MANUSIA DAN RADIASI oleh : Sugata Pikatan

Ukuran: px
Mulai penontonan dengan halaman:

Download "MANUSIA DAN RADIASI oleh : Sugata Pikatan"

Transkripsi

1 Kristal no.6/juni/ MANUSIA DAN RADIASI oleh : Sugata Pikatan Sudah sering kita mendengar istilah radiasi di media massa. Pada umumnya kata ini dikaitkan dengan kegiatan-kegiatan di reaktor nuklir. Sebetulnya radiasi adalah proses hantaran energi yang luas pengertiannya. Berdasarkan watak penghantarnya, ada dua jenis radiasi, yaitu radiasi gelombang elektromagnetik dan radiasi partikel. Beda antara kedua jenis radiasi itu sudah jelas, radiasi gelombang elektromagnetik adalah pancaran energi dalam bentuk gelombang elektromagnetik, termasuk di dalamnya adalah radiasi energi matahari yang kita terima sehari-hari di permukaan bumi. Sedangkan radiasi partikel adalah pancaran energi dalam bentuk energi kinetik yang dibawa oleh partikel-partikel bermassa, seperti elektron, dan sebagainya. Radiasi yang timbul di sekitar reaktor nuklir adalah radiasi yang berasal dari bahan-bahan radioaktif, dapat berupa gelombang elektromagnetik maupun partikel-partikel cepat. Secara alamiah manusia hidup di dalam lautan radiasi. Selain radiasi dari matahari yang justru mendukung kehidupan di bumi ini, setiap saat permukaan bumi dihujani radiasi sinar kosmis yang terdiri dari gelombang elektromagnetik dan ratusan jenis partikel - partikel cepat. Masih ada lagi radiasi yang berasal dari mineral-mineral radioaktif yang ada di dalam bumi, sekaligus dengan turunannya yang terlarut dalam air dan yang terbawa angin ke udara. Jadi setiap saat kita menghirup udara yang mengandung partikel-partikel radioaktif! Tanpa adanya reaktor nuklirpun kita tidak bebas dari radiasi radioaktif. Pada jaman teknologi canggih seperti sekarang, terdapat pula radiasi buatan yang ditimbulkan oleh peralatan-peralatan modern seperti sinar X pada peralatan medis, televisi, monitor komputer, reaktor nuklir, percobaan bom nuklir dan lain-lain. Betapa ngerinya misalnya pada saat kita mendengar kebocoran reaktor nuklir di Chernobyl beberapa tahun yang silam. Yang ditakuti orang adalah bahaya radiasinya, radiasi yang berlebihan akan membahayakan kehidupan manusia. Oleh karena radiasi alamiah tidak membahayakan kehidupan, manusia sebagai makhluk hidup tidak dilengkapi dengan indera yang dapat memantau adanya radiasi ini. Tidak seperti bahaya panas yang dapat kita ketahui secara dini melalui syarat-syarat kita, kita bahkan tidak menyadari keberadaan sumber radiasi! Radiasi buatan seringkali melewati ambang batas radiasi yang dapat diterima tubuh manusia secara aman. Selain kecelakaan pada reaktor nuklir, hulu-hulu ledak bom nuklir antar benua masih merupakan ancaman serius bagi kehidupan manusia dewasa ini. Akibat radiasi bom nuklir pada kehidupan manusia sudah dibuktikan pada tahun pada tahun 1945, yakni peristiwa pengeboman kota Nagasaki dan Hiroshima yang mengakhiri Perang Pasifik antara Sekutu melawan Jepang. Sampai sekarang pengeboman ini adalah satu-satunya peristiwa yang memberikan data tentang akibat radiasi berlebihan pada manusia. Sebuah lembaran hitam dalam sejarah teknologi umat manusia yang diharapkan tidak akan terulang kembali. Untuk mengenal bahaya radiasi dalam kehidupan sehari-hari hanya ada satu cara, yaitu mempelajari pengertian radiasi itu sendiri. Tulisan ini mencoba untuk mengetengahkan seluk beluk radiasi baik yang alamiah maupun yang buatan. Apalagi pada awal abad 21 nanti Indonesia akan memasuki era PLTN, kekurang mengertian tentang radiasi dapat menimbulkan pro-kontra yang berkepanjangan.

2 Kristal no.6/juni/ Radiasi gelombang elektromagnetik yang berbahaya antara lain adalah sinar ultraviolet, sinar X dan sinar gamma. Sinar-sinar ini memiliki energi yang tinggi. Sinar ultarviolet yang berlebihan dapat menimbulkan radang bahkan kanker kulit. Untunglah ionosfer bumi memiliki lapisan ozon yang mampu menahan sebagian besar sinar ultra-violet dari matahari. Belakangan ditengarai bahwa lapisan ozon yang melindungi kita ini mulai berlubang-lubang akibat aktifitas manusia sendiri di permukaan bumi. Sinar X adalah pancaran energi akibat elektron yang diperlambat secara mendadak oleh atom-atom berat. Proses seperti ini disebut bremsstrablung. Energinya begitu tinggi sehingga daya tembusnya amat besar. Daya tembus ini dimanfaatkan dunia kedokteran untuk membuat citra bagian dalam tubuh manusia, yang sering kita kenal sebagai foto roentgen. Gelombang elektromagnetik yang terkuat adalah sinar gamma, sinar ini dihasilkan oleh inti atom radioaktif yang meluruh ke tingkat energi lebih rendah. Sinar gamma pada sinar kosmis sebagian terjadi akibat pertemuan partikel dengan anti-partikelnya seperti elektron dengan positron. Radiasi partikel yang banyak dijumpai adalah radiasi elektron, misalnya sinar katoda yang ada pada tabung TV dan monitor komputer. Kemudian proton, ion helium 4 He, elektron yang bersama-sama dengan netron dan netrino menghujani bumi tiap saat sebagai sinar kosmis. Unsur-unsur radioaktif yang banyak dikandung oleh batu-batuan bumi memancarkan partikel-partikel alpha dan beta. Partikel alpha adalah inti helium 4 He, sedangkan partikel beta sebetulnya adalah elektron, keduanya dihasilkan oleh radioaktivitas dalam inti atom radioaktif seperti atom-atom anggota deret uranium-238, deret thorium-232, dan lain-lain. BESARAN DAN SATUAN RADIASI Sebelum membicarakan radiasi lebih rinci kita perlu mengetahui besaran-besaran apa saja yang dipakai orang untuk mengukur radiasi secara kuantitatif. Ada empat besaran yang penting dalam semesta pembicaraan radiasi, yaitu : aktivitas radioaktif, aksposur, dosis serapan dan dosis ekivalen. 1. Aktifitas radioaktif (A) Besaran ini merupakan ukuran aktifitas inti atom radioaktif yang menyatakan banyaknya peluruhan yang terjadi per detik. Satuan SI untuk aktivitas adalah becquerel (bq) yang didefinisikan sebagai satu peluruhan per detik. Nama satuan ini diambil dari nama fisikawan Perancis pemenang hadiah Nobel Henri Bequerel ( ), penemu gejala radioaktivitas alamiah pada tahun Satuan lain yang lebih sering dipakai adalah curie (Ci) yang diambil dari nama suami-istri Piere ( ) dan Marie Curie ( ), pemenang hadiah Nobel fisika tentang radioaktivitas alamiah, Marie sendiri menerima Nobel kimia pada tahun 1911 untuk penemuan unsur radium (Ra) dan polonium (Po). 1 Ci = 3,7 x Bq 1 Ci sebetulnya adalah aktivitas 1 gram unsur radium. Tampak bahwa aktivitas sama sekali tidak menampilkan jenis radiasi maupun besar energi yang dipancarkannya, sehingga besaran ini tidaklah berguna untuk mengukur dampak radiasi terhadap makhluk hidup. Jenis radiasi dan jenis penerima radiasi turut menentukan efek biologis yang ditimbulkannya.

3 Kristal no.6/juni/ Eksposur (X) Dampak radiasi yang paling menonjol adalah kemampuannya mengionisasi materimateri yang ditumbukinya. Sinar X dan gamma dengan mudah dapat mengusir elektron dari tempatnya menghasilkan ion-ion bermuatan listrik. Demikian pula elektron, ia menolak sesama elektron membentuk ion positif atau ia menempel pada suatu atom membentuk ion negatif. Partikel positif seperti partikel alpha mampu merebut elektron dari atom-atom yang dilewatinya. Bahkan partikel tak bermuatan seperti netron pun dapat mengionisasi walaupun secara tidak langsung. Kekuatan radiasi dalam hal kemampuan ionisasi inilah yang diukur oleh besaran eksposur. Satuan yang umum dipakai untuk eksposur ini adalah roentgen (R) dimana 1 R didefinisikan sebagai eksposur sinar X atau gamma yang menghasilkan muatan 1 esu di dalam 1 cc udara kering dalam keadaan STP. Tampak satuan SI untuk eksposur adalah coulomb/kg, dan : 1 R = 2,58 x 10-4 C/kg Nama roentgen diambil dari fisikawan Jerman Wilhelm Roentgen, penemu sinar X pada tahun Dosis serapan (D) Laju serapan energi yang timbul akibat radiasi ionisasi tergantung pada jenis bahan yang diradiasi. Besaran yang dipakai sebagai standar serapan radiasi untuk berbagai jenis bahan dosis serapan, yaitu jumlah energi radiasi yang terserap dalam 1 satuan massa bahan. Satuan SI untuk dosis serapan ini adalah gray (Gy), 1 Gy sama dengan energi 1 joule yang terserap oleh 1 kg bahan. Satuan lain yang juga sering dipakai adalah rad (radiation abssorbed doses) yaitu energi 100 erg yang terserap tiap gram bahan, sehingga 1 Gy = 100 rad. Hubungan D dan X dapat dibuat jika bahan penyerap energi radiasinya adalah udara STP. Eksposur 1 R mampu menghasilkan : (2,58 x 10-4 )/(1,6 x ) = 1,61 x 10 15, ion/kg udara 1,6 x coulomb adalah muatan listrik yang dimiliki oleh sebuah elektron, atau ion akibat kehilangan/kelebihan elektron. Untuk membentuk tiap ion udara rata-rata dibutuhkan energi 34 ev, sehingga eksposur 1 R memberikan energi : (1,61x10 15 )x(34x1,6x10-19 )=0,0088 joule/kg udara Dengan demikian eksposur sinar X atau gamma sebesar 1 R di dalam udara memberikan dosis serapan sebesar 0,0088 Gy atau 0,88 rad. 4. Dosis Ekivalen (DE) Ketiga besaran radiasi di atas tidak satupun yang mengukur dampak radiasi terhadap tubuh manusia, padahal tentu saja dampak biologis inilah yang terpenting untuk diketahui awam, agar semua orang dapat mempertimbangkan bahaya radiasi yang dialaminya. Jenis radiasi ikut menentukan dampak biologis ini, dampak radiasi gamma dan beta 1 rad tidak sama dengan dampak radiasi alpha 1 rad misalnya. Untuk itu didefinisikan dosis ekivalen :

4 Kristal no.6/juni/ DE = Q. D Q adalah faktor kualitas radiasinya, untuk sinar X, beta dan gamma Q = 1, sedangkan radiasi proton atau netron berkisar 2 < Q < 5 untuk energi rendah (kev) dan 5 < Q < 10 untuk energi tinggi (MeV). Q tertinggi dimiliki oleh radiasi alpha atau ion berat lainnya, yaitu dapat mencapai 20. Jadi radiasi alpha dapat memiliki kemampuan merusak sel-sel tubuh 20 kali lebih besar daripada radiasi beta. Jika D dalam rad maka DE dalam rem (roentgen equivalent in man), sedangkan satuan SI-nya adalah sievert (Sv). 1 Sv = 100 rem. Perlu dicatat di sini bahwa radiasi ion-ion berat macam partikel alpha tidak membahayakan jika mereka berada di luar tubuh. Hal ini disebabkan oleh rendahnya daya tembus partikel-partikel tersebut, kulit manusia sudah mampu untuk menahannya. Mereka akan sangat berbahaya jika masuk ke dalam tubuh baik melalui pernafasan atau makanan/minuman. Ternyata tiap organ tubuh manusia tidak sama baiknya dalam hal menyerap energi radiasi, sehingga akhirnya didefinisikan pula dosis ekivalen efektif yang sama dengan DE dikalikan dengan suatu faktor pembobot. Faktor pembobotan ini berbeda-beda untuk tiap organ tubuh, beberapa di antaranya dapat dilihat pada tabel-1. Tabel-1 Faktor pembobot organ tubuh Organ faktor pembobot testes/ovarium 0,25 payudara 0,15 sumsum merah 0,12 paru-paru 0,03 kelenjar gondok 0,03 permukaan tulang 0,03 organ lainnya 0,30 Rekomendasi yang dikeluarkan oleh ICRP (International Commission on Radiation Protection) untuk batasan radiasi adalah 0,5 rem per tahun untuk orang awam dan maksimum 5 rem per tahun untuk pekerja di lingkungan beradiasi seperti reaktor nuklir. Dampak radiasi bersifat kumulatif, sehingga dosis ekivalen yang diterima tiap saat berlaku seumur hidup secara kumulatif. Tabel-2 berikut ini memberikan dampak biologis yang ditimbulkan oleh dosis ekivalen yang diterima dalam sekali radiasi pada seluruh tubuh. Dari penelitian yang sudah dilakukan, para ahli menyimpulkan bahwa radiasi dapat memperpendek umur kita, yaitu sekitar 3-5 hari per 1 rem dosis serapan. Rata-rata tiap orang menerima dosis 20 rem selama hidupnya, berarti jika ia dapat hidup tanpa radiasi umurnya akan bertambah selama 3 bulan.

5 Kristal no.6/juni/ Tabel 2 Dampak biologis radiasi DE (rem) Dampak biologis 50 Mulai tampaknya dampak biologis radiasi. 100 Dampak serius muncul : Selera makan hilang, rambut rontok, muntah, diare, pendarahan, pucat, kemandulan tetap pada wanita, kemandulan 3-4 tahun pada pria. Mulai timbulnya peluang penyakit seperti kanker, leukemia. 200 Kematian (10%) dalam beberapa bulan. 450 Kematian (50%) dalam beberapa bulan. 700 Kematian (90 %) dalam beberapa bulan Kematian dalam beberapa hari Kematian dalam beberapa jam Kematian dalam beberapa menit RADIASI ALAMIAH Sinar kosmis dan radiaktivitas batuan merupakan sumber radiasi alamiah. Radiasi alamiah ini dapat terjadi secara eksternal maupun internal. Secara eksternal maksudnya adalah dari luar tubuh manusia, sedangkan secara internal adalah radiasi dari dalam tubuh setelah sumber radiasi masuk ke dalam tubuh melalui pernafasan dan makanan. Dosis serapan efektif rata-rata per tahun yang diterima oleh manusia dari radiasi alamiah dapat dilihat dalam tabel-3 berikut. Jadi dari radiasi alamiah orang menerima sekitar 200 mrem atau 0,2 rem tiap tahunnya. Suatu dosis radiasi yang kecil sekali, sama sekali tidak menimbulkan dampak biologis secara langsung. Tabel-3 Radiasi alamiah Sumber radiasi DE eksternal (mrem) DE internal (mrem) Sinar kosmis - yang mengionisasi 28 - netron 2,1 Radioaktivitas yang berasal dari sinar kosmis 1,5 Radioaktivitas batuan - 40 K Rb 0,6 - deret 238 U 9 95,4 - deret 232 Tb 14 18,6 Jumlah 65,1 134,1 Dari tabel-3 di atas tampak sumber radiasi yang paling menonjol adalah unsurunsur radioaktif deret uranium-238, khususnya yang berasal dari sub-deret radon-222. Rn-

6 Kristal no.6/juni/ adalah gas radioaktif yang tiap saat dipancarkan oleh permukaan tanah. Akibatnya debu di udara maupun air terkontaminasi gas ini beserta turunannya. Air minum, makanan dan pernafasan kita dengan demikian memasukkan unsur-unsur ini ke dalam tubuh. Sebagian besar radiasi yang dipancarkan deret ini adalah radiasi alpha. Pemancar alpha biasanya mengendap dalam tulang, sehingga radiasinya mempengaruhi kerja sumsum merah dalam proses pembentukan sel-sel darah. Radiasi sinar kosmis yang diterima permukaaan bimi sebetulnya sudah teredam sebagian oleh atmosfir. Dosis ekivalen yang tercantum dalam tabel-3 di atas adalah untuk tempat di permukaan air laut. Untuk tempat yang tinggi tentu saja tebal atmosfir peredamnya berkurang, sehingga dosis yang diterima orang di tempat itu lebih besar. Pertambahan dosis ekivalen untuk tempat yang tinggi adalah sekitar 3 mrem per tahun tiap kenaikan ketinggian 100 meter. Jadi penduduk kota Malang menerima dosis ekivalen sinar kosmis sekitar 12 mrem lebih banyak daripada penduduk kota Surabaya. Malang terletak sekitar 400 meter di atas permukaaan air laut. RADIASI OLEH AKTIVITAS MANUSIA Pada jaman modern ini terdapat banyak sekali sumber radiasi buatan manusia. Di dunia kedokteran radiasi justru dimanfaatkan dalam diagnosa maupun proses penyembuhan penyakit. Alat-alat yang digunakan merupakan sumber radiasi yang memberikan dosis serapan amat tinggi pada manusia. Oleh sebab itu sangat tidak dianjurkan seorang pasien mengalami radiasi berkali-kali dalam tempo yang tidak begitu lama. Dosis radiasi beberapa aktivitas medis dapat kita lihat dalam tabel-4. Perlu dicatat bahwa dosis pada tabel-4 itu hanya berlaku untuk sekali aktivitas saja. Selain itu waktu radiasinya juga singkat sekali dan sasaran radiasi terlokalisir di bagian tubuh tertentu. Terapi radiasi untuk kanker yang berdosis 5 juta mrem hanya digunakan dalam waktu singkat dan daerah sasarn yang seminimal mungkin yaitu bagian yang memang dikehendaki mati sel-selnya. Jika radiasi itu dikenakan ke seluruh tubuh matilah orang yang teradiasi berdasarkan tabel-2. Di Amerika Serikat tiap orang menerima kirakira 80 mrem per tahun dari aktivitas medis yang dilakukannya. Tabel-4 Dosis ekivalen radiasi aktivitas medis Aktivitas medis DE (mrem) Radiografi gigi (sinarx) 910 (seluruh mulut) Mamografi 1500 Barium enema 8000 Terapi radiasi (kanker) 5 juta Foto sinar X : dada 22 perut 500 Bekerja sebagai teknisi peralatan medis Sumber radiasi buatan lain yang cukup besar adalah aktivitas tenaga nuklir, mulai dari penambangan uranium, pengayaannya, penggunaannya dalam reaktor nuklir, pembuangan sampah nuklir, sampai dengan percobaan senjata nuklir. Jika faktor kecelakaan diabaikan, dosis yang timbul akibat aktivitas tenaga nuklir ini per tahunnya dapat dilihat pada tabel 5

7 Kristal no.6/juni/ Tabel-5 Dosis ekivalen radiasi aktivitas nuklir Aktivitas DE (mrem) Tinggal di dekat reaktor nuklir 4-76 Tinggal 8 km di sekitar reaktor 0,6 Aktivitas nuklir di seluruh dunia 0,04 Percobaan senjata nuklir 5 Bekerja di tambang uranium 100 ribu Bekerja di PLTN Dari tabel-5 dapat disimpulkan bahwa tanpa reaktor nuklir di dekat rumah kita, kita tetep menerima dosis sekitar 5 mrem per tahun dari kegiatan nuklir di seluruh dunia. Jumlah ini amatlah kecil dibandingkan dengan dosis yang berasal dari radiasi alamiah, apalagi jika dibandingkan dengan radiasi aktivitas medis. Kegiatan lain yang berperan dalam akumulasi radiasi pada manusia per tahunnya ada dalam tabel-6 di bawah ini. Merokok termasuk dalam tabel-6, disebabkan daun tembakau mengandung unsurunsur radioaktif dari deret uranium. Bahkan orang yang tidak merokok tetapi ikut menghisap asapnya juga akan memasukkan unsur radioaktif ini ke dalam paru-parunya. Tabel-6 Sumber lain radiasi buatan Aktivitas / alat DE (mrem) Perjalanan lewat udara 2 (tiap 2400 km) TV / monitor komputer 2 (1 jam per harinya) Arloji (radium);detektor asap;limbah 2 industri Merokok 40 (1 pak sehari) Bekerja sebagai kru pesawat jet 140 RADIASI BERLEBIHAN Radiasi eksternal yang berlebihan dapat menyebabkan kulit terbakar, rambut rontok, dan gejala lain tersebut dalam tabel 2 di atas. Lensa mata yang terionisasi atomatomnya akan menimbulkan katarak. Ionisasi yang disebabkan radiasi akan memberikan dampak kimiawi terhadap sel-sel tubuh, padahal banyak proses di dalam tubuh berjalan secara kimiawi, akibatnya terjadilah penyimpangan fungsi organ tubuh. Pada umumnya bahaya radiasi eksternal ditimbulkan oleh radiasi beta. Radiasi internal yang berlebihan mempengaruhi proses pembentukan darah, tulang dan juga kerja kelenjar endokrin seperti gondok. Radioisotop yang sudah terlanjur masuk ke dalam tubuh sulit dihilangkan. Hal ini disebabkan tubuh kita hanya dapat memilih zat berdasarkan sifat kimiawinya, bukan sifat inti atomnya. Tubuh dapat membedakan unsur, bukan isotop. Contohnya adalah unsur yodium yang dikumpulkan di dalam kelenjar gondok, seluruh yodium yang masuk ke dalam tubuh, termasuk yang radioaktif, akan terakumulasi dalam kelenjar gondok. Jika radiasi yodium radioaktif berlebihan kelenjar gondok dengan sendirinya akan rusak, dampaknya tentu ke fungsi seluruh tubuh. Berikut ini adalah isotop-isotop yang berbahaya :

8 Kristal no.6/juni/ Iodium-131 ( 131 I) Tubuh dapat menyerap yodium baik lewat alat pencernaan maupun lewat paruparu. Isotop ini segera diangkut ke kelenjar gondok dan berada disana berbulanbulan. 2. Cesium-134 ; Cesium-137 ( 134 Cs ; 137 Cs) Isotop-isotop ini masuk tubuh lewat rantai makanan. Mereka akan terakumulasi dalam otot sampai berbulan-bulan lamanya. 3. Strontium-90 ( 90 Sr) Watak isotop ini mirip dengan kalsium bahan pembuat tulang. Ia masuk tubuh menggantikan kalsium untuk berada di permukaan tulang. Radiasi berlebihan yang dipancarkannya menyebabkan kanker tulang, jika sudah menahun dapat merusak sumsum tulang menimbulkan leukemia. 4. Karbon-14 ( 14 C) Ia memasuki tubuh lewat rantai makanan. Untunglah isotop ini cukup mudah keluar kembali sebagai gas karbondioksida. Satu lagi bahaya radiasi adalah efek genetik yang akan diturunkan ke generasi berikutnya. Sayangnya data efek genetik baik yang diturunkan maupun tidak (berbagai macam kanker), hanya berasal dari radiasi yang kuat saja, itupun dari percobaan terhadap tikus-tikus. Khusus untuk manusia data ini diperoleh dari korban bom nuklir di Jepang. Padahal radiasi lemah, misalnya radiasi alamiah, diduga kuat ikut berperan dalam proses mutasi dalam evolusi makhluk hidup. BAGAIMANA MENGURANGI BAHAYA RADIASI? Radiasi eksternal non-alamiah dapat kita kurangi dengan beberapa cara, antara lain adalah - pembatasan kuantitas dan jenis radiasi yang dipakai. - menjaga jarak terhadap sumber radiasi. - menjaga jarak terhadap sumber radiasi. Intensitas radiasi berbanding terbalik dengan kuadrat jarak terhadap sumbernya. Maka jangan terlalu dekat dengan zat-zat radioaktif, layar TV, peralatan sinar X yang sedang bekerja. - mengurangi lama eksposur. Makin lama kita terkena radiasi, dampak yang kita terima juga semakin besar, karena dampak radiasi bersifat kumulatif. - memasang pelindung. Intensitas radiasi akan turun secara eksponensial terhadap ketebalan suatu bahan pelindung. Untuk radiasi elektromagnetik bahan yang paling efektif sebagai pelindung adalah timbal(pb). Sinar gamma 5 MeV dapat ditahan separonya oleh timbal setebal 1,42 cm, atau ditahan 90 % oleh ketebalan 4,73 cm.sinar beta4mev cukup ditahan dengan aluminium setebal 1 cm saja. Sinar alpha paling mudah menahannya, selembar kertas sudah cukup kuat menghadapi radiasinya. yang paling susah adalah radiasi partikel-partikel netral macam netron, netron banyak dihasilkan di sekitar reaktor nuklir dari proses fisi nuklir bahan bakarnya. Penahan radiasi netron biasanya berupa lapisan beton sekitar 30 cm tebalnya.

9 Kristal no.6/juni/ Radiasi internal relatif lebih sulit mengatasinya, karena kerusakan yang ditimbulkannya tergantung atas tiga hal : waktu paro radioaktif, waktu paro biologis dan watak kimiawi sumbernya. Waktu paro radioaktif adalah waktu yang diperlukan agar separo zat itu meluruh menjadi unsur atau isotop lain. Waktu paro biologis adalah waktu yang diperlukan separo zat itu untuk keluar dari tubuh melalui proses ekskresi. Beberapa cara untuk mencegah atau mengurangi dampak biologis radiasi internal adalah sebagai berikut - pencegahan agar sumber radiasi tidak termakan atau terhisap masuk ke dalam tubuh. Tidak makan, minum, merokok di dekat zat-zat radioaktif. Hindari aliran udara di dalam ruang berisi zat-zat radioaktif. Tidak bernafas terlalu dekat dengan permukaan tanah dalam waktu yang lama, karena tanah memancarkan gas radon beserta turunannya. Tidak sembarangan minum air di daerah pertambangan. - pencegahan akumulasi sumber radiasi dengan atom pesaing. Jika ke dalam tubuh dimasukkan atom-atom yang secara kimiawi mirip dengan radioisotop sumber radiasi, maka terjadilah persaingan antar mereka untuk diserapoleh organ tertentu. Contoh : akumulasi yodium-131 di kelenjar gondok dapat dicegah dengan menelan pil yodium stabil segera setelah terjadi keracunan. Garam-garam kalsium harus segera dimakan begitu orang teracuni radium atau Sr-90, sehingga akumulasi zat-zat ini di sumsum tulang dapat dicegah semaksimal mungkin. - pencucian. Minum soda pop atau bir sebanyak mungkin agar sumber radiasi dapat terbawa keluar sebelum mereka tiba di tempat tujuannya. Penggunaan chelating agent dapat membantu banyak. Chelating agent adalah senyawa yang dapat bergabung dengan radioisotop tak larut dalam air membentuk senyawa baru yang larut dalam air sehingga dapat dinbawa keluar tubuh. Chelating agent yang berasal adalah EDTA (ethylene diamine tetracetic acid). KESIMPULAN Radiasi yang berbahaya ternyata berasal dari aktivitas manusia. Radiasi terbesar diberikan oleh aktivitas medis, baru kemudian disusul dengan aktivitas lainnya. Reaktor nuklir ternyata tidak memberikan dosis yang berlebihan, dengan catatan semua dosis yang berlebihan, dengan catatan semua proses dikendalikan dengan baik. Sebab jika tidak, reaktor nuklir melalui keteledoran manusia dapat membuat bencana yang tidak tanggungtanggung. Dampak biologis yang disebabkannya ada yang dapat segera dilihat, tapi ada pula yang tampak setelah puluhan tahun lamanya. Radiasi alamiah walaupun tidak tinggi dosisnya diduga ikut berperan dalam mutasi gen dalam sejarah evolusi makhluk hidup. Setiap detik kita di bumi dihujani tak kurang dari partikel radioaktif atau foton gelombang elektromagnetik. Setiap tumbukan berpotensi menimbulkan kanker yang mematikan, tetapi untunglah kebolehjadiannya hanya 1 banding 5 x 10 16, artinya 1000 orang terkena kanker akibat sinar kosmis di antara 5 milyar manusia per generasi (65 tahun).

10 Kristal no.6/juni/ Anda dapat menghitung sendiri berapa dosis serapan ekivalen yang anda alami per tahun lewat tabel 3, 4, 5 dan 6. Dosis tersebut secara kumulatif dapat anda ketahui dampaknya berdasarkan tabel 2 hanya mungkin jika ada kecelakaan di reaktor nuklir atau anda terkena ledakan bom nuklir. Ingat setiap rem dosis radiasi berarti mengurangi usia anda 3-5 hari! Setelah anda menghitung, maka akan yakinlah anda bahwa bahaya radiasi bagi umat manusia sebenarnya jauh lebih kecil dibandingkan bahaya kecelakaan lalu-lintas, bahaya penyakit macam kencing gula atau jantung. RUJUKAN : 1. Harvard Project Physics: The Project Physics Course, Teacher Resource Book 6: The Nucles, Holt, Rinehart & Winston, Inc., Meyer, Leo A. : Nuclear Power in Industry, American Technical Publisher, Inc., 2nd ed., Horner, Jack K. : Natural Tadioavtivity in Water Supplies, Westview Press, Inc., Krane, Kenneth S. : Introductory Nuclear Physics, John Wiley & Sons, Inc., Miller, Jr., G. Tyler : Environmental Science : An Introduction, Wardsworth Publishing Company, 1986 **************************************************

BAB II Besaran dan Satuan Radiasi

BAB II Besaran dan Satuan Radiasi BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang

Lebih terperinci

TEORI DASAR RADIOTERAPI

TEORI DASAR RADIOTERAPI BAB 2 TEORI DASAR RADIOTERAPI Radioterapi atau terapi radiasi merupakan aplikasi radiasi pengion yang digunakan untuk mengobati dan mengendalikan kanker dan sel-sel berbahaya. Selain operasi, radioterapi

Lebih terperinci

FISIKA ATOM & RADIASI

FISIKA ATOM & RADIASI FISIKA ATOM & RADIASI Atom bagian terkecil dari suatu elemen yang berperan dalam reaksi kimia, bersifat netral (muatan positif dan negatif sama). Model atom: J.J. Thomson (1910), Ernest Rutherford (1911),

Lebih terperinci

MODEL ATOM. Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama.

MODEL ATOM. Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. BAB.19 ATOM ATOM Atom : bagian terkecil suatu elemen yg merupakan suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. MODEL ATOM J.JTHOMSON ( 1910 ) ERNEST RUTHERFORD ( 1911 )

Lebih terperinci

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif

KIMIA INTI DAN RADIOKIMIA. Stabilitas Nuklir dan Peluruhan Radioaktif KIMIA INTI DAN RADIOKIMIA Stabilitas Nuklir dan Peluruhan Radioaktif Oleh : Arif Novan Fitria Dewi N. Wijo Kongko K. Y. S. Ruwanti Dewi C. N. 12030234001/KA12 12030234226/KA12 12030234018/KB12 12030234216/KB12

Lebih terperinci

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional

Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu

Lebih terperinci

BAB V Ketentuan Proteksi Radiasi

BAB V Ketentuan Proteksi Radiasi BAB V Ketentuan Proteksi Radiasi Telah ditetapkan Peraturan Pemerintah No. 63 Tahun 2000 tentang Keselamatan dan kesehatan terhadap pemanfaatan radiasi pengion dan Surat Keputusan Kepala BAPETEN No.01/Ka-BAPETEN/V-99

Lebih terperinci

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral)

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral) FISIKA INTI A. INTI ATOM Inti Atom = Nukleon Inti Atom terdiri dari Proton dan Neutron Lambang Unsur X X = nama unsur Z = nomor atom (menunjukkan banyaknya proton dalam inti) A = nomor massa ( menunjukkan

Lebih terperinci

Materi. Radioaktif Radiasi Proteksi Radiasi

Materi. Radioaktif Radiasi Proteksi Radiasi Fisika Radiasi Materi Radioaktif Radiasi Proteksi Radiasi PENDAHULUAN kecil dan berbeda, sama atom- Perkembanagn Model Atom : * Model Atom Dalton: - Semua materi tersusun dari partikel- partikel yang sangat

Lebih terperinci

BAB I Jenis Radiasi dan Interaksinya dengan Materi

BAB I Jenis Radiasi dan Interaksinya dengan Materi BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin

Lebih terperinci

BAB III BESARAN DOSIS RADIASI

BAB III BESARAN DOSIS RADIASI BAB III BESARAN DOSIS RADIASI Yang dimaksud dengan dosis radiasi adalah jumlah radiasi yang terdapat dalam medan radiasi atau jumlah energi radiasi yang diserap atau diterima oleh materi yang dilaluinya.

Lebih terperinci

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si. PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: sulistyani@uny.ac.id APA ITU KIMIA INTI? Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi

Lebih terperinci

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id

PELURUHAN RADIOAKTIF. NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id PELURUHAN RADIOAKTIF NANIK DWI NURHAYATI,S.Si,M.Si nanikdn.staff.uns.ac.id 081556431053 Istilah dalam radioaktivitas Perubahan dari inti atom tak stabil menjadi inti atom yg stabil: disintegrasi/peluruhan

Lebih terperinci

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si.

PENEMUAN RADIOAKTIVITAS. Sulistyani, M.Si. PENEMUAN RADIOAKTIVITAS Sulistyani, M.Si. Email: sulistyani@uny.ac.id SINAR KATODE Penemuan sinar katode telah menginspirasi penemuan sinar-x dan radioaktivitas Sinar katode ditemukan oleh J.J Thomson

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 9 TAHUN 1969 TENTANG PEMAKAIAN ISOTOP RADIOAKTIF DAN RADIASI PRESIDEN REPUBLIK INDONESIA,

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 9 TAHUN 1969 TENTANG PEMAKAIAN ISOTOP RADIOAKTIF DAN RADIASI PRESIDEN REPUBLIK INDONESIA, PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 9 TAHUN 1969 TENTANG PEMAKAIAN ISOTOP RADIOAKTIF DAN RADIASI PRESIDEN REPUBLIK INDONESIA, Menimbang: a. bahwa pada saat ini pembuatan isotop radioaktif telah

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Radiasi nuklir merupakan suatu bentuk pancaran energi. Radiasi nuklir dibagi menjadi 2 jenis berdasarkan kemampuannya mengionisasi partikel pada lintasan yang dilewatinya,

Lebih terperinci

Radioaktivitas Henry Becquerel Piere Curie Marie Curie

Radioaktivitas Henry Becquerel Piere Curie Marie Curie Radioaktivitas Inti atom yang memiliki nomor massa besar memilikienergi ikat inti yang relatif lebih kecil dibandingkan dengan nomor massa menengah. Kecenderungan inti atom yang memiliki nomor massa besar

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Runusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Runusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi inti yang terjadi pada proses peluruhan radio

Lebih terperinci

2. Dari reaksi : akan dihasilkan netron dan unsur dengan nomor massa... A. 6

2. Dari reaksi : akan dihasilkan netron dan unsur dengan nomor massa... A. 6 KIMIA INTI 1. Setelah disimpan selama 40 hari, suatu unsur radioaktif masih bersisa sebanyak 0,25 % dari jumlah semula. Waktu paruh unsur tersebut adalah... 20 hari 8 hari 16 hari 5 hari 10 hari SMU/Ebtanas/Kimia/Tahun

Lebih terperinci

LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI

LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI A. Materi Pembelajaran : Struktur Inti LEMBAR KERJA PESERTA DIDIK (LKPD 01) FISIKA INTI B. Indikator Pembelajaran : 1. Mengidentifikasi karakterisrik kestabilan inti atom 2. Menjelaskan pengertian isotop,isobar

Lebih terperinci

CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS

CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS -Inti atom atau nukllida terdiri atas neutron (netral) dan proton (muatan positif) -Massa neutron sedikit lebih besar daripada massa proton -ukuran inti atom berkisar

Lebih terperinci

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS 1 - Dengan menyebut nama Allah yang Maha Pengasih lagi Maha Penyayang - " Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan

Lebih terperinci

CHAPTER III INTI ATOM DAN RADIOAKTIVITAS

CHAPTER III INTI ATOM DAN RADIOAKTIVITAS CHAPTER III INTI ATOM DAN RADIOAKTIVITAS CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS -Inti atom atau nukllida terdiri atas neutron (netral) dan proton (muatan positif) -Massa neutron sedikit lebih besar

Lebih terperinci

Spektrum Gelombang Elektromagnetik

Spektrum Gelombang Elektromagnetik Spektrum Gelombang Elektromagnetik Gelombang elektromagnetik yang dirumuskan oleh Maxwell ternyata terbentang dalam rentang frekuensi yang luas. Sebagai sebuah gejala gelombang, gelombang elektromagnetik

Lebih terperinci

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T.

PENGUKURAN RADIASI. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Dipresentasikan dalam Mata Kuliah Pengukuran Besaran Listrik Dosen Pengajar : Dr.-Ing Eko Adhi Setiawan S.T., M.T. Oleh : ADI WIJAYANTO 1 Adi Wijayanto Badan Tenaga Nuklir Nasional www.batan.go.id CAKUPAN

Lebih terperinci

: Dr. Budi Mulyanti, MSi. Pertemuan ke-16

: Dr. Budi Mulyanti, MSi. Pertemuan ke-16 MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-122 : Dr. Budi Mulyanti, MSi Pertemuan ke-16 CAKUPAN MATERI 1. INTI ATOM 2. BILANGAN ATOM DAN BILANGAN MASSA 3. MASS DEFECT 4. RADIOAKTIVITAS 5. WAKTU PARUH

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Radiasi merupakan suatu bentuk energi. Ada dua tipe radiasi yaitu radiasi partikulasi dan radiasi elektromagnetik. Radiasi partikulasi adalah radiasi yang melibatkan

Lebih terperinci

Kedua nuklida tersebut mempunyai nomor massa (A) yang sama dengan demikian nuklida-nuklida tersebut merupakan isobar.

Kedua nuklida tersebut mempunyai nomor massa (A) yang sama dengan demikian nuklida-nuklida tersebut merupakan isobar. 1. Ca dan Ar adalah merupakan A. Isotop B. Isobar C. Isomer D. Isoelektron E. Isoton Jawaban : B Kedua nuklida tersebut mempunyai nomor massa (A) yang sama dengan demikian nuklida-nuklida tersebut merupakan

Lebih terperinci

RADIOAKTIF Oleh Arif Yachya, M.Si

RADIOAKTIF Oleh Arif Yachya, M.Si RADIOAKTIF Oleh Arif Yachya, M.Si Sub bab : Radioaktivitas Tipe Radiasi Peluruhan Radioaktif Efek negatif & positif Radiasi I. Radioaktivitas Atom-atom dengan nomor atom sama & nomor massa berbeda Isotop

Lebih terperinci

Radiasi 22/12/2014. Radiasi Sumengen Sutomo

Radiasi 22/12/2014. Radiasi Sumengen Sutomo 1 Outline Sumber Partikel Elektromagnetik Dosis dan Efek Biologis 2 Manusia ekpose radiasi bumi dan matahari Jenis radiasi Partikel Elektromagnetik 3 Sumber 4 Bahan Radioaktif Di luar Tubuh Alam: I131,

Lebih terperinci

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT FISIKA MODERN Radiasi Benda Hitam 1. Suatu benda hitam pada suhu 27 0 C memancarkan energi sekitar 100 J/s. Benda hitam tersebut dipanasi sehingga suhunya menjadi 327 0 C.

Lebih terperinci

5. KIMIA INTI. Kekosongan elektron diisi elektron pada kulit luar dengan memancarkan sinar-x.

5. KIMIA INTI. Kekosongan elektron diisi elektron pada kulit luar dengan memancarkan sinar-x. 1 5. KIMIA INTI A. Unsur Radioaktif Unsur radioaktif secara sepontan memancarkan radiasi, yang berupa partikel atau gelombang elektromagnetik (nonpartikel). Jenis-jenis radiasi yang dipancarkan unsur radioaktif

Lebih terperinci

PELURUHAN SINAR GAMMA

PELURUHAN SINAR GAMMA PELURUHAN SINAR GAMMA Pendahuluan Radioaktivitas disebut juga peluruhan radioaktif, yaitu peristiwa terurainya beberapa inti atom tertentu secara spontan yang diikuti dengan pancaran partikel alfa (inti

Lebih terperinci

BAB III Efek Radiasi Terhadap Manusia

BAB III Efek Radiasi Terhadap Manusia BAB III Efek Radiasi Terhadap Manusia Tubuh terdiri dari berbagai macam organ seperti hati, ginjal, paru, lambung dan lainnya. Setiap organ tubuh tersusun dari jaringan yang merupakan kumpulan dari sejumlah

Lebih terperinci

RADIOKIMIA Tipe peluruhan inti

RADIOKIMIA Tipe peluruhan inti LABORATORIUM KIMIA FISIK Departemen Kimia Fakultas MIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Tipe peluruhan inti Drs. Iqmal Tahir, M.Si., Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ).

PELURUHAN GAMMA ( ) dengan memancarkan foton (gelombang elektromagnetik) yang dikenal dengan sinar gamma ( ). PELURUHAN GAMMA ( ) Peluruhan inti yang memancarkan sebuah partikel seperti partikel alfa atau beta, selalu meninggalkan inti pada keadaan tereksitasi. Seperti halnya atom, inti akan mencapai keadaan dasar

Lebih terperinci

U Th He 2

U Th He 2 MODUL UNSUR RADIOAKTIF dan RADIOISOTOP Radiasi secara spontan yang di hasilkan oleh unsure di sebut keradioaktifan, sedangkan unsure yang bersifat radioaktif disebut unsure radioaktif.unsur radioaktif

Lebih terperinci

LEMBAR SOAL ULANGAN AKHIR SEMESTER TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 01 Desembar 2010

LEMBAR SOAL ULANGAN AKHIR SEMESTER TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 01 Desembar 2010 J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 527115/5482914 JAKARTA BARAT

Lebih terperinci

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si.

RADIOKIMIA Kinetika dan waktu paro peluruhan. Drs. Iqmal Tahir, M.Si. Departemen Kimia - FMIPA Universitas Gadjah Mada (UGM) RADIOKIMIA Kinetika dan waktu paro peluruhan Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Radioaktivitas dan Reaksi Nuklir. Rida SNM

Radioaktivitas dan Reaksi Nuklir. Rida SNM Radioaktivitas dan Reaksi Nuklir Rida SNM rida@uny.ac.id Outline Sesi 1 Radioaktivitas Sesi 2 Peluruhan Inti 1 Radioaktivitas Tujuan Perkuliahan: Partikel pembentuk atom dan inti atom Bagaimana inti terikat

Lebih terperinci

RADIOAKTIVITAS BAGIAN I

RADIOAKTIVITAS BAGIAN I RADIOAKTIVITAS BAGIAN I Radioaktif : berhubungan dengan pemancaran partikel dari sebuah inti atom. Inti Radioaktif : Unsur inti atom yg mempunyai sifat memancarkan salah satu partikel alfa, beta atau gamma.

Lebih terperinci

Inti atom Radioaktivitas. Purwanti Widhy H, M.Pd

Inti atom Radioaktivitas. Purwanti Widhy H, M.Pd Inti atom Radioaktivitas Purwanti Widhy H, M.Pd bagian terkecil suatu unsur yg mrpkn suatu partikel netral, dimana jumlah muatan listrik positif dan negatif sama. Bagian Atom : Elektron Proton Netron Jumlah

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seperti yang telah kita ketahui pada dasarnya setiap benda yang ada di alam semesta ini memiliki paparan radiasi, akan tetapi setiap benda tersebut memiliki nilai

Lebih terperinci

MAKALAH APLIKASI NUKLIR DI INDUSTRI

MAKALAH APLIKASI NUKLIR DI INDUSTRI MAKALAH APLIKASI NUKLIR DI INDUSTRI REAKSI NUKLIR FUSI DISUSUN OLEH : Mohamad Yusup ( 10211077) Muhammad Ilham ( 10211078) Praba Fitra P ( 10211108) PROGAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG 2013

Lebih terperinci

RADIOAKTIF 8/7/2017 IR. STEVANUS ARIANTO 1. Oleh : STEVANUS ARIANTO TRANSMUTASI PENDAHULUAN DOSIS PENYERAPAN SIFAT-SIFAT UNSUR RADIOAKTIF REAKSI INTI

RADIOAKTIF 8/7/2017 IR. STEVANUS ARIANTO 1. Oleh : STEVANUS ARIANTO TRANSMUTASI PENDAHULUAN DOSIS PENYERAPAN SIFAT-SIFAT UNSUR RADIOAKTIF REAKSI INTI RADIOAKTIF Oleh : STEVANUS ARIANTO PENDAHULUAN SIFAT-SIFAT UNSUR RADIOAKTIF PANCARAN SINAR RADIOAKTIF SINAR,, HVL BAHAN STRUKTUR INTI ATOM ENERGI IKAT INTI KESTABILAN INTI ATOM HUKUM PERGESERAN WAKTU PARUH

Lebih terperinci

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi

Partikel sinar beta membentuk spektrum elektromagnetik dengan energi Partikel sinar beta membentuk spektrum elektromagnetik dengan energi yang lebih tinggi dari sinar alpha. Partikel sinar beta memiliki massa yang lebih ringan dibandingkan partikel alpha. Sinar β merupakan

Lebih terperinci

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang BAB II TINJAUAN PUSTAKA 2.1 Umum Beton adalah campuran antara semen portland, air, agregat halus, dan agregat kasar dengan atau tanpa bahan-tambah sehingga membentuk massa padat. Dalam adukan beton, semen

Lebih terperinci

Kimia Inti dan Radiokimia

Kimia Inti dan Radiokimia Kimia Inti dan Radiokimia Keradioaktifan Keradioaktifan: proses atomatom secara spontan memancarkan partikel atau sinar berenergi tinggi dari inti atom. Keradioaktifan pertama kali diamati oleh Henry Becquerel

Lebih terperinci

RADIOAKTIF. Oleh : I WAYAN SUPARDI

RADIOAKTIF. Oleh : I WAYAN SUPARDI RADIOAKTIF Oleh : I WAYAN SUPARDI PENDAHULUAN Fluoresensi yakni perpendaran suatu bahan selagi disinari cahaya. Fosforecensi yaitu berpendarnya suatu bahan setelah disinari cahaya, jadi berpendar setelah

Lebih terperinci

Peraturan Pemerintah No. 9 Tahun 1969 Tentang : Pemakaian Isotop Radioaktip Dan Radiasi

Peraturan Pemerintah No. 9 Tahun 1969 Tentang : Pemakaian Isotop Radioaktip Dan Radiasi Peraturan Pemerintah No. 9 Tahun 1969 Tentang : Pemakaian Isotop Radioaktip Dan Radiasi Oleh : PRESIDEN REPUBLIK INDONESIA Nomor : 9 TAHUN 1969 (9/1969) Tanggal : 18 APRIL 1969 (JAKARTA) Sumber : LN 1969/18;

Lebih terperinci

PELURUHAN RADIOAKTIF

PELURUHAN RADIOAKTIF PELURUHAN RADIOAKTIF Inti-inti yang tidak stabil akan meluruh (bertransformasi) menuju konfigurasi yang baru yang mantap (stabil). Dalam proses peluruhan akan terpancar sinar alfa, sinar beta, atau sinar

Lebih terperinci

Radio Aktivitas dan Reaksi Inti

Radio Aktivitas dan Reaksi Inti Radio Aktivitas dan Reaksi Inti CHATIEF KUNJAYA KK ASTRONOMI, ITB Reaksi Inti di Dalam Bintang Matahari dan bintang-bintang umumnya membangkitkan energi sendiri dengan reaksi inti Hidrogen menjadi Helium.

Lebih terperinci

Bab 2. Nilai Batas Dosis

Bab 2. Nilai Batas Dosis Bab 2 Nilai Batas Dosis Teknik pengawasan keselamatan radiasi dalam masyarakat umumnya selalu berdasarkan pada konsep dosis ambang. Setiap dosis betapapun kecilnya akan menyebabkan terjadinya proses kelainan,

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kesehatan merupakan salah satu hal yang sangat penting dalam kehidupan manusia, bahkan bisa dikatakan tanpa kesehatan yang baik segala yang dilakukan tidak akan maksimal.

Lebih terperinci

DAFTAR ISI BAB I PENDAHULUAN

DAFTAR ISI BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN 3 BAB II STRUKTUR DAN INTI ATOM 5 A Struktur Atom 6 B Inti atom 9 1. Identifikasi Inti Atom (Nuklida) 9 2. Kestabilan Inti Atom 11 Latihan 13 Rangkuman Bab II. 14 BAB III PELURUHAN

Lebih terperinci

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian

Lebih terperinci

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1

RENCANA PERKULIAHAN FISIKA INTI Pertemuan Ke: 1 Pertemuan Ke: 1 Mata Kuliah/Kode : Fisika Semester dan : Semester : VI : 150 menit Kompetensi Dasar : Mahasiswa dapat memahami gejala radioaktif 1. Menyebutkan pengertian zat radioaktif 2. Menjelaskan

Lebih terperinci

Dasar Fisika Radiasi. Daftar Isi

Dasar Fisika Radiasi. Daftar Isi Dasar Fisika Radiasi (Hendriyanto Haditjahyono) Daftar Isi I. Pendahuluan... 2 II. Struktur Atom dan Inti Atom... 4 II.1 Struktur Atom...5 II.2 Inti Atom...8 III. Peluruhan Radioaktif... 13 III.1 Jenis

Lebih terperinci

INTI DAN RADIOAKTIVITAS

INTI DAN RADIOAKTIVITAS KIMIA INTI DAN RADIOKIMIA INTI DAN RADIOAKTIVITAS Disusun oleh Kelompok A 1: Siti Lailatul Arifah 12030234021/ KB 2012 Nuril Khoiriyah 12030234022/ KB 2012 Nurma Erlita Damayanti 12030234204/ KB 2012 Amardi

Lebih terperinci

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi. PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M.

Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi. PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M. Laporan Praktikum Fisika Eksperimental Lanjut Laboratorium Radiasi PERCOBAAN R2 EKSPERIMEN RADIASI β DAN γ Dosen Pembina : Drs. R. Arif Wibowo, M.Si Septia Kholimatussa diah* (891325), Mirza Andiana D.P.*

Lebih terperinci

ZAT RADIO AKTIF DAN PENGGUNAAN RADIO ISOTOP BAGI KESEHATAN ABDUL JALIL AMRI ARMA

ZAT RADIO AKTIF DAN PENGGUNAAN RADIO ISOTOP BAGI KESEHATAN ABDUL JALIL AMRI ARMA ZAT RADIO AKTIF DAN PENGGUNAAN RADIO ISOTOP BAGI KESEHATAN ABDUL JALIL AMRI ARMA Bagian Kependudukan dan Biostatistik Fakultas Kesehatan Masyarakat Universitas Sumatera Utara BAB I PENDAHULUAN Jika kita

Lebih terperinci

Kimia Inti. B a b 4. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Kimia Inti. B a b 4. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) B a b 4 Kimia Inti Sumber: Photografi from U.S Air Force Pada bab ini, Anda akan diajak untuk dapat memahami karakteristik unsur-unsur penting, kegunaan dan bahayanya, serta terdapatnya di alam dengan

Lebih terperinci

2. Radioaktivitas Atom terdiri atas inti atom dan elektron-elektron yang beredar mengitarinya. Reaksi kimia biasa (seperti reaksi pembakaran dan

2. Radioaktivitas Atom terdiri atas inti atom dan elektron-elektron yang beredar mengitarinya. Reaksi kimia biasa (seperti reaksi pembakaran dan 2. Radioaktivitas Atom terdiri atas inti atom dan elektron-elektron yang beredar mengitarinya. Reaksi kimia biasa (seperti reaksi pembakaran dan penggaraman), hanya menyangkut perubahan pada kulit atom,

Lebih terperinci

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi

VII. PELURUHAN GAMMA. Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi VII. PELURUHAN GAMMA Sub-pokok Bahasan Meliputi: Peluruhan Gamma Absorbsi Sinar Gamma Interaksi Sinar Gamma dengan Materi 7.1. PELURUHAN GAMMA TUJUAN INSTRUKSIONAL KHUSUS: Setelah mempelajari Sub-pokok

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Kebutuhan akan energi semakin bertambah dari tahun ke tahun, sementara sumber yang ada masih berbanding terbalik dengan kebutuhan. Walaupun energi radiasi matahari (energi

Lebih terperinci

BAB 9. Fisika Inti dan Radioaktivitas

BAB 9. Fisika Inti dan Radioaktivitas Berkelas BAB 9 Fisika Inti dan Radioaktivitas Standar Kompetensi: Menunjukkan penerapan konsep fsika inti dan radioaktivitas dalam teknologi dan kehidupan sehari-hari. Kompetensi Dasar: Mengidentifkasi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 01 )

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 01 ) RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 0 ) Sekolah : SMA Advent Makassar Kelas / Semester : XII/ 2 Mata Pelajaran : FISIKA Alokasi Waktu : 2 x 45 Menit I. Standar Kompetensi 4. Menunjukkan penerapan konsep

Lebih terperinci

INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI

INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI INTERAKSI RADIASI DENGAN MATERI NANIK DWI NURHAYATI,S.SI,M.SI suatu emisi (pancaran) dan perambatan energi melalui materi atau ruang dalam bentuk gelombang elektromagnetik atau partikel 2 3 Peluruhan zat

Lebih terperinci

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial

BAHAN AJAR. Hubungan Usaha dengan Energi Potensial BAHAN AJAR Hubungan Usaha dengan Energi Potensial Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari

Lebih terperinci

PEMBAHASAN. 1. Peranan Radioaktif dalam Bidang Kesehatan dan Kedokteran

PEMBAHASAN. 1. Peranan Radioaktif dalam Bidang Kesehatan dan Kedokteran PENDAHULUAN Radiasi adalah pencemaran/pengeluaran dan perambatan energi menembus ruang atau sebuah substansi dalam bentuk gelombang atau partikel. Partikel radiasi terdiri dari atom atau subatom dimana

Lebih terperinci

FISIKA INTI DI BIDANG KEDOKTERAN, KESEHATAN, DAN BIOLOGI

FISIKA INTI DI BIDANG KEDOKTERAN, KESEHATAN, DAN BIOLOGI FISIKA INTI DI BIDANG KEDOKTERAN, KESEHATAN, DAN BIOLOGI Stuktur Inti Sebuah inti disusun oleh dua macam partikel yaitu proton dan neutron terikat bersama oleh sebuah gaya inti. Proton adalah sebuah partikel

Lebih terperinci

DAFTAR ISI. BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02

DAFTAR ISI. BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02 DAFTAR ISI BAB I. PENDAHULUAN.. 01 A. Latar Belakang 01 Tujuan Instruksional Umum. 02 Tujuan Instruksional Khusus 02 BAB II FILOSOFI KESELAMATAN RADIASI DAN ALARA... 03 A. Perkembangan Sistem Pembatasan

Lebih terperinci

MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK

MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK MATERI APLIKASI TEKNOLOG NUKLIR FISIKA INTI TINJAUAN UMUM PLTN PRINSIP KERJA REAKTOR NUKLIR BAGIAN2 REAKTOR NUKLIR KONSEP KESELAMATAN NUKLIR TEKNIK GAUGING LOGGING PERUNUT POLIMERISASI STERILISASI PENGAWETAN

Lebih terperinci

02. Jika laju fotosintesis (v) digambarkan terhadap suhu (T), maka grafik yang sesuai dengan bacaan di atas adalah (A) (C)

02. Jika laju fotosintesis (v) digambarkan terhadap suhu (T), maka grafik yang sesuai dengan bacaan di atas adalah (A) (C) Pengaruh Kadar Gas Co 2 Pada Fotosintesis Tumbuhan yang mempunyai klorofil dapat mengalami proses fotosintesis yaitu proses pengubahan energi sinar matahari menjadi energi kimia dengan terbentuknya senyawa

Lebih terperinci

BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT

BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT Penyusun: Eri Hiswara BUKU PINTAR PROTEKSI DAN KESELAMATAN RADIASI DI RUMAH SAKIT Penyusun: Eri Hiswara BUKU PINTAR PROTEKSI DAN KESELAMATAN

Lebih terperinci

ALAT UKUR RADIASI. Badan Pengawas Tenaga Nuklir. Jl. MH Thamrin, No. 55, Jakarta Telepon : (021)

ALAT UKUR RADIASI. Badan Pengawas Tenaga Nuklir. Jl. MH Thamrin, No. 55, Jakarta Telepon : (021) ALAT UKUR RADIASI Badan Pengawas Tenaga Nuklir Jl. MH Thamrin, No. 55, Jakarta 10350 Telepon : (021) 230 1266 Radiasi Nuklir Secara umum dapat dikategorikan menjadi: Partikel bermuatan Proton Sinar alpha

Lebih terperinci

KIMIA (2-1)

KIMIA (2-1) 03035307 KIMIA (2-1) Dr.oec.troph.Ir.Krishna Purnawan Candra, M.S. Kuliah ke-4 Kimia inti Bahan kuliah ini disarikan dari Chemistry 4th ed. McMurray and Fay Faperta UNMUL 2011 Kimia Inti Pembentukan/penguraian

Lebih terperinci

BAB I PENDAHULUAN. Radiasi matahari merupakan gelombang elektromagnetik yang terdiri atas medan listrik dan medan magnet. Matahari setiap menit

BAB I PENDAHULUAN. Radiasi matahari merupakan gelombang elektromagnetik yang terdiri atas medan listrik dan medan magnet. Matahari setiap menit BAB I PENDAHULUAN 1.1 Latar Belakang Matahari merupakan kendali cuaca serta iklim yang sangat penting dan sebagai sumber energi utama di bumi yang menggerakkan udara dan arus laut. Energi matahari diradiasikan

Lebih terperinci

DASAR-DASAR TEORI YANG MENDASARI KAJIAN BIORADIASI ANTARA LAIN MODEL ATOM, INTI ATOM DAN RADIOAKTIVITAS ENERGI ABSORSI

DASAR-DASAR TEORI YANG MENDASARI KAJIAN BIORADIASI ANTARA LAIN MODEL ATOM, INTI ATOM DAN RADIOAKTIVITAS ENERGI ABSORSI BIORADIASI DISAMPAIKAN PADA KULIAH FISIKA PROGRAM S1 KEPERAWATAN STIKES ABI OLEH: IMAM SAPUAN S.Si.,M.Si (STAF PENGAJAR FISIKA UNIVERSITAS AIRLANGGA) DASARDASAR TEORI YANG MENDASARI KAJIAN BIORADIASI ANTARA

Lebih terperinci

BAB FISIKA INTI DAN RADIOAKTIVITAS

BAB FISIKA INTI DAN RADIOAKTIVITAS BAB FISIKA INTI DAN RADIOAKTIVITAS Cnth. Jumlah prtn, neutrn dan electrn dalam suatu atm.. 5 Tentukan Jumlah prtn, neutrn dan electrn dalam suatu atm. Fe Dari Lambang nuklida 5 Fe,maka Z dan A 5.. Jumlah

Lebih terperinci

KEGIATAN BELAJAR 1 : KARAKTERISTIK INTI ATOM DAN RADIOAKTIVITAS

KEGIATAN BELAJAR 1 : KARAKTERISTIK INTI ATOM DAN RADIOAKTIVITAS MODUL MATERI SULIT UN MODUL 1 : KARAKTERISASI INTI ATOM DAN RADIOAKTIVITAS Oleh: Yusman Wiyatmo, M.Si Pengantar: Dalam modul 1 ini, Anda akan mempelajari karakterisiasi inti atom mencakup tentang struktur

Lebih terperinci

ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK

ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK ANALISIS WAKTU PELURUHAN TERHADAP PERSYARATAN DOSIS RADIOISOTOP UNTUK PEMERIKSAAN GONDOK Kristiyanti 1, Wahyuni Z Imran 1, Lely Yuniarsari 1 1 Pusat Rekayasa Perangkat Nuklir BATAN ABSTRAK ANALISIS WAKTU

Lebih terperinci

PERTEMUAN KEEMPAT FISIKA MODERN TEORI KUANTUM TENTANG RADIASI ELEKTROMAGNET TEKNIK PERTAMBANGAN UNIVERSITAS MULAWARMAN

PERTEMUAN KEEMPAT FISIKA MODERN TEORI KUANTUM TENTANG RADIASI ELEKTROMAGNET TEKNIK PERTAMBANGAN UNIVERSITAS MULAWARMAN PERTEMUAN KEEMPAT FISIKA MODERN TEORI KUANTUM TENTANG RADIASI ELEKTROMAGNET TEKNIK PERTAMBANGAN UNIVERSITAS MULAWARMAN TEORI FOTON Gelombang Elektromagnetik termasuk cahaya memiliki dwi-sifat (Dualisme)

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

KONSEP SAFETY AND SECURITY PADA PEMANFAATAN ZAT RADIOAKTIF

KONSEP SAFETY AND SECURITY PADA PEMANFAATAN ZAT RADIOAKTIF KARYA TULIS ILMIAH KONSEP SAFETY AND SECURITY PADA PEMANFAATAN ZAT RADIOAKTIF Oleh : I Gde Antha Kasmawan, S.Si., M.Si. I Made Yuliara, S.Si., M.T. JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar!

4. Sebuah sistem benda terdiri atas balok A dan B seperti gambar. Pilihlah jawaban yang benar! Pilihlah Jawaban yang Paling Tepat! Pilihlah jawaban yang benar!. Sebuah pelat logam diukur menggunakan mikrometer sekrup. Hasilnya ditampilkan pada gambar berikut. Tebal pelat logam... mm. 0,08 0.,0 C.,8

Lebih terperinci

GUNTINGAN BERITA Nomor : /HM 01/HHK 2.1/2014

GUNTINGAN BERITA Nomor : /HM 01/HHK 2.1/2014 Badan Tenaga Nuklir Nasional J A K A R T A Yth.: Bp. Kepala BadanTenaga Nuklir Nasional GUNTINGAN BERITA Nomor : /HM 01/HHK 2.1/2014 Hari, tanggal Selasa, 21 Oktober 2014 Sumber Berita http://palingaktual.com/

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Indonesia adalah salah satu negara yang dilewai oleh jalur rangkaian api Indonesia atau disebut juga dengan jalur Cincin Api Pasifik (The Pasific Ring of Fire) dimana

Lebih terperinci

Sihana

Sihana Surabaya, 5-9 Oktober 2015 Sihana Email: sihana@ugm.ac.id Pengantar tentang Senjata NUKLIR Ancaman teroris nuklir Ancaman serangan fasilitas nuklir Ancaman serangan dengan bahan radioaktif 2 Hiroshima

Lebih terperinci

REAKSI INTI. HAMDANI, S.Pd

REAKSI INTI. HAMDANI, S.Pd REAKSI INTI HAMDANI, S.Pd Reaktor atom Matahari REAKSI INTI Reaksi Inti adalah proses perubahan yang terjadi dalam inti atom akibat tumbukan dengan partikel lain atau berlangsung dengan sendirinya. isalkan

Lebih terperinci

SMP kelas 9 - FISIKA BAB 4. SISTEM TATA SURYALatihan Soal 4.9. lithosfer. hidrosfer. atmosfer. biosfer

SMP kelas 9 - FISIKA BAB 4. SISTEM TATA SURYALatihan Soal 4.9. lithosfer. hidrosfer. atmosfer. biosfer SMP kelas 9 - FISIKA BAB 4. SISTEM TATA SURYALatihan Soal 4.9 1. Berdasarkan susunan kimianya komposisi permukaan bumi dapat dibagi menjadi empat bagian yaitu lithosfer, hidrosfer, atmosfer, dan biosfer.

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas Einstein

Lebih terperinci

5. Diagnosis dengan Radioisotop

5. Diagnosis dengan Radioisotop 5. Diagnosis dengan Radioisotop Untuk studi in-vivo, radioisotop direaksikan dengan bahan biologik seperti darah, urin, serta cairan lainnya yang diambil dari tubuh pasien. Sampel bahan biologik tersebut

Lebih terperinci

LEMBAR SOAL ULANGAN AKHIR SEMESTER (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Senin, 30 Nopember 2009

LEMBAR SOAL ULANGAN AKHIR SEMESTER (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Senin, 30 Nopember 2009 J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 527115/5482914 JAKARTA BARAT

Lebih terperinci

Kunci dan pembahasan soal ini bisa dilihat di dengan memasukkan kode 5976 ke menu search. Copyright 2017 Zenius Education

Kunci dan pembahasan soal ini bisa dilihat di  dengan memasukkan kode 5976 ke menu search. Copyright 2017 Zenius Education 01. Batas ambang frekuensi dari seng untuk efek fotolistrik adalah di daerah sinar ultraviolet. Manakah peristiwa yang akan terjadi jika sinar-x ditembakkan ke permukaan logam seng? (A) tidak ada elektron

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kanker merupakan suatu penyakit dimana pembelahan sel tidak terkendali dan akan mengganggu sel sehat disekitarnya. Jika tidak dibunuh, kanker dapat menyebar ke bagian

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI Fakultas : FMIPA Program Studi : Kimia Mata Kuliah : Kimia Inti Jumah sks : sks Semester : 6 Mata Kuliah Prasyarat : Kimia Dasar, Kimia Fisika

Lebih terperinci

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul

Lebih terperinci

STRUKTURISASI MATERI

STRUKTURISASI MATERI STRUKTURISASI MATERI KOMPETENSI DASAR 3.9 Menganalisis gejala pemanasan global dan dampaknya bagi kehidupan dan lingkungan 4.8 Menyajikan ide/gagasan pemecahan masalah gejala pemanasan global dan dampaknya

Lebih terperinci