PERPINDAHAN KALOR. Proses perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu : konduksi, konveksi dan radiasi.

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERPINDAHAN KALOR. Proses perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu : konduksi, konveksi dan radiasi."

Transkripsi

1 PERPINDAHAN KALOR Bila dua benda atau lebih terjadi kontak termal maka akan terjadi aliran kalor dari benda yang bertemperatur lebih tinggi ke benda yang bertemperatur lebih rendah, hingga tercapainya kesetimbangan termal. Proses perpindahan panas ini berlangsung dalam 3 mekanisme, yaitu : konduksi, konveksi dan radiasi. Konduksi Jika pada suatu benda terdapat gradien temperatur, maka pada benda tersebut akan terjadi perpindahan energi dari bagian temperatur tinggi ke bagian temperatur rendah. Besarnya fluks kalor yang berpindah berbanding lurus dengan gradien temperatur pada benda tersebut. Secara matematis dinyatakan sebagai :

2 dengan memasukan konstanta kesetaraan yang disebut sebagai konduktivitas termal, didapatkan persamaan berikut yang disebut juga dengan hukum Fourier tentang konduksi kalor. tanda minus (-) timbul untuk menunjukan arah perpindahan kalor terjadi dari bagian temperatur tinggi ke bagian dengan temperatur rendah. Konduksi pada dinding datar : Jika persamaan diintegrasi : akan didapatkan : Dimana : q = Laju perpindahan panas (w) A = Luas penampang dimana panas mengalir (m 2 ) dt/dx = Gradien suhu pada penampang, atau laju perubahan suhu T terhadap jarak dalam arah aliran panas x k = Konduktivitas thermal bahan (w/m o C)

3 Apabila pada suatu sistem terdapat lebih dari satu macam bahan, misalnya dinding berlapis-lapis (seperti ditunjukkan pada gambar), maka aliran kalor dapat digambarkan sebagai berikut :

4 Jika digambarkan dalam analogi listrik didapatkan : Persamaan Fourier dapat pula dituliskan sebagai berikut : persamaan tesebut mirip dengan hukum Ohm dalam jaringan listrik, sehingga untuk perpindahan kalor dapat pula didekati dengan analogi listrik, dimana aliran kalor akan sama dengan : Harga tahanan termal total R th bergantung pada susunan dinding penyusunnya, apakah bersusun seri atau paralel atau gabungan.

5 k adalah kondutivitas termal. Konduktivitas termal untuk beberapa bahan : Bahan k (W/m.C o ) Bahan k (W/m.C o ) Aluminium 238 Asbestos 0,08 Tembaga 397 Concrete 0,8 Emas 314 Gelas 0,8 Besi 79,5 Karet 0,2 Timbal 34,7 air 0,6 Perak 427 kayu 0,08 udara 0,0234

6 Konveksi Adalah transport energi dengan kerja gabungan dari konduksi panas, penyimpanan, energi dan gerakan mencampur. Perpindahan kalor karena berpindahnya partikel-partikel atau materi zat itu sendiri. q = h A ( T) Misalnya materi zat tersebut cair atau gas yang berpindah adalah zat cair atau gas itu sendiri. Tidak seperti perpindahan kalor pada konduksi, dimana materi zat itu tidak berpindah. Dimana : q = Laju perpindahan panas konveksi h = Koefisien perpindahan panas konveksi (w/m 2 0 C) A = Luas penampang (m 2 ) T = Perubahan atau perbedaan suhu ( 0 C; 0 F)

7 Radiasi Radiasi adalah perpindahan energi kalor dalam bentuk gelombang elektromagnetik, sama seperti gelombang radio atau gelombang cahaya. Pada radiasi energi berpindah dengan cara merambat tanpa memerlukan medium seperti halnya pada konduksi dan konveksi. Radiasi dapat terjadi di ruang hampa. Sehingga memungkinkan energi matahari sampai ke bumi melalui ruang hampa sejauh lebih dari seratus juta kilometer.

8 q = δ A (T 1 4 T 24 ) Dimana : δ = Konstanta Stefan-Boltzman 5,669 x10-8 w/m 2 k 4 A = Luas penampang T = Temperatur

9 PENDAHULUAN THERMODINAMIKA KONSEP-KONSEP DASAR Thermodinamika adalah pengetahuan eksperimental : berdasarkan pada sedikit prinsip/hukum yang kemudian di generalisasikan yang didapatkan dari eksperimen. Thermodinamika dapat didefinisikan sebagai ilmu tentang energi : ilmu yang membahas hubungan pertukaran antara panas dengan kerja. Energi dapat dipandang sebagai kemampuan untuk menyebabkan perubahan.

10 Ilmu ini menyatakan peristiwa untuk merubah panas ke bentuk tenaga (proses transformasi energi). Dimana hukum dasar alam tetap berlaku, yaitu prinsip-prinsip kekekalan energi, selama berinteraksi energi dapat berubah dari satu bentuk ke bentuk lain tetapi jumlah total dari energi tetap (konstan). Energi masuk 5 unit Energi tersimpan 1 unit Energi keluar 4 unit

11 Pemakaina prinsip-prinsip thermodinamika pada kehidupan seharihari : -Power plants : perencanaan motor-motor bakar (turbin), pusat- pusat tenaga nuklir - Mesin otomotif : roket, pesawat terbang, dll - Rumah tangga : AC, kulkas, pemanas air, dll - Tubuh manusia - Aliran panas dan kesetimbangan reaksi kimia

12 SISTEM THERMODINAMIKA Pada thermodinamika, benda kerja yang dimaksud sering disebut dengan sistem. Hal ini dimaksudkan untuk memisahkan benda kerja dengan sekelilingnya (sekitarnya/surrounding) Sistem Lingkungan = Alam Raya Pengertian sistem adalah bagian dari alam raya (univers). Sistem dibatasi oleh permukaan tertutup (batas sistem) yang dapat berupa bahan padat, cair, gas atau bahkan energi radiasi dan lainlain.

13 Batas sistem ini dapat tetap atau bergerak dan dapat dikelompokkan menjadi dua : 1. Batas sistem sebenarnya (nyata) : Udara dikompresikan dan permukaan sistem tertutup adalah permukaan yang dibatasi silinder. Permukaan tertutup pada kondisi ini adalah keadaan sebenarnya. 2. Batas sistem imaginary (khayal) : Sebongkah es terapung di atas air, dalam hal ini permukaan tertutup berupa keadaan khayal, es dianggap dikelilingi oleh suatu permukaan tertutup dan es adalah sistem yang dimaksudkan. Keadaan sistem (dalam hal ini sistem thermodinamika) yang dikarakterisasi oleh besaran-besaran thermodinamik yang dapat diukur seperti : temperatur, tekanan, volume dan sebagainya.

14 Sistem ada dua, yaitu : 1. Sistem tertutup (control mass) : Jika bahan tidak dapat keluar/masuk menyeberangi batas, tetapi energi dalam bentuk panas atau kerja dapat menyeberangi batas. Batas tetap : massa (tidak) energi (ya) Sistem terisolasi yaitu dimana energi tidak menyeberangi batas sistem Batas bergerak : Saat dipanaskan maka gas mengembang sehingga piston bergerak

15 2. Sistem terbuka (control volume) : Jika bahan dapat menyeberang (keluar/masuk) batas, misal : kompresor, turbin. Jika bahan dan energi dapat menyeberangi batas, misal : pemanas air KESETIMBANGAN TERMAL Keadaan setimbang, keadaan sistem yang memiliki harga x dan y tertentu yang tetap selama kondisi eksternal tidak berubah. Keadaan setimbang dalam suatu sistem bergantung pada sistem yang lain yang ada di dekatnya dan sifat dinding yang memisahkan.

16 Sifat dinding : 1. Dinding adiabatis, tidak dapat dilalui panas (tidak ada pertukaran panas antara sistem dan sekitarnya), missal : lap, kayu yang tebal, beton, asbes dll. 2. Dinding diatermis, dapat dilalui panas (terjadi pertukaran panas antara sistem dan sekitarnya), sifat ini yang menyebabkan setimbang termal, misalnya : lempengan logan yang tipis. Kesetimbangan termal adalah keadaan yang dicapai bila besaran-besaran thermodinamika sistem tidak berubah dengan berubahnya waktu. Dari hasil percobaan, dua sistem yang ada dalam kesetimbangan termal dengan sistem ke tiga, maka ketiganya dalam kesetimbangan termal. Ini merupakan hukum ke-nol thermodinamika (menurut postulat R. H. Fowler) C C = Dinding Adiabat A B A B = Dinding Diatermis

17 Kesetimbangan termodinamik adalah sistem yang berada pada kesetimbangan termal, mekanik dan kimia. Kesetimbangan mekanik adalah bila di dalam suatu sistem terjadi suatu kesetimbangan gaya-gaya antara sistem dengan sekitarnya. Kesetimbangan kimia adalah jika suatu sistem dalam kesetimbangan mekanis tidak mengalami perubahan spontan dari struktur di dalamnya betapapun lambatnya. Dalam kondisi setimbang termodinamik tidak akan terjadi perubahan keadaan baik untuk sistem dan lingkungannya. Sistem dikatakan tidak setimbang, bila salah satu kesetimbangan yang merupakan komponen kesetimbangan termodinamik tidak dipenuhi. Bila sistem dalam kesetimbangan termodinamik dan lingkungan dibuat tidak berubah, maka tidak ada gerakan yang terjadi dan tidak ada kerja yang dilakukan, antara lain proses, kuasistatik, isovolumic/isochoric, isobaric/isopiestic, isotermal, adiabatik.

18 Akibat bila sistem tidak setimbang, artinya prasyarat kesetimbangan mekanis tidak terpenuhi, maka akan timbul : 1. Gaya tak berimbang dapat terbentuk dalam sistem, akibatnya timbul turbulensi, gelombang dsb. Selain itu sistem secara keseluruhan dapat melakukan gerak dipercepat. 2. Akibat turbulensi, percepatan dsb, distribusi temperatur tak serba sama sehingga akan muncul atau dapat timbul perbedaan temperatur antara sistem dan lingkungan. Perubahan gaya dan temperatur yang mendadak dapat menimbulkan reaksi kimia atau perubahan unsur kimia. Koordinat sistem (perubahan variabel keadaan sistem/zat) berpengaruh pada keadaan sistem (P-V-T) dan kerapatan.

19 Dalam bidang teknik : Gas Udara Uap Uap air Campuran Uap bensin dan Udara Dalam bidang kimia : Gas, uap, campuran, zat padat, permukaan selaput dan sel listrik Dalam bidang fisika : Mencakup bidang teknik dan kimia, kapasitor listrik, termokopel dan zat magnetik PERSAMAAN KEADAAN (Equation State) Hubungan Variabel (Perubah) Keadaan Hubungan variabel keadaan p, V, T dengan massa m disebut persamaan keadaan suatu zat. Persamaan ini secara matematik ditulis : F (p,v,t,m) = 0 Bila persamaan di atas volume V diganti dengan volume jenis v, dimana :

20 maka persamaan keadaan zat hanya tergantung pada sifat zat itu sendiri. Bentuk persamaan keadaan menjadi : F (p,v,t,m) = 0 Untuk zat yang berbeda sifatnya akan terdapat persamaan keadaan yang berbeda. Persamaan Keadaan Gas Ideal (Gas Sempurna) Gas ideal (sempurna) adalah gas dimana tenaga ikat melokul-molekulnya dapat diabaikan. Untuk dasar dari teori kinetis molekul air, persamaan keadaan gas ideal untuk satu satuan massa adalah : p v = RT dimana : p : tekanan absolut v : volume jenis gas R : konstanta gas T : suhu absolut gas

21 Untuk massa m, persamaan keadaan gas ideal dapat ditulis : m p v = m R T atau m p V = m R T dimana : V : volume gas sebenarnya m : massa gas atau dapat ditulis juga dalam bentuk : p V = n R T n : jumlah mol gas

22 Perubahan Keadaan Gas Ideal Pada gas ideal terdapat empat macam perubahan keadaan istimewa, yaitu : a. Perubahan keadaan dengan proses temperatur konstan (Isothermal atau Isotermis) P 2 p 1 p V 2 2 T = konstan V 1 1 V Gas dimasukkan ke dalam silinder torak. Keadaan gas akan dirubah dari keadaan 1 ke keadaan 2 dengan menekan torak. Suhu gas dijaga agar konstan dengan cara mendinginkan dan memanaskan silinder. Persamaan gas ideal dalam hal ini menjadi : p v = RT = konstan Gambar. Diagram p-v pada proses Isothermal

23 untuk keadaan 1 dan 2 dapat ditulis hubungan sebagai berikut : p 1 v 1 = p 2 v 2 atau Proses isothermal terdapat pada kompressor dan sebagainya. b. Perubahan keadaan dengan proses volume konstan (Isokhorik) P 2 p 1 p V = konstan 2 1 V Keadaan gas dirubah dari keadaan 1 ke keadaan 2 dengan memanaskan silinder, sedang torak ditahan supaya jangan bergerak sehingga volume gas dalam silinder tetap konstan. Tekanan gas dalam silinder akan bertambah. Persamaan gas ideal dalam hal ini untuk volume konstan : Gambar. Diagram p-v pada proses Isometrik

24 Untuk keadaan 1 ke keadaan 2 dapat ditulis : Proses isotermik terdapat pada motor bensin dan sebagainya. c. Perubahan keadaan dengan proses tekanan konstan (Isobarik) p 1 = p 2 p 1 p = konstan 2 Keadaan gas dirubah dari keadaan 1 ke 2 dengan memanaskan silinder, sedang torak dibuat bebas bergerak sehingga tekanan gas dalam silinder tetap konstan. Persamaannya : V 1 V 2 V Untuk keadaan 1 dan 2 dapat ditulis : atau Gambar. Diagram p-v pada proses isobarik Persamaan isobarik terdapat pada ketel uap, motor diesel dan sebagainya.

25 Gabungan proses isothermal dan isobarik akan menghasilkan Hukum Boyle- Gay Lussac : d. Perubahan keadaan dengan proses adiabatik Pada proses adiabatik gas dalam silinder tidak menerima dan mengeluarkan panas, silinder diisolasi. Kerja yang dilakukan gas dalam silinder hanya sebagai hasil perubahan energi sendiri. Kejadian ini di dapat pada motor bakar yang berputar dengan cepat.

26 Koefisien Pengembangan (Expansion) dan Komperessibilitas (Compressibility) Pengaruh temperatur terhadap volume suatu zat pada tekanan konstan disebut koefisien pengembangan suatu zat. Koefisien pengembangan (koefisien expansion/koefisien muai ruang) suatu zat dapat ditentukan dengan persamaan : dimana : V : volume zat sebenarnya v : volume jenis zat Pengaruh tekanan terhadap volume suatu zat pada temperatur konstan disebut kompresibilitas suatu zat Kompresibilitas suatu zat dapat ditentukan dengan persamaan : Tanda negatif karena pertambahan tekanan menyebabkan pengurangan volume zat.

27 Karena volume jenis suatu zat adalah kebalikan dari kerapatan (density) zat atau : maka persamaan dapat ditulis dalam hubungan kerapatan zat sebagai berikut : dan untuk kompresibilitas : Bila persamaan suatu zat diketahui (diberikan), maka koefisien pengembangan β dan kompresibilitas k akan dapat ditentukan, misalnya : untuk gas ideal

28 Perbandingan pertambahan tekanan dengan pertambahan temperatur dapat dilakukan dengan hubungan differensial parsil x,y,z yaitu : maka untuk F (p,v,t) = 0 adalah : Dari hubungan ini diperoleh perbandingan pertambahan tekanan terhadap pertambahan temperatur, yaitu :

29 HUKUM THERMODINAMIKA PERTAMA Kerja Luar (External Work) Dalam thermodinamika, sistem akan melakukan kerja pada perubahan keadaan. Pada thermodinamika, bila vektor penyimpangan ds searah dengan vektor gaya F, maka kerja adalah negatif. Sebaliknya bila vektor penyimpangan ds berlawanan arah dengan vektor gaya F, maka kerja adalah positif, seperti gambar dibawah ini : Persamaan untuk kerja oleh gaya F dalam thermodinamika : dw = -F cos θ ds

30 jika : a) θ = 0 cos θ = 1 Vektor ds searah dengan vektor F, maka kerja adalah negatif, dapat ditulis sebagai berikut : dw = -F ds b) θ = 180 cos θ = -1 Vektor ds berlawanan arah dengan vektor F, maka kerja adalah positif, atau : Dalam hal ini berarti : dw = F ds Bila kerja negatif : Berarti sistem menerima kerja (kerja luar) dari sekelilingnya. Bila kerja positif : Berarti sistem melakukan kerja (kerja luar) terhadap sekelilingnya.

31 Untuk penjelasan tsb, tinjau suatu silinder berisi gas yang dilengkapi dengan suatu piston yang dapat bergerak. Gambar. Kerja pada gas dalam silinder. Piston bergerak sejarak ds kekanan. Menyebabkan perubahan volume gas sebesar dv. Arah ds berlawanan dengan arah F, jadi sistem melakukan kerja terhadap sekelilingnya sebesar : dw = F ds Bila A adalah luas penampang piston, maka : F = p A Dimana : p : tekanan atau gaya persatuan luas penampang piston. Maka dapat ditulis : dw = p A ds sedangakan : A ds = dv sehingga menjadi : dw = p dv Dari gambar, dw adalah elemen luas yang diarsir.

32 Dari gambar telihat bahwa : Bila arah ds ke kanan (ds berlawanan arah dengan F), berarti gas mengembang atau volume bertambah atau dv positif. Jadi sistem akan melakukan kerja terhadap sekelilingnya bila dv positif, hal ini terdapat pada proses expansi (pengembangan) Artinya : pada proses expansi dv adalah positif maka kerja adalah positif. Bila arah ds ke kiri (ds searah dengan F), berarti volume gas berkurang atau dv negatif. Jadi sistem akan menerima kerja dari sekelilingnya bila dv negatif. Hal ini terdapat pada proses kompresi (pemampatan). Artinya : pada proses kompresi dv adalah negatif maka kerja adalah negatif. Jadi bila sistem berubah dari keadaan 1 ke keadaan 2, maka kerja total yang dilakukan/diterima sistem adalah : Bila p konstan, kerja yang dilakukan/diterima sistem adalah : W = p (V 2 V 1 )

33 Kerja W pada perubahan keadaan istimewa a. Perubahan keadan dengan temperatur konstan (Isothermal) Sistem berubah dari keadaan 1 ke keadaan 2 dengan temperatur konstan. T = konstan T 1 = T 2 Keja yang dilakukan sistem : Bila sistem adalah gas ideal, dimana : Gambar. Kerja W adalah luasan dibawah garis isothermal pada diagran p-v maka kerja yang dilakukan gas ideal :

34 b. Perubahan keadaan dengan tekanan konstan (Isobarik) Kerja yang dilakukan sistem : Gambar. Kerja W adalah luasan di bawah garis isobarik pada diagram p-v Sistem berubah dari keadaab 1 ke keadaan 2 dengan tekanan konstan (Isobarik). P = konstan p 1 = p 2 Bila sistem adalah gas ideal, dimana : p V 2 = n R T 2 p V 1 = n R T 1 maka kerja yang dilakukan gas ideal : W = n R (T 2 T 1 )

35 c. Perubahan keadaan dengan volume konstan (Isometrik) Kerja yang dilakukan sistem : Gambar. Tidak ada luasan dibawah garis isometrik pada diagram p-v, maka kerja = 0 Sistem berubah dari keadaan 1 ke keadaan 2 dengan volume konstan. Jadi pada proses isometrik sistem tidak melakukan/menerima kerja terhadap sekelilingnya. Dalam penulisan kerja dw ditulis dalam bentuk differensial dt dan dp, yaitu sebagai berikut : Misalkan untuk V = V (p,t) maka, V = konstan, sehingga dv = 0

36 sehingga kerja : dw = p dv Untuk gas ideal dengan proses tekanan konstan (isobarik), maka dp = 0 Sehingga : P V = n R T jadi Bila keadaan berubah dari keadaan 1 ke keadaan 2, maka :

37 Diagram proses-proses isothermal, isometrik dan isobaric untuk gas ideal.

38 Bila diberikan sejumlah panas kecil dq pada suatu sistem, maka sistem tersebut akan berexpansi dan melakukan kerja luar yang kecil sebesar dw. Energi yang diperlukan untuk hal ini disebut pertambahan energi dalam (internal energy). Jadi panas dq sebagian dirubah untuk pertambahan energi dalam. Selain itu sistem juga mengalami pertambahan energi kinetik dan pertambahan energi potensial luar akibat gaya-gaya konservatif luar seperti gaya grafitasi dan lain-lain. Bila : du = Pertambahan energi dalam de K = Pertambahan energi kinetik de P = Pertambahan emergi potensial luar Maka persamaan energi sistem adalah : dq = dw + du + de K + de P Tetapi dalam termodinamika, sistem-sistem sebagian besar mengalami energi kinetik dan energi potensial yang konstan (pada sistem-sistem yang diisolasi) atau de K = 0 dan de P = 0, maka hukum thermodinamika pertama menjadi : dq = du + dw

39 Dalil Carnot Carnot mengemukakan siklus ideal yang disebut siklus Carnot. Siklus ini terdi atas dua buah isoterm dan dua buah adiabat. Gambar. dibawah melukiskan Siklus Carnot untuk sistem gas ideal. P T1 Q1 T1 W T2 Q2 T2 V

40 Di bawah ini tabel harga-harga R untuk beberap gas yang umum dipakai. G a s Berat Molekul (M) R (kg M/kg m K) Udara (tanpa CO 2 ) 28,964 29,77 Dioksid arang (CO 2 ) 44,011 19,25 ZaL air (H 2 ) 2, ,7 Zat lemas (N 2 ) 28,016 30,26 Zat asam (O 2 ) 32 26,49 Helium (He) 4, Amoniak (NH 3 ) 17,031 49,76 Methana (CH 4 ) 16,043 52,89 Athylene (C 2 H 4 ) 28,054 30,25 Argon ( A ) 39,944 21,23

41 Selesai

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA HUKUM PERTAMA TERMODINAMIKA Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN DADANG SUPRIATMAN STT - JAWA BARAT 2013 DAFTAR ISI JUDUL 1 DAFTAR ISI 2 DAFTAR GAMBAR 3 BAB I PENDAHULUAN 4 1.1 Latar Belakang 4 1.2 Rumusan

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

HUKUM I TERMODINAMIKA

HUKUM I TERMODINAMIKA HUKUM I TERMODINAMIKA Diajukan sebagai salah satu syarat untuk memenuhi Tugas Mata Kuliah Termodinamika Kelompok 3 Di susun oleh : Novita Dwi Andayani 21030113060071 Bagaskara Denny 21030113060082 Nuswa

Lebih terperinci

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W =

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W = 1 BAB TERMODINAMIKA 14.1 Usaha dan Proses dalam Termodinamika 14.1.1 Usaha Sistem pada Lingkungannya Dalam termodinamika, kumpulan benda-benda yang kita tinjau disebut sistem, sedangkan semua yang ada

Lebih terperinci

TERMODINAMIKA (I) Dr. Ifa Puspasari

TERMODINAMIKA (I) Dr. Ifa Puspasari TERMODINAMIKA (I) Dr. Ifa Puspasari Kenapa Mempelajari Termodinamika? Konversi Energi Reaksi-reaksi kimia dikaitkan dengan perubahan energi. Perubahan energi bisa dalam bentuk energi kalor, energi cahaya,

Lebih terperinci

Konduksi Mantap 2-D. Shinta Rosalia Dewi

Konduksi Mantap 2-D. Shinta Rosalia Dewi Konduksi Mantap 2-D Shinta Rosalia Dewi SILABUS Pendahuluan (Mekanisme perpindahan panas, konduksi, konveksi, radiasi) Pengenalan Konduksi (Hukum Fourier) Pengenalan Konduksi (Resistensi ermal) Konduksi

Lebih terperinci

BAB VI SIKLUS UDARA TERMODINAMIKA

BAB VI SIKLUS UDARA TERMODINAMIKA BAB VI SIKLUS UDARA ERMODINAMIKA Siklus termodinamika terdiri dari urutan operasi/proses termodinamika, yang berlangsung dengan urutan tertentu, dan kondisi awal diulangi pada akhir proses. Jika operasi

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini Hukum Termodinamika Usaha dan Kalor Mesin Kalor Mesin Carnot Entropi Hukum Termodinamika Usaha dalam Proses Termodinamika Variabel Keadaan Keadaan Sebuah Sistem Gambaran

Lebih terperinci

A. HUKUM I THERMODINAMIKA

A. HUKUM I THERMODINAMIKA Standar Kompetensi : Menerapkan konsep termodinamika dalam mesin kalor Kompetensi Dasar :. Menganalisis perubahan keadaan gas ideal dengan menerapkan hukum termodinamika Indikator :. Menjelaskan hukum

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I Bab ini hanya akan membahas Sistem Tertutup (Massa Atur). Energi Energi: konsep dasar Termodinamika. Energi: - dapat disimpan, di dalam sistem - dapat diubah bentuknya

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

Panas dan Hukum Termodinamika I

Panas dan Hukum Termodinamika I Panas dan Hukum Termodinamika I Termodinamika yaitu ilmu yang mempelajari hubungan antara kalor (panas) dengan usaha. Kalor (panas) disebabkan oleh adanya perbedaan suhu. Kalor akan berpindah dari tempat

Lebih terperinci

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil. Teori Kinetik Zat Teori Kinetik Zat Teori kinetik zat membicarakan sifat zat dipandang dari sudut momentum. Peninjauan teori ini bukan pada kelakuan sebuah partikel, tetapi diutamakan pada sifat zat secara

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika KTSP & K-3 FIsika K e l a s XI TERMODINAMIKA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian termodinamika.. Memahami perbedaan sistem

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

Rencana Pembelajaran Kegiatan Mingguan (RPKPM).

Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Rencana Pembelajaran Kegiatan Mingguan (RPKPM). Pertemuan ke Capaian Pembelajaran Topik (pokok, subpokok bahasan, alokasi waktu) Teks Presentasi Media Ajar Gambar Audio/Video Soal-tugas Web Metode Evaluasi

Lebih terperinci

Termodinamika Usaha Luar Energi Dalam

Termodinamika Usaha Luar Energi Dalam Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika

Lebih terperinci

4. Hukum-hukum Termodinamika dan Proses

4. Hukum-hukum Termodinamika dan Proses 4. Hukum-hukum Termodinamika dan Proses - Kesetimbangan termal -Kerja - Hukum Termodinamika I -- Kapasitas Panas Gas Ideal - Hukum Termodinamika II dan konsep Entropi - Relasi Termodinamika 4.1. Kesetimbangan

Lebih terperinci

KATA PENGANTAR. Tangerang, 24 September Penulis

KATA PENGANTAR. Tangerang, 24 September Penulis KATA PENGANTAR Puji serta syukur kami panjatkan atas kehadirat Allah SWT, karena dengan rahmat dan ridhonya kami bisa menyelesaikan makalah yang kami beri judul suhu dan kalor ini tepat pada waktu yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

γ = = γ = konstanta Laplace. c c dipanaskan (pada tekanan tetap) ; maka volume akan bertambah dengan V. D.TERMODINAMIKA

γ = = γ = konstanta Laplace. c c dipanaskan (pada tekanan tetap) ; maka volume akan bertambah dengan V. D.TERMODINAMIKA D.ERMODINAMIKA. Kalor Jenis Gas Suhu suatu gas dapat dinaikkan dalam kondisi yang bermacam-macam. olumenya dikonstankan, tekanannya dikonstankan atau kedua-duanya dapat dirubah-rubah sesuai dengan kehendak

Lebih terperinci

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 i KONDUKTIVITAS TERMAL LAPORAN Oleh: LESTARI ANDALURI 100308066 I LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 ii KONDUKTIVITAS

Lebih terperinci

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA 1 TUGAS KIMIA DASAR II TERMODINAMIKA Disusun Oleh NAMA : NIM : JURUSAN : TEKNIK PERTAMBANGAN DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Pendahuluan Termodinamika berasal dari bahasayunani, yaitu thermos yang berarti panas, dan dynamic yang berarti perubahan. Termodinamika adalah ilmu yang mempelajari

Lebih terperinci

Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama.

Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. 1. KONSEP TEMPERATUR 2 Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. Kalor (heat) adalah energi yang mengalir dari benda

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

BAB 7 SUHU DAN KALOR

BAB 7 SUHU DAN KALOR BB 7 SUHU DN OR 65 66 Peta onsep 67 7. PENGUURN TEMPERTUR Temperatur biasanya dinyatakan sebagai fungsi salah satu koordinat termodinamika lainnya. oordinat ini disebut sebagai sifat termodinamikannya.

Lebih terperinci

Efisiensi Mesin Carnot

Efisiensi Mesin Carnot Efisiensi Mesin Carnot Efisiensi mesin carnot akan dibahasa pada artikel ini. Sebelumnya apakah yang dimaksud dengan siklus carnot? siklus carnot adalah salah satu lingkup dari ilmu thermodinamika, yang

Lebih terperinci

KONSEP DASAR THERMODINAMIKA

KONSEP DASAR THERMODINAMIKA KONSEP DASAR THERMODINAMIKA Kuliah 2 Sistem thermodinamika Bagian dari semesta (alam) di dalam suatu batasan/lingkup tertentu. Batasan ini dapat berupa: Padat, cair dan gas. Karakteristik makroskopis :

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

Xpedia Fisika. Soal Zat dan Kalor

Xpedia Fisika. Soal Zat dan Kalor Xpedia Fisika Soal Zat dan Kalor Doc. Name: XPPHY0399 Version: 2013-04 halaman 1 01. Jika 400 g air pada suhu 40 C dicampur dengan 100 g air pada 30 C, suhu akhir adalah... (A) 13 C (B) 26 C (C) 36 C (D)

Lebih terperinci

Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termo

Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termo Tinjauan Singkat Termodinamika Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termodinamika merupakan sains

Lebih terperinci

MAKALAH HUKUM 1 TERMODINAMIKA

MAKALAH HUKUM 1 TERMODINAMIKA MAKALAH HUKUM 1 TERMODINAMIKA DISUSUN OLEH : KELOMPOK 1 1. NURHIDAYAH 2. ELYNA WAHYUNITA 3. ANDI SRI WAHYUNI 4. ARMITA CAHYANI 5. AMIN RAIS KELAS : FISIKA A(1,2) JURUSAN PENDIDIKAN FISIKA FAKULTAS TARBIYAH

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

Contoh soal dan pembahasan

Contoh soal dan pembahasan Contoh soal dan pembahasan Soal No. 1 Suatu gas memiliki volume awal 2,0 m 3 dipanaskan dengan kondisi isobaris hingga volume akhirnya menjadi 4,5 m 3. Jika tekanan gas adalah 2 atm, tentukan usaha luar

Lebih terperinci

Nama Mata Kuliah/kode Termodinamika/ FIS 509. Jumlah Kredit 3 SKS. Status Mata Kuliah MKBS; Wajib

Nama Mata Kuliah/kode Termodinamika/ FIS 509. Jumlah Kredit 3 SKS. Status Mata Kuliah MKBS; Wajib Nama Mata Kuliah/kode Termodinamika/ FIS 509 Jumlah Kredit 3 SKS Status Mata Kuliah MKBS; Wajib Jumlah Pertemuan/Minggu 2 Pertemuan (Kuliah dan Responsi) Prasyarat Telah mengikuti Kuliah Matfis I dan II

Lebih terperinci

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi Standar Kompetensi 7. Menerapkan konsep suhu dan kalor 8. Menerapkan konsep fluida 9. Menerapkan hukum Termodinamika 10. Menerapkan getaran, gelombang, dan bunyi 11. Menerapkan konsep magnet dan elektromagnet

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN Paket C 2011 Program IP Mata Ujian : Fisika Jumlah Soal : 20 1. Pembacaan jangka sorong berikut ini (bukan dalam skala sesungguhnya) serta banyaknya angka penting adalah. 10 cm 11 () 10,22

Lebih terperinci

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A PREDIKSI 7 1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A B C D E 2. Pak Pos mengendarai sepeda motor ke utara dengan jarak 8 km, kemudian

Lebih terperinci

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA NAMA : FAHMI YAHYA NIM : DBD 111 0022 TEKNIK PERTAMBANGAN TUGAS KIMIA DASAR 2 TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA CONTOH SOAL DAN PEMBAHASAN FAHMI YAHYA TUGAS TERMODINAMIKA

Lebih terperinci

TERMODINAMIKA MIRZA SATRIAWAN

TERMODINAMIKA MIRZA SATRIAWAN TERMODINAMIKA MIRZA SATRIAWAN March 20, 2013 Daftar Isi 1 SISTEM TERMODINAMIKA 2 1.1 Deskripsi Sistem Termodinamika............................. 2 1.2 Kesetimbangan Termodinamika..............................

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

TERMODINAMIKA (II) Dr. Ifa Puspasari

TERMODINAMIKA (II) Dr. Ifa Puspasari TERMODINAMIKA (II) Dr. Ifa Puspasari PV Work Irreversible (Pressure External Constant) Kompresi ireversibel: Kerja = Gaya x Jarak perpindahan W = F x l dimana F = P ex x A W = P ex x A x l W = - P ex x

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

Teori Kinetik Gas dan Termodinamika 1 TEORI KINETIK GAS

Teori Kinetik Gas dan Termodinamika 1 TEORI KINETIK GAS Teori Kinetik Gas dan Termodinamika 1 TEORI KINETIK GAS GAS IDEAL. Untuk menyederhanakan permasalahan teori kinetik gas diambil pengertian tentang gas ideal : 1. Gas ideal terdiri atas partikel-partikel

Lebih terperinci

TERMODINAMIKA I. DESKRIPSI

TERMODINAMIKA I. DESKRIPSI TERMODINAMIKA I. DESKRIPSI Mata kuliah ini merupakan mata kuliah wajib bagi seluruh mahasiswa Program Studi Fisika dan Pendidikan Fisika di Jurusan Pendidikan Fisika FPMIPA UPI. Setelah mengikuti perkuliahan

Lebih terperinci

Termodinamika. Energi dan Hukum 1 Termodinamika

Termodinamika. Energi dan Hukum 1 Termodinamika Termodinamika Energi dan Hukum 1 Termodinamika Energi Energi dapat disimpan dalam sistem dengan berbagai macam bentuk. Energi dapat dikonversikan dari satu bentuk ke bentuk yang lain, contoh thermal, mekanik,

Lebih terperinci

Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut

Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut Termodinamika Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut Usaha sistem terhadap lingkungan Persamaan usaha yang dilakukan gas dapat

Lebih terperinci

Diktat TERMODINAMIKA DASAR

Diktat TERMODINAMIKA DASAR Bab III HUKUM TERMODINAMIKA I : SISTEM TERTUTUP 3. PENDAHULUAN Hukum termodinamika pertama menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

Heat and the Second Law of Thermodynamics

Heat and the Second Law of Thermodynamics Heat and the Second Law of Thermodynamics 1 KU1101 Konsep Pengembangan Ilmu Pengetahuan Bab 04 Great Idea: Kalor (heat) adalah bentuk energi yang mengalir dari benda yang lebih panas ke benda yang lebih

Lebih terperinci

MATERI POKOK. 1. Kalor Jenis dan Kapasitas Kalor 2. Kalorimeter 3. Kalor Serap dan Kalor Lepas 4. Asas Black TUJUAN PEMBELAJARAN

MATERI POKOK. 1. Kalor Jenis dan Kapasitas Kalor 2. Kalorimeter 3. Kalor Serap dan Kalor Lepas 4. Asas Black TUJUAN PEMBELAJARAN MATERI POKOK 1. Kalor Jenis dan Kapasitas Kalor. Kalorimeter 3. Kalor Serap dan Kalor Lepas 4. Asas Black TUJUAN PEMBELAJARAN 1. Memformulasikan konsep kalor jenis dan kapasitas kalor. Mendeskripsikan

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

Pilihlah jawaban yang paling benar!

Pilihlah jawaban yang paling benar! Pilihlah jawaban yang paling benar! 1. Dalam perhitungan gas, temperatur harus dituliskan dalam satuan... A. Celsius B. Fahrenheit C. Henry D. Kelvin E. Reamur 2. Dalam teori kinetik gas ideal, partikel-partikel

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika Fisika Umum (MA-301) Topik hari ini Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses 1. Siklus, Hukum Termodinamika II dan Mesin Kalor a. Siklus dan Perhitungan Usaha Siklus adalah rangkaian beberapa proses termodinamika yang membuat keadaan akhir sistem kembali ke keadaan awalnya. Pada

Lebih terperinci

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika

Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Pengertian Energi, Potensial, Kinetik dan Hukum Kekekalan Energi - Fisika Sat, 13/05/2006-7:44pm godam64 Energi dari suatu benda adalah ukuran dari kesanggupan benda tersebut untuk melakukan suatu usaha.

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang DAFTAR ISI BAB I...2 PENDAHULUAN...2 A. Latar Belakang...2 B. Rumusan Masalah...3 C. Tujuan...3 D. Manfaat Penulisan...3 BAB II...4 PEMBAHASAN...4 A. Hukum-Hukum Termodinaka...4 B. Penerapan Hukum-Hukum

Lebih terperinci

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini: Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode Mata Kuliah Jumlah SKS/Semester Program Kode/Nama Dosen : : : : / FI343 3/III S1 (Pendidikan Fisika dan Fisika) 1736/ Drs. Saeful Karim,M.Si Tujuan Mata Kuliah : Setelah

Lebih terperinci

I. Hukum Kedua Termodinamika

I. Hukum Kedua Termodinamika I. Hukum Kedua Termodinamika Hukum termodinamika kedua menyatakan bahwa kondisi-kondisi alam selalu mengarah kepada ketidak aturan atau hilangnya informasi.hukum ini juga dikenalsebagai Hukum Entropi.Entropi

Lebih terperinci

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan TERMODINAMIKA Thermos = Panas Dynamic = Perubahan Termodinamika Cabang ilmu fisika yang mempelajari: 1. Pertukaran energi dalam bentuk: - Kalor - Kerja 2. Sistem ----------------Pembatas (boundary) 3.

Lebih terperinci

MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA. Disusun oleh: Kelompok

MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA. Disusun oleh: Kelompok MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA Disusun oleh: Kelompok Intan Wulandari (06101281419029) Nabilah Hasanah (06101281419031) Yulianti Sartika (06101281419077) Dosen Pengampu: Dr. Effendi Nawawi,

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

Pesawat panas Mengubah energi yang ada dalam bahan bakar ke dalam tenaga mekanis. Energi keluar waktu pembakaran.

Pesawat panas Mengubah energi yang ada dalam bahan bakar ke dalam tenaga mekanis. Energi keluar waktu pembakaran. PESAWAT PANAS Pesawat panas Mengubah energi yang ada dalam bahan bakar ke dalam tenaga mekanis. Energi keluar waktu pembakaran. Bayaknya panas Banyaknya panas (energi) diukur dengan kilo-kalori. 1 kilo-kalori

Lebih terperinci

SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen

SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen Jurusan Pendidikan Fisika Fakultas Pendidikan Matematikan dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen Drs. Saeful Karim,M.Si Semester

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

Perbandingan skala temperatur =================================== Celcius Reamur Fahrenheit ===================================

Perbandingan skala temperatur =================================== Celcius Reamur Fahrenheit =================================== GAS THERMODINAMIKA Sejumlah tertentu gas tidak mempunyai volume atau rapat yang pasti tetapi mengembang untuk mengisi setiap wadah tertutup yang ditempatinya. Meskipun demikian ada hubungan tertentu antara

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari.

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari. 1 Energi Dapat diubah dari bentuk yang satu ke bentuk lainnya. Kemampuan untuk melakukan kerja. Kerja: perubahan energi yang langsung dihasilkan oleh suatu proses. Energi kinetic; energy yang dihasilkan

Lebih terperinci

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan Xpedia Fisika Kapita Selekta Set 07 Doc. Name: XPFIS0107 Doc. Version : 2011-06 halaman 1 01. Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan... (A) Panas (B) Suhu

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Kode/SKS : FIS 100 / 3 (2-3) Deskrisi : Mata Kuliah Fisika A ini diberikan untuk mayor yang berbasis IPA tetapi tidak memerlukan dasar fisika yang

Lebih terperinci

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain Fisika Umum (MA-301) Topik hari ini (minggu 5) Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C,

Lebih terperinci

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI BAB IV TERMOKIMIA A. Standar Kompetensi: Memahami tentang ilmu kimia dan dasar-dasarnya serta mampu menerapkannya dalam kehidupan se-hari-hari terutama yang berhubungan langsung dengan kehidupan. B. Kompetensi

Lebih terperinci

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa

Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Fisika Umum (MA101) Topik hari ini (minggu 6) Kalor Temperatur Pemuaian Termal Gas ideal Kalor jenis Transisi fasa Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan

Lebih terperinci

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS)

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) Laporan ini disusun untuk memenuhi tugas mata kuliah Termodinamika Dosen Pengampu : Drs.Harto Nuroso,M.Pd. Disusun oleh : Kelompok 2 1. Feny Febriana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim BAB II TINJAUAN PUSTAKA 2.1 Kualitas dan pembuatan es krim Es krim adalah sejenis makanan semi padat. Di pasaran, es krim digolongkan atas kategori economy, good average dan deluxe. Perbedaan utama dari

Lebih terperinci

BAB TERMODINAMIKA V(L)

BAB TERMODINAMIKA V(L) 1 BAB TERMODINAMIKA Contoh 14.1 P (kpa) 300 A B Suatu gas dalam wadah silinder tertutup mengalami proses seperti pada gambar. Tentukan usaha yang dilakukan oleh gas untuk (a) proses AB, (b) proses BC,

Lebih terperinci

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN PERCOBAAN PENENTUAN KONDUKTIVITAS TERMA BERBAGAI OGAM DENGAN METODE GANDENGAN A. Tujuan Percobaan. Memahami konsep konduktivitas termal. 2. Menentukan nilai konduktivitas termal berbagai logam dengan metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Hukum I Termodinamika. Dosen : Syafa at Ariful Huda, M.Pd

Hukum I Termodinamika. Dosen : Syafa at Ariful Huda, M.Pd Hukum I Termodinamika Dosen : Syafa at Ariful Huda, M.Pd Makalah Fisika Dasar II Diajukan Untuk Memenuhi Tugas Matakuliah Fisika II Pada Program Strata 1 (S1) Anggih Pratama 20148300618 Ayulia Nurfatwa

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci