTAKA. Neraca Air TINJAUAN PUSTAKA Neraca Air Neraca air adalah model hubungan kuantitatif antara jumlah air yang tersedia di atas dan di dalam tanah dengan jumlah curah hujan yang jatuh pada luasan dan kurun waktu tertentu.

Lebih terperinci

Matakuliah : S0462/IRIGASI DAN BANGUNAN AIR Tahun : 2005 Versi : 1. Pertemuan 2

Matakuliah : S0462/IRIGASI DAN BANGUNAN AIR Tahun : 2005 Versi : 1. Pertemuan 2 Matakuliah : S0462/IRIGASI DAN BANGUNAN AIR Tahun : 2005 Versi : 1 Pertemuan 2 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan : 2 Kebutuhan Air Irigasi Kebutuhan air sawah untuk padi ditentukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang dihasilkan dibawa oleh udara yang bergerak.dalam kondisi yang

BAB II TINJAUAN PUSTAKA. yang dihasilkan dibawa oleh udara yang bergerak.dalam kondisi yang BAB II TINJAUAN PUSTAKA 2.1. Hidrologi Hidrologi adalah suatu ilmu pengetahuan yang mempelajari tentang kejadian, perputaran dan penyebaran air baik di atmosfir, di permukaan bumi maupun di bawah permukaan

Lebih terperinci

ANALISIS KETERSEDIAAN AIR PULAU-PULAU KECIL DI DAERAH CAT DAN NON-CAT DENGAN CARA PERHITUNGAN METODE MOCK YANG DIMODIFIKASI.

ANALISIS KETERSEDIAAN AIR PULAU-PULAU KECIL DI DAERAH CAT DAN NON-CAT DENGAN CARA PERHITUNGAN METODE MOCK YANG DIMODIFIKASI. ANALISIS KETERSEDIAAN AIR PULAU-PULAU KECIL DI DAERAH CAT DAN NON-CAT DENGAN CARA PERHITUNGAN METODE MOCK YANG DIMODIFIKASI Happy Mulya Mahasiswa Program Doktor Teknik Sipil Universitas Diponegoro, Semarang,

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Perbandingan Evapotranspirasi Tanaman Acuan Persyaratan air tanaman bervariasi selama masa pertumbuhan tanaman, terutama variasi tanaman dan iklim yang terkait dalam metode

Lebih terperinci

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban.

BAB III METODOLOGI. dan terorganisasi untuk menyelidiki masalah tertentu yang memerlukan jawaban. BAB III METODOLOGI 3.1 Umum Metodologi merupakan suatu penyelidikan yang sistematis untuk meningkatkan sejumlah pengetahuan, juga merupakan suatu usaha yang sistematis dan terorganisasi untuk menyelidiki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Hidrologi adalah suatu ilmu tentang kehadiran dan gerakan air di alam. Pada prinsipnya, jumlah air di alam ini tetap dan mengikuti suatu aliran yang dinamakan

Lebih terperinci

DAFTAR ISI. 1.2 RUMUSAN MASALAH Error Bookmark not defined. 2.1 UMUM Error Bookmark not defined.

DAFTAR ISI. 1.2 RUMUSAN MASALAH Error Bookmark not defined. 2.1 UMUM Error Bookmark not defined. HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERSEMBAHAN MOTTO KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI ABSTRAK BAB IPENDAHULUAN DAFTAR ISI halaman i ii iii iv v vii

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Dalam konteksnya sebagai sistem hidrologi, Daerah Aliran Sungai didefinisikan sebagai kawasan yang terletak di atas suatu titik pada suatu sungai yang oleh

Lebih terperinci

EVALUASI KETERSEDIAAN DAN KEBUTUHAN AIR DAERAH IRIGASI NAMU SIRA-SIRA

EVALUASI KETERSEDIAAN DAN KEBUTUHAN AIR DAERAH IRIGASI NAMU SIRA-SIRA EVALUASI KETERSEDIAAN DAN KEBUTUHAN AIR DAERAH IRIGASI NAMU SIRA-SIRA TUGAS AKHIR DIPLOMA III Disusun Oleh : IKHWAN EFFENDI LUBIS NIM : 101123003 NURRAHMAN H. NIM : 101123006 PROGRAM DIPLOMA III JURUSAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. TINJAUAN UMUM Dalam suatu penelitian dibutuhkan pustaka yang dijadikan sebagai dasar penelitian agar terwujud spesifikasi yang menjadi acuan dalam analisis penelitian yang

Lebih terperinci

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah II. TINJAUAN PUSTAKA 2.1. Analisis Kebutuhan Air Irigasi Kebutuhan air tanaman adalah banyaknya air yang dibutuhkan tanaman untuk membentuk jaringan tanaman, diuapkan, perkolasi dan pengolahan tanah. Kebutuhan

Lebih terperinci

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*)

PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS. Oleh: Suryana*) PENGENDALIAN OVERLAND FLOW SEBAGAI SALAH SATU KOMPONEN PENGELOLAAN DAS Oleh: Suryana*) Abstrak Pengelolaan Daerah Aliran Sungai (DAS) dilakukan secara integratif dari komponen biofisik dan sosial budaya

Lebih terperinci

BAB I PENDAHULUAN. 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di

BAB I PENDAHULUAN. 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di BAB I PENDAHULUAN 1.1. URAIAN UMUM Danau Toba adalah sebuah danau vulkanik dengan ukuran luas 100 km x 31 km di atas area seluas 1145 km² di Sumatera Utara, Sumatera, Indonesia. Di tengah danau terdapat

Lebih terperinci

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di II. TINJAUAN PUSTAKA A. Embung Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di Daerah Pengaliran Sungai (DPS) yang berada di bagian hulu. Konstruksi embung pada umumnya merupakan

Lebih terperinci

Lampiran 1.1 Data Curah Hujan 10 Tahun Terakhir Stasiun Patumbak

Lampiran 1.1 Data Curah Hujan 10 Tahun Terakhir Stasiun Patumbak 13 Lampiran 1.1 Data Curah Hujan 1 Tahun Terakhir Stasiun Patumbak TAHUN PERIODE JANUARI FEBRUARI MARET APRIL MEI JUNI JULI AGUSTUS SEPTEMBER OKTOBER NOVEMBER DESEMBER 25 I 11 46 38 72 188 116 144 16 217

Lebih terperinci

Dosen Pembimbing. Ir. Saptarita NIP :

Dosen Pembimbing. Ir. Saptarita NIP : Disusun Oleh : NurCahyo Hairi Utomo NRP : 3111.030.061 Rheza Anggraino NRP : 3111.030.080 Dosen Pembimbing Ir. Saptarita NIP : 1953090719842001 LOKASI STUDI BAB I PENDAHULUAN 1. Latar belakang 2. Rumusan

Lebih terperinci

ANALISIS DEBIT ANDALAN

ANALISIS DEBIT ANDALAN ANALISIS DEBIT ANDALAN A. METODE FJ MOCK Dr. F.J. Mock dalam makalahnya Land Capability-Appraisal Indonesia Water Availability Appraisal, UNDP FAO, Bogor, memperkenalkan cara perhitungan aliran sungai

Lebih terperinci

REKAYASA HIDROLOGI SELASA SABTU

REKAYASA HIDROLOGI SELASA SABTU SELASA 11.20 13.00 SABTU 12.00 13.30 MATERI 2 PENGENALAN HIDROLOGI DATA METEOROLOGI PRESIPITASI (HUJAN) EVAPORASI DAN TRANSPIRASI INFILTRASI DAN PERKOLASI AIR TANAH (GROUND WATER) HIDROMETRI ALIRAN PERMUKAAN

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian berada di wilayah Kabupaten Banyumas yang masuk

BAB III METODE PENELITIAN. Lokasi penelitian berada di wilayah Kabupaten Banyumas yang masuk BAB III METODE PENELITIAN 3.1. Lokasi Penelitian Lokasi penelitian berada di wilayah Kabupaten Banyumas yang masuk Daerah Irigasi Banjaran meliputi Kecamatan Purwokerto Barat, Kecamatan Purwokerto Selatan,

Lebih terperinci

STUDI POLA LENGKUNG KEBUTUHAN AIR UNTUK IRIGASI PADA DAERAH IRIGASI TILONG

STUDI POLA LENGKUNG KEBUTUHAN AIR UNTUK IRIGASI PADA DAERAH IRIGASI TILONG STUDI POLA LENGKUNG KEBUTUHAN AIR UNTUK IRIGASI PADA DAERAH IRIGASI TILONG Yohanes V.S. Mada 1 (yohanesmada@yahoo.com) Denik S. Krisnayanti (denik19@yahoo.com) I Made Udiana 3 (made_udiana@yahoo.com) ABSTRAK

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Banyumas. Sungai ini secara geografis terletak antara 7 o 12'30" LS sampai 7 o

BAB II TINJAUAN PUSTAKA. Banyumas. Sungai ini secara geografis terletak antara 7 o 12'30 LS sampai 7 o BAB II TINJAUAN PUSTAKA A. Umum Sungai Pelus merupakan salah satu sungai yang terletak di Kabupaten Banyumas. Sungai ini secara geografis terletak antara 7 o 12'30" LS sampai 7 o 21'31" LS dan 109 o 12'31"

Lebih terperinci

RC MODUL 2 KEBUTUHAN AIR IRIGASI

RC MODUL 2 KEBUTUHAN AIR IRIGASI RC14-1361 MODUL 2 KEBUTUHAN AIR IRIGASI SISTEM PENGAMBILAN AIR Irigasi mempergunakan air yang diambil dari sumber yang berupa asal air irigasi dengan menggunakan cara pengangkutan yang paling memungkinkan

Lebih terperinci

DEFINISI IRIGASI TUJUAN IRIGASI 10/21/2013

DEFINISI IRIGASI TUJUAN IRIGASI 10/21/2013 DEFINISI IRIGASI Irigasi adalah usaha penyediaan, pengaturan dan pembuangan air irigasi untuk menunjang pertanian, meliputi irigasi permukaan, irigasi rawa, irigasi air bawah tanah, irigasi pompa dan irigasi

Lebih terperinci

BAB II METODOLOGI 2.1 Bagan Alir Perencanaan

BAB II METODOLOGI 2.1 Bagan Alir Perencanaan BAB II METODOLOGI 2.1 Bagan Alir Perencanaan Gambar 2.1. Gambar Bagan Alir Perencanaan 2.2 Penentuan Lokasi Embung Langkah awal yang harus dilaksanakan dalam merencanakan embung adalah menentukan lokasi

Lebih terperinci

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air BAB I PENDAHULUAN I. Umum Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air laut, 1,75% berbentuk es dan 0,73% berada di daratan sebagai air sungai, air danau, air tanah dan sebagainya.

Lebih terperinci

TINJAUAN PUSTAKA Siklus Hidrologi

TINJAUAN PUSTAKA Siklus Hidrologi 4 TINJAUAN PUSTAKA Siklus Hidrologi Siklus hidrologi merupakan perjalanan air dari permukaan laut ke atmosfer kemudian ke permukaan tanah dan kembali lagi ke laut yang terjadi secara terus menerus, air

Lebih terperinci

BAB II TINJAUAN PUSTAKA. masukan (input) dan keluaran (output) yang terjadi. Pertimbangan antara

BAB II TINJAUAN PUSTAKA. masukan (input) dan keluaran (output) yang terjadi. Pertimbangan antara 17 BAB II TINJAUAN PUSTAKA 2.1 Umum Jumlah air di suatu luasan hamparan permukaan bumi dipengaruhi oleh masukan (input) dan keluaran (output) yang terjadi. Pertimbangan antara masukan dan keluaran air

Lebih terperinci

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN Kompetensi dasar Mahasiswa mampu melakukan analisis evapotranspirasi pengertian dan manfaat faktor 2 yang mempengaruhi evapotranspirasi pengukuran evapotranspirasi pendugaan evapotranspirasi JURUSAN TEKNIK

Lebih terperinci

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37

BAB I PENDAHULUAN. hidrologi di suatu Daerah Aliran sungai. Menurut peraturan pemerintah No. 37 BAB I PENDAHULUAN 1.1 Latar Belakang Hujan adalah jatuhnya air hujan dari atmosfer ke permukaan bumi dalam wujud cair maupun es. Hujan merupakan faktor utama dalam pengendalian daur hidrologi di suatu

Lebih terperinci

TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI. Dosen Pembimbing : Dr. Ali Masduqi, ST. MT. Nohanamian Tambun

TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI. Dosen Pembimbing : Dr. Ali Masduqi, ST. MT. Nohanamian Tambun TUGAS AKHIR PERHITUNGAN DEBIT ANDALAN SEBAGAI SUMBER AIR BERSIH PDAM JAYAPURA Dosen Pembimbing : Dr. Ali Masduqi, ST. MT Nohanamian Tambun 3306 100 018 Latar Belakang Pembangunan yang semakin berkembang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang terjadinya, pergerakan dan distribusi air di bumi, baik di atas maupun di bawah permukaan bumi, tentang sifat fisik,

Lebih terperinci

ABSTRAK. Kata Kunci : DAS Tukad Petanu, Neraca air, AWLR, Daerah Irigasi, Surplus

ABSTRAK. Kata Kunci : DAS Tukad Petanu, Neraca air, AWLR, Daerah Irigasi, Surplus ABSTRAK Daerah Aliran Sungai (DAS) Tukad Petanu merupakan salah satu DAS yang berada di Provinsi Bali. DAS Tukad Petanu alirannya melintasi 2 kabupaten, yakni: Kabupaten Bangli dan Kabupaten Gianyar. Hulu

Lebih terperinci

STUDI POTENSI IRIGASI SEI KEPAYANG KABUPATEN ASAHAN M. FAKHRU ROZI

STUDI POTENSI IRIGASI SEI KEPAYANG KABUPATEN ASAHAN M. FAKHRU ROZI STUDI POTENSI IRIGASI SEI KEPAYANG KABUPATEN ASAHAN TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh Colloqium Doqtum/Ujian Sarjana Teknik Sipil M. FAKHRU ROZI 09 0404

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA BAB II. TINJAUAN PUSTAKA 2.1 Definisi Daerah Aliran Sungai (DAS) Definisi daerah aliran sungai dapat berbeda-beda menurut pandangan dari berbagai aspek, diantaranya menurut kamus penataan ruang dan wilayah,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Siklus Hidrologi Siklus hidrologi adalah sebuah proses pergerakan air dari bumi ke armosfer dan kembali lagi ke bumi yang berlangsung secara kontinyu (Triadmodjo, 2008). Selain

Lebih terperinci

Analisis Ketersediaan Air Sungai Talawaan Untuk Kebutuhan Irigasi Di Daerah Irigasi Talawaan Meras Dan Talawaan Atas

Analisis Ketersediaan Air Sungai Talawaan Untuk Kebutuhan Irigasi Di Daerah Irigasi Talawaan Meras Dan Talawaan Atas Analisis Ketersediaan Air Sungai Talawaan Untuk Kebutuhan Irigasi Di Daerah Irigasi Talawaan Meras Dan Talawaan Atas Viralsia Ivana Kundimang Liany A. Hendratta, Eveline M. Wuisan Fakultas Teknik, Jurusan

Lebih terperinci

HIDROSFER I. Tujuan Pembelajaran

HIDROSFER I. Tujuan Pembelajaran KTSP & K-13 Kelas X Geografi HIDROSFER I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut. 1. Memahami pengertian hidrosfer dan siklus hidrologi.

Lebih terperinci

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air.

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. BAB I SIKLUS HIDROLOGI A. Pendahuluan Ceritakan proses terjadinya hujan! Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. Tujuan yang ingin dicapai

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Daerah Irigasi Banjaran merupakan Daerah Irigasi terluas ketiga di

BAB IV HASIL DAN PEMBAHASAN. Daerah Irigasi Banjaran merupakan Daerah Irigasi terluas ketiga di BAB IV HASIL DAN PEMBAHASAN 4.1. Diskripsi Lokasi Studi Daerah Irigasi Banjaran merupakan Daerah Irigasi terluas ketiga di wilayah Kabupaten Banyumas dengan luas areal potensial 1432 ha. Dengan sistem

Lebih terperinci

KEBUTUHAN AIR. penyiapan lahan.

KEBUTUHAN AIR. penyiapan lahan. 1. Penyiapan lahan KEBUTUHAN AIR Kebutuhan air untuk penyiapan lahan umumnya menentukan kebutuhan air irigasi pada suatu proyek irigasi. Faktor-faktor penting yang menentukan besarnya kebutuhan air untuk

Lebih terperinci

WATER BALANCE DAS KAITI SAMO KECAMATAN RAMBAH

WATER BALANCE DAS KAITI SAMO KECAMATAN RAMBAH WATER BALANCE DAS KAITI SAMO KECAMATAN RAMBAH Rismalinda Water Balance das Kaiti Samo Kecamatan Rambah Abstrak Tujuan dari penelitian ini adalah untuk menentukan keseimbangan antara ketersediaan air dengan

Lebih terperinci

ABSTRAK. Kata kunci : Saluran irigasi DI. Kotapala, Kebutuhan air Irigasi, Efisiensi. Pengaliran.

ABSTRAK. Kata kunci : Saluran irigasi DI. Kotapala, Kebutuhan air Irigasi, Efisiensi. Pengaliran. ABSTRAK Daerah Irigasi (DI) Kotapala adalah salah satu jaringan irigasi yang berlokasi di Desa Dajan Peken, Desa Dauh Peken, Desa Delod Peken, dan Desa Bongan yang berada di Kabupaten Tabanan Bali. DI

Lebih terperinci

ANALISIS KEBUTUHAN AIR PADA DAERAH IRIGASI MEGANG TIKIP KABUPATEN MUSI RAWAS

ANALISIS KEBUTUHAN AIR PADA DAERAH IRIGASI MEGANG TIKIP KABUPATEN MUSI RAWAS ANALISIS KEBUTUHAN AIR PADA DAERAH IRIGASI MEGANG TIKIP KABUPATEN MUSI RAWAS Budi Yanto Jurusan Teknik Sipil. Universitas Musi Rawas Jl. Pembangunan Komplek Perkantoran Pemda, Musi Rawas Email: budi_yn87@yahoo.com

Lebih terperinci

PERENCANAAN KEBUTUHAN AIR PADA AREAL IRIGASI BENDUNG WALAHAR. Universitas Gunadarma, Jakarta

PERENCANAAN KEBUTUHAN AIR PADA AREAL IRIGASI BENDUNG WALAHAR. Universitas Gunadarma, Jakarta PERENCANAAN KEBUTUHAN AIR PADA AREAL IRIGASI BENDUNG WALAHAR 1 Rika Sri Amalia (rika.amalia92@gmail.com) 2 Budi Santosa (bsantosa@staff.gunadarma.ac.id) 1,2 Jurusan Teknik Sipil, Fakultas Teknik Sipil

Lebih terperinci

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat 4 II. TINJAUAN PUSTAKA A. Jagung Jagung merupakan tanaman yang dapat hidup di daerah yang beriklim sedang sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat membutuhkan sinar matahari

Lebih terperinci

Bab V PENGELOLAAN MASALAH BANJIR DAN KEKERINGAN

Bab V PENGELOLAAN MASALAH BANJIR DAN KEKERINGAN Bab V ENGELOLAAN MASALAH BANJIR DAN KEKERINGAN Sub Kompetensi Mahasiswa memahami pengendalian banjir dan kekeringan 1 ERSOALAN Banjir dan kekeringan, mengapa menjadi dua sisi mata uang yang harus diwaspadai?

Lebih terperinci

Studi Kasus Penggunaan Sumber Daya Air di Daerah Aliran Sungai (DAS) Way Ketibung Kabupaten Lampung Selatan

Studi Kasus Penggunaan Sumber Daya Air di Daerah Aliran Sungai (DAS) Way Ketibung Kabupaten Lampung Selatan Studi Kasus Penggunaan Sumber Daya Air di Daerah Aliran Sungai (DAS) Way Ketibung Kabupaten Lampung Selatan Sumiharni 1) Amril M. Siregar 2) Karina H. Ananta 3) Abstract The location of the watershed that

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS WIRARAJA SUMENEP - MADURA

FAKULTAS TEKNIK UNIVERSITAS WIRARAJA SUMENEP - MADURA PENGARUH DEBIT AIR TEHADAP POLA TATA TANAM PADA BAKU SAWAH DI DAERAH IRIGASI KEBONAGUNG KABUPATEN SUMENEP Oleh : Cholilul Chahayati dan Sutrisno Dosen Fakultas Teknik Universitas Wiraraja (cholilul.unija@gmail.com

Lebih terperinci

OPTIMASI FAKTOR PENYEDIAAN AIR RELATIF SEBAGAI SOLUSI KRISIS AIR PADA BENDUNG PESUCEN

OPTIMASI FAKTOR PENYEDIAAN AIR RELATIF SEBAGAI SOLUSI KRISIS AIR PADA BENDUNG PESUCEN OPTIMASI FAKTOR PENYEDIAAN AIR RELATIF SEBAGAI SOLUSI KRISIS AIR PADA BENDUNG PESUCEN M. Taufik Program Studi Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Purworejo abstrak Air sangat dibutuhkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. A. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang

BAB II TINJAUAN PUSTAKA. A. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang BAB II TINJAUAN PUSTAKA A. Hidrologi Hidrologi adalah ilmu yang mempelajari tentang kejadian,perputaran dan penyebaran air di atmofir,dipermukaan bumi maupun di bawah permukaan bumi.siklus hidrologi adalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Air merupakan salah satu kebutuhan makhluk hidup. Keberadaan air di muka bumi ini mengikuti suatu proses yang disebut daur hidrologi, yaitu proses yang tercakup ke

Lebih terperinci

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-1 BAB III METODOLOGI 3.1. Tinjauan Umum Metodologi yang digunakan dalam penyusunan Tugas Akhir dapat dilihat pada Gambar 3.1. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-2 Metodologi dalam perencanaan

Lebih terperinci

KEHILANGAN AIR AKIBAT REMBESAN KE DALAM TANAH, BESERTA PERHITUNGAN EFFISIENSINYA PADA SALURAN IRIGASI SEKUNDER REJOAGUNG I DAN II

KEHILANGAN AIR AKIBAT REMBESAN KE DALAM TANAH, BESERTA PERHITUNGAN EFFISIENSINYA PADA SALURAN IRIGASI SEKUNDER REJOAGUNG I DAN II KEHILANGAN AIR AKIBAT REMBESAN KE DALAM TANAH, BESERTA PERHITUNGAN EFFISIENSINYA PADA SALURAN IRIGASI SEKUNDER REJOAGUNG I DAN II Oleh : Iswinarti Iswinarti59@gmail.com Program Studi Teknik Sipil Undar

Lebih terperinci

ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BANGBAYANG UPTD SDAP LELES DINAS SUMBER DAYA AIR DAN PERTAMBANGAN KABUPATEN GARUT

ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BANGBAYANG UPTD SDAP LELES DINAS SUMBER DAYA AIR DAN PERTAMBANGAN KABUPATEN GARUT ANALISIS KEBUTUHAN AIR IRIGASI PADA DAERAH IRIGASI BANGBAYANG UPTD SDAP LELES DINAS SUMBER DAYA AIR DAN PERTAMBANGAN KABUPATEN GARUT Endang Andi Juhana 1, Sulwan Permana 2, Ida Farida 3 Jurnal Konstruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi dan Neraca air Menurut Mori (2006) siklus air tidak merata dan dipengaruhi oleh kondisi meteorologi (suhu, tekanan atmosfir, angin, dan lain-lain) dan kondisi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Daerah Irigasi Lambunu Daerah irigasi (D.I.) Lambunu merupakan salah satu daerah irigasi yang diunggulkan Propinsi Sulawesi Tengah dalam rangka mencapai target mengkontribusi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Menurut (Triatmodjo, 2008:1).Hidrologi merupakan ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya. Penerapan ilmu hidrologi

Lebih terperinci

STUDI KESEIMBANGAN AIR WADUK KEULILING KABUPATEN ACEH BESAR NAD UNTUK OPTIMASI IRIGASI

STUDI KESEIMBANGAN AIR WADUK KEULILING KABUPATEN ACEH BESAR NAD UNTUK OPTIMASI IRIGASI STUDI KESEIMBANGAN AIR WADUK KEULILING KABUPATEN ACEH BESAR NAD UNTUK OPTIMASI IRIGASI Diajukan untuk melengkapi syarat penyelesaian pendidikan Sarjana Teknik Sipil ALEFYA ABRAR 07 0404 054 BIDANG STUDI

Lebih terperinci

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG BAB I PENDAHULUAN 1.1 Latar Belakang Air merupakan sumber kehidupan bagi manusia. Dalam melaksanakan kegiatannya, manusia selalu membutuhkan air bahkan untuk beberapa kegiatan air merupakan sumber utama.

Lebih terperinci

ANALISIS KETERSEDIAAN AIR PADA DAERAH IRIGASI BLANG KARAM KECAMATAN DARUSSALAM KEBUPATEN ACEH BESAR

ANALISIS KETERSEDIAAN AIR PADA DAERAH IRIGASI BLANG KARAM KECAMATAN DARUSSALAM KEBUPATEN ACEH BESAR ISSN 2407-733X E-ISSN 2407-9200 pp. 35-42 Jurnal Teknik Sipil Unaya ANALISIS KETERSEDIAAN AIR PADA DAERAH IRIGASI BLANG KARAM KECAMATAN DARUSSALAM KEBUPATEN ACEH BESAR Ichsan Syahputra 1, Cut Rahmawati

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Air merupakan salah satu sumberdaya alam dan elemen penting untuk menunjang keberlanjutan kehidupan di muka bumi. Manusia memanfaatkan sumberdaya air untuk memenuhi

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA 90 BAB IV ANALISIS DATA 4.1. Tinjauan Umum Dalam merencanakan jaringan irigasi tambak, analisis yang digunakan adalah analisis hidrologi dan analisis pasang surut. Analisis hidrologi yaitu perhitungan

Lebih terperinci

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan

BAB I PENDAHULUAN. Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam siklus hidrologi, jatuhnya air hujan ke permukaan bumi merupakan sumber air yang dapat dipakai untuk keperluan makhluk hidup. Dalam siklus tersebut, secara

Lebih terperinci

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...)

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...) Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...) Disampaikan pada PELATIHAN PENGELOLAAN DAS (25 November 2013) KERJASAMA : FORUM

Lebih terperinci

BAB 1 PENDAHULUAN. Pembangunan yang berkelanjutan seperti yang dikehendaki oleh pemerintah

BAB 1 PENDAHULUAN. Pembangunan yang berkelanjutan seperti yang dikehendaki oleh pemerintah BAB 1 PENDAHULUAN A. Latar Belakang Pembangunan yang berkelanjutan seperti yang dikehendaki oleh pemerintah maupun masyarakat mengandung pengertian yang mendalam, bukan hanya berarti penambahan pembangunan

Lebih terperinci

Studi Optimasi Pola Tanam pada Daerah Irigasi Warujayeng Kertosono dengan Program Linier

Studi Optimasi Pola Tanam pada Daerah Irigasi Warujayeng Kertosono dengan Program Linier JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) D-30 Studi Optimasi Pola Tanam pada Daerah Irigasi Warujayeng Kertosono dengan Program Linier Ahmad Wahyudi, Nadjadji Anwar

Lebih terperinci

ANALISA KETERSEDIAAN AIR

ANALISA KETERSEDIAAN AIR ANALISA KETERSEDIAAN AIR 3.1 UMUM Maksud dari kuliah ini adalah untuk mengkaji kondisi hidrologi suatu Wilayah Sungai yang yang berada dalam sauatu wilayah studi khususnya menyangkut ketersediaan airnya.

Lebih terperinci

BAB III METODOLOGI. Bab Metodologi III TINJAUAN UMUM

BAB III METODOLOGI. Bab Metodologi III TINJAUAN UMUM III 1 BAB III METODOLOGI 3.1 TINJAUAN UMUM Metodologi adalah suatu cara atau langkah yang ditempuh dalam memecahkan suatu persoalan dengan mempelajari, mengumpulkan, mencatat dan menganalisa semua data-data

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang PERHITUNGAN KEBUTUHAN AIR IRIGASI DAN POLA TANAM PADA DAERAH IRIGASI RAWA SALIM BATU DENGAN LUAS AREAL 350 HA, KABUPATEN BULUNGAN, PROVINSI KALIMANTAN UTARA MUHAMMAD SANDI VADILLAH 12.11.1001.7311.097

Lebih terperinci

BAB I PENDAHULUAN. Meningkatnya jumlah populasi penduduk pada suatu daerah akan. memenuhi ketersediaan kebutuhan penduduk. Keterbatasan lahan dalam

BAB I PENDAHULUAN. Meningkatnya jumlah populasi penduduk pada suatu daerah akan. memenuhi ketersediaan kebutuhan penduduk. Keterbatasan lahan dalam BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya jumlah populasi penduduk pada suatu daerah akan berpengaruh pada pemanfaatan sumberdaya lahan dalam jumlah besar untuk memenuhi ketersediaan kebutuhan

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK II. TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK DAS Citarum merupakan DAS terpanjang terbesar di Jawa Barat dengan area pengairan meliputi Kabupaten Bandung, Bandung Barat, Bekasi, Cianjur, Indramayu,

Lebih terperinci