BAB II STUDI LITERATUR

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II STUDI LITERATUR"

Transkripsi

1 BAB II STUDI LITERATUR.1 TINJAUAN UMUM Pada bab ini akan dijelaskan tentang tata cara dan langkah-langkah perhitungan struktur rangka atap. Studi literatur dimaksudkan agar dapat memperoleh hasil perencanaan yang optimal dan akurat. Oleh karena itu, dalam bab ini pula akan dibahas mengenai konsep pemilihan sistem struktur dan konsep perencanaan/desain struktur bangunannya, seperti konigurasi denah atap dan pembebanan sehingga diharapkan hasil yang akan diperoleh nantinya tidak akan menimbulkan kegagalan struktur.. KONSEP PEMILIHAN JENIS STRUKTUR Desain struktur harus memperhatikan beberapa aspek diantaranya adalah sebagai berikut : 1. Kekuatan dan kestabilan struktur Kekuatan dan kestabilan struktur mempunyai kaitan yang erat dengan kemampuan struktur untuk menerima beban-beban yang bekerja.. Kemudahan pelaksanaan Kemudahan pelaksanaan pengerjaan merupakan aktor yang mempengaruhi sistem struktur yang dipilih. 3. Faktor ekonomi Meliputi jumlah biaya yang akan dikeluarkan agar dalam proses pelaksanaan, perencana dapat memberikan alternati rencana yang lebih murah dan memenuhi aspek mekanika dan ungsionalnya..3 KONSEP PERENCANAAN STRUKTUR RANGKA ATAP.3.1 DENAH ATAP Dalam mendesain rangka atap, perlu direncanakan terlebih dahulu denah atap. Gambar denah atap dan potongan dapat dilihat pada lampiran yang terletak pada bagian akhir laporan ini. 4

2 .3. DATA MATERIAL Adapun spesiikasi bahan yang digunakan dalam perencanaan struktur rangka atap ini adalah sebagai berikut : Bahan : baja konvensional dan baja ringan Tegangan Leleh (y) : baja konvensional = 400 kg/cm baja ringan = 5000 kg/cm Tegangan Putus (u) : baja konvensional = 3700 kg/cm baja ringan = 6600 kg/cm.3.3 PEMBEBANAN Besar dan macam beban yang bekerja pada struktur sangat tergantung dari jenis struktur. Berikut ini akan disajikan jenis-jenis beban. Data beban serta aktor-aktor dan kombinasi pembebanan sebagai dasar acuan bagi perhitungan struktur JENIS JENIS BEBAN Jenis-jenis beban yang biasa dipergunakan dalam perencanaan struktur rangka atap antara lain sebagai berikut: a. Beban mati ( Dead Load / DL ) Beban mati adalah berat dari semua bagian dari suatu konstruksi yang bersiat tetap, termasuk segala unsur tambahan yang merupakan bagian yang tak terpisahkan dari konstruksi tersebut. b. Beban hidup ( Lie Load / LL ) Beban hidup merupakan beban yang bisa ada atau tidak ada pada struktur. Untuk menentukan secara pasti beban hidup yang bekerja pada suatu konstruksi sangatlah sulit karena luktuasi beban hidup bervaiasi, tergantung banyak aktor. Oleh karena itu, aktor beban hidup lebih besar dibanding beban mati. c. Beban angin (Wind Load) Beban angin adalah semua beban yang bekerja pada suatu konstruksi yang disebabkan oleh selisih tekanan udara. 5

3 .3.3. KOMBINASI PEMBEBANAN Kombinasi pembebanan yang harus ditinjau menurut Peraturan Pembebanan Indonesia untuk Gedung 1983 adalah sebagai berikut : Pembebanan tetap M + H Pembebanan Sementara M + H + A Dimana : M = Beban Mati H = Beban Hidup A = Beban Angin DATA BEBAN Perencanaan pembebanan struktur sesuai dengan Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung 1987, dengan datadata pembebanan sebagai berikut : Berat jenis baja : 7850 kg/m 3 Plaon / langit-langit : 11 kg/m Penggantung langit-langit dari kayu : 7 kg/m Penutup atap (genteng beton) : 50 kg/m Beban Pekerja : 100 kg/m Beban Angin : 5 kg/m.4 ANALISIS PERHITUNGAN.4.1 PERENCANAAN STRUKTUR RANGKA ATAP BAJA KONVENSIONAL Struktur atap rangka baja konvensional dalam perencanaan menggunakan metode LRFD ( Load and Resistance Factor Design ) atau desain beban dan aktor resistensi, dimana cek tegangan yang terjadi tehadap tegangan leleh ( y ). Untuk mempermudah perhitungan, maka terlebih dahulu dibuat denah atap dengan mempertimbangkan letak kudakuda dan gording. 6

4 PERENCANAAN GORDING Y LLC 15 x 50 x 0 x 4,5 X q sin 40 q q cos Gambar.1 Arah gaya pada gording Digunakan proil Light Lip Channels dengan mutu baja BJ 37 (Fy = 400 kg/cm ) dan satu buah trekstang. Data yang diperlukan antara lain adalah kemiringan atap (α), bentang gording (L) dan jarak antar gording. Pembebanan : a. Beban mati (qd), meliputi berat penutup atap (genteng beton), berat gording dan berat bracing. b. Beban hidup (ql), meliputi beban pekerja (qp) dan air hujan (qr = (40-0,8α)*jarak gording). c. Beban angin (qa = 5 kg/m ), meliputi : Beban angin tekan = Koe*qA*jarak gording Beban angin hisap = Koe*qA*jarak gording Dimana : Koeisien tekan (+) = ((0,*α) - 0,4) Koeisien hisap (-) = - 0,4 Perhitungan momen Arahx M x komb.1 = M Dx + M Px M x komb. = M Dx + M Px + M Wxt M x komb.3 = M Dx + M Px + M Wxh M x komb.4 = M Dx + M Rx + M Wxt M x komb.5 = M Dx + M Rx + M Wxh Arah y M y komb.1 = M Dy + M Py M y komb. = M Dy + M Py + M Wyt M y komb.3 = M Dy + M Py + M Wyh 7

5 M y komb.4 = M Dy + M Ry + M Wyt M y komb.5 = M Dy + M Ry + M Wyh Dari kombinasi tersebut momen yang maksimum. Kontrol terhadap Tegangan Syarat y = Mx Wx My + σ y = Wy 400kg cm Kontrol lendutan () ijin ijin = 1/40x L qx = q Dx + q Wx qy = q Dy + q Wy Untuk arah x, x = Untuk arah y, y = qx. L Px. L Elx 48. Elx qy. L Py. L Ely 48. Ely = ( x ) + ( y).4.1. PENDIMENSIAN KUDA-KUDA Menentukan syarat-syarat batas tumpuan panjang bentang dan dimensi proil yang akan digunakan. Melakukan analisa pembebanan. Pembebanan yang dilakukan pada struktur rangka atap sama dengan beban yang diterima pada saat perencanaan gording hanya ada penambahan pada berat sendiri konstruksi rangka atap. Sedangkan kombinasi beban yang diberikan pada analisis struktur atap ini adalah : Kombinasi I : Beban Mati + Beban Hidup Kombinasi II : Beban Mati + Beban Hidup + Beban Angin Kanan 8

6 Kombinasi II : Beban Mati + Beban Hidup + Beban Angin Kiri w = 1, D + 1,6 L w = 1, D + 0,5 L ± 1,3 W Keterangan: D = Beban mati L = Beban hidup ( akibat pekerja dan air hujan ) W = Beban angin Melakukan pengecekan kekuatan pada proil majemuk. Gambar. Penampang siku proil ganda Ag = xa (A = luas penampang batang tunggal) - Cek terhadap batang tarik Gambar.3 Batang yang mengalami gaya tarik Syarat penempatan baut : (SNI hal.104) s 1 1,5 d b s 1 1 t p s mm s 3 d b s 15 t p s 00 mm d ( lubang baut ) = φ + 1 9

7 A = A nt Pot 1 : A nt = Ag - n x d x t Penampang eekti (SNI butir 10.) x = eksentrisitas sambungan,jarak tegak lurus arah gaya tarik antara titik berat penampang komponen yang disambung dengan bidang sambungan. x U = 1 0, 9 L U = aktor reduksi L = panjang sambungan dalam arah gaya tarik. Ae = A x U φ Nn = φ x Ag.y φ Nn = φ x Ae.u Nu φ Nn (aman) - Cek terhadap batang tekan Nu φ Nn y φ Nn = φ x Ag x ω Dimana : ω = 1 (λ c 0,5) 1,43 ω = (0,5 < λ c < 1,) 1,6 0,67λ c ω = 1,5 λ c λ c = λx π y E (λ c 1,) Kestabilan batang majemuk : λ iy < λ x (tekuk terjadi pada sumbu x) λ iy < λ y (tekuk terjadi pada sumbu y) Syarat kestabilan struktur : (SNI hal.59) λ x 1, λ 1 λ iy 1, λ 1 10

8 λ 1 50 kli λ 1 = ( Li = jarak kopel) i min Estimasi jarak kopel minimum : kli i min Li i min Dimana : = 0,75 klk ix Lk = 0,75 ix Lk Li = jumlahben tan g jumlah bentang harus ganjil dan minimal 3 buah k = aktor tekuk (SNI gambar 7.6-1) λ iy = λ y + m λ 1 λ y kly = iy Iy = (Iy 1 + A 1 (e x + ½ d) ) Ag = x A 1 klx λ x = ix Kontrol tekuk lokal : (SNI tabel 7.5-1) λ λ r pada proil siku ganda dengan plat kopel sebagai penyokong λ = t b λ r = 00 y dimana : b = lebar proil siku t = tebal proil siku 11

9 PENDIMENSIAN PELAT KOPEL PADA BATANG PROFIL GANDA Pelat kopel harus cukup kaku, sehingga memenuhi persamaan : Ip Ii 10 (SNI pers ) a Li Dimana : Ip = Momen kelembaman pelat kopel a = Jarak sumbu elemen batang tersusun Ii = Momen kelembaman elemen batang tunggal terhadap sumbu b-b Li = Jarak pelat kopel a = e + pelat pengisi Gambar.4 Dimensi penampang proil siku Vu φ Vn Gaya lintang yang dipikul = D D = 0,0 Nu (SNI pers ) Nu = gaya batang yang terjadi Vu = gaya geser nominal, sama sepeti persamaan sebelumnya Kekuatan geser pelat kopel : (SNI pers.8.8-) - h t w 1,10 5 kn = 5 + a h Vn kne y = 0,6 x y x Aw 1

10 Aw = luas kotor pelat badan - kne h 1,10 1,37 y t w k n E y Vn = 0,6 x y x Aw ne 1,10 k 1 y [ h t ] w Atau Vn = 0,6 x y x Aw C v + 1,15 1 C 1+ v ( ) a h dengan C = 1, 10 v k n E ( h t ) w y - 1,37 k n E y h t w 0,9xAwk V = n atau Vn ( h t ) w n E = 0,6 x y x Aw C kne dengan C v = 1,15 y h t w v 1 C + 1,15 1+ v ( ) a h Cek perbandingan tinggi terhadap tebal panel : h k ye < 1,10 n t w Vu φ Vn 13

11 PERHITUNGAN SAMBUNGAN - Sambungan baut Ru φ Rn Syarat kekuatan baut : Kekuatan baut terhadap geser (SNI , pasal ) Vd = φ r1 A b u b φ = aktor reduksi kekuatan untuk raktur, 0,75 r 1 = untuk baut tanpa ulir pada bidang geser, 0,5 r 1 = untuk baut dengan ulir pada bidang geser, 0,4 b u = tegangan tarik putus baut, 370 Mpa A b Vd = φ r1 = luas penampang bruto baut pada daerah yang tak berulir A b u b V d = 0,75x0,4x370x1/ 4xπx16 = 41846,01 N Kekuatan baut yang memikul tarik (SNI , pasal 13...) T = φ T = φ x0. 75 d n b u A b T d = 0,75x0,75x370x1/ 4xπx16 = 41846,01 N Kuat tumpu dalam lubang baut (SNI , pasal ) R d = φ R =, 4xφ d n b t p u φ = aktor reduksi kekuatan untuk raktur, 0,75 d b t p = diameter baut nominal pada daerah tak berulir, 16 mm = tebal pelat, 7 mm Dari ketiga nilai di atas diambil nilai terendah sebagai bahan perencanaan pendimensian sambungan dan jika tebala plat pengisi (t) 6 mm < t < 0 mm, maka kuat geser nominal 1 baut yang ditetapkan harus dikurangi 15 % (SNI , pasal ). Sehingga : 14

12 Ru = 0,85φ Rn Jumlah baut = n = Nu 0,85φRn - Sambungan las Gambar.5 Sambungan las pada proil pipa Tabel.1 Ukuran minimum las sudut Tebal bagian paling tebal, t (mm) Tebal minimum las sudut, tw (mm) t t t < t 6 (SNI , tabel ) Ukuran maksimum las sudut sepanjang tepi komponen yang disambung : a. t p < 6,4 mm t maks = t p b. t p 6,4 mm t maks = t p 1,6 mm Kuat las sudut : (SNI ) Ru φ Rnw dengan φ Rnw = 0,75 t t (0,6 u ) (bahan dasar) φ Rnw = 0,75 t t (0,6 uw ) (bahan las) 15

13 Dimana : φ Rnw = gaya teraktor per satuan panjang las φ = aktor reduksi kekuatan saat raktur, 0,75 u uw t t Panjang las = L L n 4 t t L bruto = L n + 3 t t = tegangan tarik putus bahan dasar, Mpa = tegangan tarik putus bahan las, Mpa = tebal rencana las, mm n Ru = φ R nw PERHITUNGAN IKATAN ANGIN Dikarenakan pada SNI tidak dijelaskan mengenai perencanaan bracing (ikatan angin) pada struktur atap (hanya ada pada bangunan struktur baja tahan gempa), maka reerensi diambil dari PPBBI Menurut PPBBI 1984 halaman 64, pada hubungan gording, ikatan angin harus dianggap ada gaya P yang arahnya sejajar sumbu gording yang besarnya : P = 0,01 P kuda-kuda + 0,005 n.q.dk.dq P kuda-kuda = gaya pada bagian tepi kuda-kuda di tempat gording itu n = jumlah trave antara dua bentang ikatan angin q = beban atap vertikal terbagi rata dk = jarak antar kuda-kuda dq = jarak antar gording Pada bentang ikatan angin harus dipenuhi syarat : h 0, 5Q ( PPBBI 1984 halaman 64) L A tepi EA tepi = luas penmapang bagian tepi kuda-kuda h = jarak kuda-kuda pada bentang ikatan angin L = panjang tepi atas kuda-kuda 16

14 Ikatan angin juga menerima beban Q Q = n.q.dk.l n = jumlah trave antara dua bentang q = beban atap vertikal terbagi rata dk = jarak antar kuda-kuda L = panjang tepi atas kuda-kuda PERHITUNGAN TREKSTANG Pemasangan trekstang antar gording pada tengah bentang gording, memberikan kekakuan tambahan pada gording terhadap sumbu y. Trekstang menahan gaya yang bekerja pada sumbu x. Jumlah trekstang yang digunakan adalah 1. ω = q Dy. Lk + Py n q Dy = q D cos α P y = P cos α ω σ = A ϖ σ = 1/ 4πd akan diperoleh diameter trekstang (d). cek n.d 1/500 Lk (aman) PERHITUNGAN ANGKUR Perhitungan didasarkan terhadap reaksi pada tumpuan tersebut dimana: P = R + AV R AH P Jumlah angkur = φv n Vn = 0,6 y Aw (SNI , pasal 8.8.3) τ batang = 75 kg/cm 17

15 P A = τ ba tan g = cm A = πr.l PERHITUNGAN PELAT LANDAS Dasar perencanaannya diambil dari dimensi pelat landas (panjang dan lebar) akibat kebutuhan ruang penempatan angkur. Sehingga : = P A < ' c Dimana : P = reaksi yang terjadi A = Luas permukaan bidang pelat landas (panjang x lebar) c = mutu beton di bawah pelat landas Perhitungan sambungan las pelat landas Gambar.6 Sambungan las pada pelat landas Ukuran minimum las sudut Tebal bagian paling tebal, t (mm) Tebal minimum las sudut, tw (mm) t t t < t 6 (SNI , tabel ) Ukuran maksimum las sudut sepanjang tepi komponen yang disambung : a. t p < 6,4 mm t maks = t p b. t p 6,4 mm t maks = t p 1,6 mm 18

16 Kuat las sudut : (SNI ) Ru φ Rnw dengan φ Rnw = 0,75 t t (0,6 u ) (bahan dasar) φ Rnw = 0,75 t t (0,6 uw ) (bahan las) Dimana : φ Rnw = gaya teraktor per satuan panjang las φ = aktor reduksi kekuatan saat raktur, 0,75 u uw t t Panjang las = L L n 4 t t L bruto = L n + 3 t t n = tegangan tarik putus bahan dasar, Mpa = tegangan tarik putus bahan las, Mpa = tebal rencana las, mm Ru = φ R nw.4. PERENCANAAN STRUKTUR RANGKA ATAP BAJA RINGAN Struktur rangka atap yang menggunakan baja ringan dianalisis berdasarkan konsep ASD ( Allowable Stress Design ). Konsep desain ini berarti bahwa setiap elemen struktur tidak boleh melewati batas tegangan ijin dari material baja ringan yang digunakan PEMBEBANAN Kombinasi beban yang diberikan pada analisis struktur atap ini adalah : Kombinasi I : Beban Mati + Beban Hidup Kombinasi II : Beban Mati + Beban Hidup + Beban Angin Kanan Kombinasi II : Beban Mati + Beban Hidup + Beban Angin Kiri Dengan menggunakan sotware diperoleh gaya-gaya dalam yang terjadi pada struktur. 19

17 .4.. KONTROL DIMENSI KUDA-KUDA Desain Lebar Eekti Elemen Umum Ketika rasio lebar, W, melebihi batas rasio lebar, W lim, maka lebar elemen, w, dapat digantikan dengan lebar eekti. Lebar eekti digunakan untuk menentukan rasio lebar eekti, B. Rasio lebar eekti dapat ditentukan sebagai berikut : w Kondisi 1 : W W lim W = rasio lebar = t B = W B = rasio lebar eekti = t b Kondisi : W > W lim B = 0,95 0,08 ke / 1 ke / W W lim = 0,644 ke / dimana : k = 4 E = MPa P = A Elemen dengan beberapa pengaku Untuk elemen tekan dengan beberapa elemen pengaku, baik itu yang diperkuat diantara badan dengan dua atau lebih pengaku atau diperkuat diantara badan dan tepi pengaku dengan satu atau lebih pengaku. Pengaku dapat diabaikan kalau pada tiap pengaku, I s I a dimana : I a = (4W 6) t 4 18 t 4 I s = 5 h t 3 [h/a 0,7(a/h)] (h/50) 4, a = jarak antar pengaku h = lebar badan elemen t = tebal badan 0

18 Hal hal yang perlu diperhatikan : a. Jika jarak dari pengaku diantara badan elemen sedemikian rupa sehingga rasio lebar, W, dari subelemen diantara pengaku lebih besar dari W lim, hanya dua pengaku (yang terdekat dari tiap badan) yang diperhitungkan eekti. b. Jika jarak dari pengaku diantara badan elemen dan tepi pengaku sedemikian rupa sehingga rasio lebar, W, dari subelemen diantara pengaku lebih besar dari W lim, hanya pengaku terdekat dari badan yang diperhitungkan eekti. c. Jika pengaku berjarak sangat dekat sehingga rasio lebar, W, dari semua subelemen diantara pengaku tidak melebihi W lim, semua pengaku dapat diperhitungkan eekti. Dalam perhitungan rasio lebar, W m, dan rasio lebar eekti dikurangi, B r, dari semua elemen pengaku dapat diganti dengan elemen tanpa pengaku intermediate yang mana lebar, w m, merupakan lebar antara badan atau dari badan sampai sisi pengaku dan ketebalan yang digunakan adalah sebagai berikut : t s = t w 3I m s + 3 p pt 1/ 3 dimana : I s = momen inersia penampang eekti elemen yang diperkuat termasuk pengaku intermediate. p = panjang perimeter dari elemen beberapa pengaku, antar badan atau dari badan sampai sisi pengaku. t = tebal proil w m = lebar antar badan atau dari badan sampai sisi pengaku. W m = w m /t s Rasio lebar eekti dikurangi, B r, dari elemen beberapa pengaku dihitung dengan menggunakan W = W m, dan luas eekti dari elemen ini adalah B r t s t. d. Lebar eekti, b, dari elemen atau subelemen dihitung berdasarkan rasio lebar eekti dikurangi, B r, dengan b = B r t,dimana : 1

19 B r = B ketika W 60 B r = B 0,1W + 6 ketika W > 60 e. Dalam perhitungan properties struktur batang eekti, luas dari elemen dengan beberapa pengaku dapat diganti dengan luas eekti dikurangi, A r, dimana : A r = A s ketika W 60 A r = (3 B r /W + B r /30 W/30)A s ketika 60 < W 90 A r = (B r /W)A s ketika W > 90 Gambar.7 Elemen Dengan Beberapa Pengaku Batang Tarik Syarat : Tn Tr - Akibat pelelehan penampang bruto Tn = AgFy = 0,9AgFy Tn = φfy ( 1 / Ag + e / St) - Akibat retakan penampang netto Tn = AnFu = 0,75AnFu Tn = φufu ( 1 / An + e / Stn) Pilih Tn terkecil (yang berpengaruh) Dimana : = aktor resistensi (aktor reduksi kekuatan), yaitu 0,9 (akibat pelelehan penampang bruto) dan 0,75 (akibat retakan penampang netto) Fy = tegangan leleh proil

20 Fu = tegangan ultimate proil Ag = luas penampang bruto An = luas penampang netto = 0,85Ag Tn = kekuatan nominal batang tarik Tr = beban teraktor batang tarik Tn = kekuatan desain Batang Tekan Syarat : Cn Cr a Cn = a AeFa = 0,9AeFa Batas tegangan tekan, Fa, sebagai berikut : - ketika Fp > Fy/ Fa = Fy ( Fy) 4Fp - ketika Fp Fy/ Fa = Fp dimana : Ae = luas penampang eekti Fp = tegangan tekuk kritis Fp = 0,833Fst atau 0,833Fe ; pilih yang terkecil Fe = π E/(KL/r) 1 β Fst = Fs + Ft ( Fs + Ft) 4βFsFt Fs = π E/(KL/r) Ft = 1 GJ π EC w + ( ) ( ) o K t Lt A r Β = 1 (x o /r o ) x o = e + x r o = ( r x ) + ( ry ) + ( xo ) 1 J = bt 3 3 3

21 Cw = I y h 4 J = momen inersia torsi Cw = konstanta puntir r o = jari jari kelembaman poler G = momen kelembaman torsi (78,000 Mpa) KL/r = rasio kekakuan eekti K = aktor panjang eekti L = panjang elemen r = jari jari kelembaman.4..3 PERHITUNGAN SAMBUNGAN Sambungan menggunakan sekrup. Berdasarkan CSA Standard ketebalan pelat penyambung tidak melebihi 4,5 mm. Dimensi lubang sekrup untuk diameter kurang dari 13 mm adalah (d + 1) dan untuk diameter lebih dari 13 mm adalah (d + ). Faktor resistensi geser : Vr = c 0,6A b Fu = 0,67*0,6A b Fu Faktor resistensi tarik : Tr = c 0,75A b Fu = 0,67*0,75A b Fu A b = luasan sekrup Fu = tegangan sekrup Pilih yang terbesar (yang menentukan) Si Jumlah sekrup = P S i = gaya batang i P = gaya sekrup yang menentukan Jarak sekrup : Jarak antar sekrup tidak kurang dari,5d dan jarak sekrup ke tepi tidak kurang dari 1,5d. d = diameter sekrup 4

22 5

TAMPAK DEPAN RANGKA ATAP MODEL 3

TAMPAK DEPAN RANGKA ATAP MODEL 3 TUGAS STRUKTUR BAJA 11 Bangunan gedung dengan struktur atap dibuat dengan struktur rangka baja. Bentang struktur bangunan, beban gravitasi, beban angin dan mutu bahan, dijelaskan pada data teknis berikut.

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM Fikry Hamdi Harahap NRP : 0121040 Pembimbing : Ir. Ginardy Husada.,MT UNIVERSITAS KRISTEN MARANATHA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL BANDUNG

Lebih terperinci

BAB I. Perencanaan Atap

BAB I. Perencanaan Atap BAB I Perencanaan Atap 1. Rencana Gording Data perencanaan atap : Penutup atap Kemiringan Rangka Tipe profil gording : Genteng metal : 40 o : Rangka Batang : Kanal C Mutu baja untuk Profil Siku L : BJ

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING )

PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) PERHITUNGAN IKATAN ANGIN (TIE ROD BRACING ) [C]2011 : M. Noer Ilham Gaya tarik pada track stank akibat beban terfaktor, T u = 50000 N 1. DATA BAHAN PLAT SAMBUNG DATA PLAT SAMBUNG Tegangan leleh baja, f

Lebih terperinci

STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR M. FAUZAN AZIMA LUBIS

STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR M. FAUZAN AZIMA LUBIS STUDI PERBANDINGAN STRUKTUR RANGKA ATAP BAJA UNTK BERBAGAI TYPE TUGAS AKHIR Diajukan Untuk Melengkapi Tugas Tugas Dan Memenuhi Syarat Untuk Menempuh Ujian Sarjana Teknik Sipil M. FAUZAN AZIMA LUBIS 050404041

Lebih terperinci

BAB IV PERHITUNGAN STRUKTUR REDESAIN

BAB IV PERHITUNGAN STRUKTUR REDESAIN BAB IV PERHITUNGAN STRUKTUR REDESAIN 4.1 STRUKTUR ATAP GEDUNG Pada perhitungan struktur atap gedung dari kuda-kuda baja konvensional dalam perencanaan konstruksinya dibuat sesuai dengan Pedoman Perencanaan

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB 2 DASAR TEORI 2.1. Dasar Perencanaan 2.1.1 Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2

Penyelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 II. KONSEP DESAIN Soal 2 : Penelesaian : Penentuan beban kerja (Peraturan Pembebanan Indonesia untuk Gedung 1983) : Penutup atap (genteng) = 50 kg/m2 = 0,50 kn/m2 Air hujan = 40 - (0,8*a) dengan a = kemiringan

Lebih terperinci

BAB 1 PERHITUNGAN PANJANG BATANG

BAB 1 PERHITUNGAN PANJANG BATANG BAB 1 PERHITUNGAN PANJANG BATANG A4 A5 A3 A6 T4 A1 T1 A2 D1 T2 D2 T3 D3 D4 T5 D5 T6 A7 D6 T7 A8 A 45 B1 B2 B3 B4 B5 B6 B7 B8 B 30 1.1 Perhitungan Secara Matematis Panjang Batang Bawah B 1 B 2 B 3 B 4 B

Lebih terperinci

PLATE GIRDER A. Pengertian Pelat Girder

PLATE GIRDER A. Pengertian Pelat Girder PLATE GIRDER A. Pengertian Pelat Girder Dalam penggunaan profil baja tunggal (seperti profil I) sebagai elemen lentur jika ukuran profilnya masih belum cukup memenuhi karena gaya dalam (momen dan gaya

Lebih terperinci

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan BAB III LANDASAN TEORI 3.1. Tinjauan Umum Menurut Supriyadi dan Muntohar (2007) dalam Perencanaan Jembatan Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan mengumpulkan data dan informasi

Lebih terperinci

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan 3 BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun

Lebih terperinci

DESAIN BATANG TEKAN PROFIL C GANDA BERPELAT KOPEL

DESAIN BATANG TEKAN PROFIL C GANDA BERPELAT KOPEL lemen Struktur Tekan Profil C Ganda - Struktur Baja - DSAIN BATANG TKAN PROFIL C GANDA BRPLAT KOPL e Y Y r a Y X X G X d tw tp b bf tf xe Satuan : kn := 000N MPa := N mm Panjang fekt klx := 5m kly := 5m

Lebih terperinci

CAHYA PUTRI KHINANTI Page 3

CAHYA PUTRI KHINANTI Page 3 BAB II PERHITUNGAN KAP A. Perhitungan Gording Gambar 2.1 Rencana Kap 1. Data Perhitungan Bentang kuda kuda = 10 m Jarak antar kuda-kuda = 4 m Kemiringan atap = 20 Berat penutup atap = 10 kg/m² (Seng Gelombang)

Lebih terperinci

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS

ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS Analisa Dimensi dan Struktur Atap Menggunakan Metode Daktilitas Terbatas 1 - ANALISA DIMENSI DAN STRUKTUR ATAP MENGGUNAKAN METODE DAKTILITAS TERBATAS M. Ikhsan Setiawan ABSTRAK Sttruktur gedung Akademi

Lebih terperinci

PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT

PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT PERBANDINGAN BERAT KUDA-KUDA (RANGKA) BAJA JENIS RANGKA HOWE DENGAN RANGKA PRATT Azhari 1, dan Alfian 2, 1,2 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau azhari@unri.ac.id ABSTRAK Batang-batang

Lebih terperinci

PERHITUNGAN PANJANG BATANG

PERHITUNGAN PANJANG BATANG PERHITUNGAN PANJANG BATANG E 3 4 D 1 F 2 14 15 5 20 A 1 7 C H 17 13 8 I J 10 K 16 11 L G 21 12 6 B 200 200 200 200 200 200 1200 13&16 0.605 14&15 2.27 Penutup atap : genteng Kemiringan atap : 50 Bahan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi saat ini semakin berkembang pesat, meningkatnya berbagai kebutuhan manusia akan pekerjaan konstruksi menuntut untuk terciptanya inovasi dan kreasi

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1. Diagram Alir Perencanaan Struktur Atas Baja PENGUMPULAN DATA AWAL PENENTUAN SPESIFIKASI MATERIAL PERHITUNGAN PEMBEBANAN DESAIN PROFIL RENCANA PERMODELAN STRUKTUR DAN

Lebih terperinci

BAB IV ANALISA PERHITUNGAN

BAB IV ANALISA PERHITUNGAN BAB IV ANALISA PERHITUNGAN 4.1 PERHITUNGAN METODE ASD 4.1.1 Perhitungan Gording Data perencanaan: Jenis baja : Bj 41 Jenis atap : genteng Beban atap : 60 kg/m 2 Beban hujan : 20 kg/m 2 Beban hujan : 100

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan BAB DASAR TEORI.1. Dasar Perencanaan.1.1. Jenis Pembebanan Dalam merencanakan struktur suatu bangunan bertingkat, digunakan struktur yang mampu mendukung berat sendiri, gaya angin, beban hidup maupun beban

Lebih terperinci

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG

LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG LEMBAR PENGESAHAN PERENCANAAN GEDUNG PERUM PERHUTANI UNIT I JAWA TENGAH, SEMARANG (Design of Perum Perhutani Unit I Central Java Building, Semarang ) Disusun Oleh : ADE IBNU MALIK L2A3 02 095 SHINTA WENING

Lebih terperinci

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal

BAB III LANDASAN TEORI. Bangunan Gedung SNI pasal BAB III LANDASAN TEORI 3.1. Analisis Penopang 3.1.1. Batas Kelangsingan Batas kelangsingan untuk batang yang direncanakan terhadap tekan dan tarik dicari dengan persamaan dari Tata Cara Perencanaan Struktur

Lebih terperinci

BAB III METODOLOGI PERENCANAAN

BAB III METODOLOGI PERENCANAAN BAB III METODOLOGI PERENCANAAN 3.1 Diagram Alir Mulai Data Eksisting Struktur Atas As Built Drawing Studi Literatur Penentuan Beban Rencana Perencanaan Gording Preliminary Desain & Penentuan Pembebanan

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA

BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA BAB III METODE DESAIN DAN PERENCANAAN RANGKA BALOK BAJA 3.1 Diagram Alir Perencanaan Kuda kuda Mulai KUDA KUDA TYPE 1 KUDA KUDA TYPE 2 KUDA KUDA TYPE 3 PRE/DESIGN GORDING PEMBEBANAN PRE/DESIGN GORDING

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Balok Lentur. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Balok Lentur Pertemuan 11, 12 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA BENTANG PANJANG

BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA BENTANG PANJANG BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA BENTANG PANJANG 3.1 Diagram Alir Perencanaan Kuda kuda Mulai Data perencanaan & gambar rencana KUDA-KUDA TYPE 1 Pre/Desain gording Pembebanan gording

Lebih terperinci

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni.

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. III. BATANG TARIK A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni. Gaya aksial tarik murni terjadi apabila gaya tarik yang bekerja tersebut

Lebih terperinci

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1

STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 STRUKTUR BAJA 1 KONSTRUKSI BAJA 1 GATI ANNISA HAYU, ST, MT, MSc. PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER 2015 MODUL 3 STRUKTUR BATANG TARIK PROFIL PENAMPANG BATANG TARIK BATANG TARIK PADA KONSTRUKSI

Lebih terperinci

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan.

II. KONSEP DESAIN. A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. II. KONSEP DESAIN A. Pembebanan Beban pada struktur dapat berupa gaya atau deformasi sebagai pengaruh temperatur atau penurunan. Beban yang bekerja pada struktur bangunan dapat bersifat permanen (tetap)

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

Komponen Struktur Tarik

Komponen Struktur Tarik Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Komponen Struktur Tarik Pertemuan 2, 3 Sub Pokok Bahasan : Kegagalan Leleh Kegagalan Fraktur Kegagalan Geser Blok Desain Batang Tarik

Lebih terperinci

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I

Tugas Akhir Perencanaan Struktur Salon, fitness & Spa 2 lantai TUGAS AKHIR. Disusun Oleh : Enny Nurul Fitriyati I Tugas Akhir Perencanaan Struktur Salon, fitness & Spa lantai A- TUGAS AKHIR PERENCANAAN STRUKTUR SALON FITNES DAN SPA LANTAI Disusun Oleh : Enny Nurul Fitriyati I.85060 PROGRAM DIPLOMA III TEKNIK SIPIL

Lebih terperinci

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD

ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD ANALISA SAMBUNGAN BATANG TARIK STRUKTUR BAJA DENGAN METODE ASD DAN METODE LRFD Ghinan Azhari 1 Jurnal Konstruksi Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu No. 1 Jayaraga Garut 44151 Indonesia Email

Lebih terperinci

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran: BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API 3.1. Kerangka Berpikir Dalam melakukan penelitian dalam rangka penyusunan tugas akhir, penulis melakukan penelitian berdasarkan pemikiran: LATAR

Lebih terperinci

BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA 3.1 Diagram Alir Perencanaan Kuda kuda. Mulai. Data perencanaan & gambar rencana

BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA 3.1 Diagram Alir Perencanaan Kuda kuda. Mulai. Data perencanaan & gambar rencana BAB III METODE DESAIN DAN PERENCANAAN KUDA KUDA BAJA 3.1 Diagram Alir Perencanaan Kuda kuda Mulai Data perencanaan & gambar rencana Pre/Desain gording Pembebanan gording No Cek kekakuan Cek kestabilan

Lebih terperinci

PERHITUNGAN GORDING DAN SAGROD

PERHITUNGAN GORDING DAN SAGROD PERHITUNGAN GORDING DAN SAGROD A. DATA BAHAN [C]2011 : M. Noer Ilham Tegangan leleh baja (yield stress ), f y = 240 MPa Tegangan tarik putus (ultimate stress ), f u = 370 MPa Tegangan sisa (residual stress

Lebih terperinci

BAB IV ANALISA STRUKTUR GEDUNG. Berat sendiri pelat = 156 kg/m 2. Berat plafond = 18 kg/m 2. Berat genangan = 0.05 x 1000 = 50 kg/m 2

BAB IV ANALISA STRUKTUR GEDUNG. Berat sendiri pelat = 156 kg/m 2. Berat plafond = 18 kg/m 2. Berat genangan = 0.05 x 1000 = 50 kg/m 2 BAB IV ANALISA STRUKTUR GEDUNG. Pembebanan a. Beban ati (DL) Beba mati pelat atap : Berat sendiri pelat = 56 kg/m Berat plaond = 8 kg/m Berat genangan = 0.05 000 = 50 kg/m DL = kg/m Beban mati untuk lantai

Lebih terperinci

BAB IV ANALISA & HASIL PERANCANGAN. Bab ini menjelaskan mengenai Perancangan dan Perhitungan struktur atas

BAB IV ANALISA & HASIL PERANCANGAN. Bab ini menjelaskan mengenai Perancangan dan Perhitungan struktur atas BAB IV ANALISA & HASIL PERANCANGAN 4.1 Pendahuluan Bab ini menjelaskan mengenai Perancangan dan Perhitungan struktur atas berupa bangunan Kubah (Dome) dengan menggunakan profil baja. Untuk memudahkan proses

Lebih terperinci

BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG

BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG BAB IV ANALISIS PERENCANAAN STRUKTUR GEDUNG Bab IV Analisis Perencanaan Struktur Gedung 4.1 Pembebanann Struktur Berdasarkan SNI-03-1729-2002 tentang Tata Cara Perencanaan Struktur Bajaa untuk Bangunan

Lebih terperinci

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user

perpustakaan.uns.ac.id digilib.uns.ac.id commit to user 1 BAB 1 PENDAHULUAN 1.1. Latar Belakang Pesatnya perkembangan dunia teknik sipil menuntut bangsa Indonesia untuk dapat menghadapi segala kemajuan dan tantangan. Hal itu dapat terpenuhi apabila sumber daya

Lebih terperinci

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI

PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI PERBANDINGAN STRUKTUR BETON BERTULANG DENGAN STRUKTUR BAJA DARI ELEMEN BALOK KOLOM DITINJAU DARI SEGI BIAYA PADA BANGUNAN RUMAH TOKO 3 LANTAI Wildiyanto NRP : 9921013 Pembimbing : Ir. Maksum Tanubrata,

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

Sambungan diperlukan jika

Sambungan diperlukan jika SAMBUNGAN Batang Struktur Baja Sambungan diperlukan jika a. Batang standar kurang panjang b. Untuk meneruskan gaya dari elemen satu ke elemen yang lain c. Sambungan truss d. Sambungan sebagai sendi e.

Lebih terperinci

PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 IMMANIAR F. SINAGA. Ir. Sanci Barus, M.T.

PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 IMMANIAR F. SINAGA. Ir. Sanci Barus, M.T. TUGAS AKHIR PERENCANAAN RANGKA ATAP BAJA RINGAN BERDASARKAN SNI 7971 : 2013 Disusun oleh: IMMANIAR F. SINAGA 11 0404 079 Dosen Pembimbing: Ir. Sanci Barus, M.T. 19520901 198112 1 001 BIDANG STUDI STRUKTUR

Lebih terperinci

PERHITUNGAN TUMPUAN (BEARING ) 1. DATA TUMPUAN. M u = Nmm BASE PLATE DAN ANGKUR ht a L J

PERHITUNGAN TUMPUAN (BEARING ) 1. DATA TUMPUAN. M u = Nmm BASE PLATE DAN ANGKUR ht a L J PERHITUNGAN TUMPUAN (BEARING ) BASE PLATE DAN ANGKUR ht h a 0.95 ht a Pu Mu B I Vu L J 1. DATA TUMPUAN BEBAN KOLOM DATA BEBAN KOLOM Gaya aksial akibat beban teraktor, P u = 206035 N Momen akibat beban

Lebih terperinci

BAHAN KULIAH STRUKTUR BAJA 1. Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University

BAHAN KULIAH STRUKTUR BAJA 1. Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University 3 BAHAN KULIAH STRUKTUR BAJA 1 4 Program Studi Teknik Sipil Fakultas Teknik dan Informatika Undiknas University Batang tarik 1 Contoh batang tarik 2 Kekuatan nominal 3 Luas bersih 4 Pengaruh lubang terhadap

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI

PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN 2 LANTAI PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN LANTAI Oleh: Fredy Fidya Saputra I.8505014 FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET PROGRAM D III JURUSAN TEKNIK SIPIL SURAKARTA 009 BAB I PENDAHULUAN 1.1 Latar

Lebih terperinci

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN TUGAS AKHIR PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Strata Satu (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

PERENCANAAN ELEMEN STRUKTUR BAJA BERDASARKAN SNI 1729:2015

PERENCANAAN ELEMEN STRUKTUR BAJA BERDASARKAN SNI 1729:2015 PERENCANAAN ELEMEN STRUKTUR BAJA BERDASARKAN SNI 1729:2015 Fendy Phiegiarto 1, Julio Esra Tjanniadi 2, Hasan Santoso 3, Ima Muljati 4 ABSTRAK : Peraturan untuk perencanaan stuktur baja di Indonesia saat

Lebih terperinci

BAB VII PENUTUP 7.1 Kesimpulan

BAB VII PENUTUP 7.1 Kesimpulan BAB VII PENUTUP 7.1 Kesimpulan Dari keseluruhan pembahasan yang telah diuraikan merupakan hasil dari perhitungan perencanaan struktur gedung Fakultas Teknik Informatika ITS Surabaya dengan metode SRPMM.

Lebih terperinci

Struktur Baja 2. Kolom

Struktur Baja 2. Kolom Struktur Baja 2 Kolom Perencanaan Berdasarkan LRFD (Load and Resistance Factor Design) fr n Q i i R n = Kekuatan nominal Q = Beban nominal f = Faktor reduksi kekuatan = Faktor beban Kombinasi pembebanan

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA Alderman Tambos Budiarto Simanjuntak NRP : 0221016 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS KRISTEN

Lebih terperinci

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil Fakultas Teknik

Lebih terperinci

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD MODUL 4 BATANG TEKAN METODE ASD 4.1 MATERI KULIAH Panjang tekuk batang tekan Angka kelangsingan batang tekan Faktor Tekuk dan Tegangan tekuk batang tekan Desain luas penampang batang tekan Syarat kekakuan

Lebih terperinci

V. PENDIMENSIAN BATANG

V. PENDIMENSIAN BATANG V. PENDIMENSIAN BATANG A. Batang Tarik Batang yang mendukung gaya aksial tarik perlu diperhitungkan terhadap perlemahan (pengurangan luas penampang batang akibat alat sambung yang digunakan). Luas penampang

Lebih terperinci

DAFTAR NOTASI. xxvii. A cp

DAFTAR NOTASI. xxvii. A cp A cp Ag An Atp Al Ao Aoh As As At Av b bo bw C C m Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas bruto penampang (mm²) = Luas bersih penampang (mm²) = Luas penampang

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN III.1 Metodologi Umum Secara garis besar metode penyelesaian tugas akhir ini tergambar dalam flow chart dibawah ini: Mulai Analisa 1.1 Analisa 1.2 Analisa 1.3 Mengumpulkan

Lebih terperinci

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc PERENCANAAN SAMBUNGAN KAKU BALOK KOLOM TIPE END PLATE MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI 03 1729 2002) MENGGUNAKAN MICROSOFT EXCEL 2002 Henny Uliani NRP : 0021044 Pembimbing

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur BAB III METODOLOGI PERANCANGAN 3.1 Bagan Alir Perancangan Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur sistematika perancangan struktur Kubah, yaitu dengan cara sebagai berikut: START

Lebih terperinci

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Baut.

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Baut. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303 SKS : 3 SKS Sambungan Baut Pertemuan 6, 7 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG

PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG BANK MANDIRI JL. NGESREP TIMUR V / 98 SEMARANG Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Fakultas

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata (S-1) Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Katolik

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

BAB III LANDASAN TEORI. A. Pembebanan

BAB III LANDASAN TEORI. A. Pembebanan BAB III LANDASAN TEORI A. Pembebanan Dalam perancangan suatu struktur bangunan harus memenuhi peraturanperaturan yang berlaku sehingga diperoleh suatu struktur bangunan yang aman secara konstruksi. Struktur

Lebih terperinci

LAMPIRAN 1 PRELIMINARY DESAIN

LAMPIRAN 1 PRELIMINARY DESAIN LAMPIRAN 1 PRELIMINARY DESAIN L1.1 Preliminary Pelat Lantai. - Kombinasi Pembebanan - q ult1 = 1,4 q DL = 1,4 (104) = 145,6 kg/m 2 - q ult2 = 1,2 q DL + 1,6q LL = 1,2 (104) +1,6(400) = 764,8 kg/m 2 Digunakan

Lebih terperinci

BAB IV ANALISA DAN HASIL PERANCANGAN. TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja.

BAB IV ANALISA DAN HASIL PERANCANGAN. TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja. BAB IV ANALISA DAN HASIL PERANCANGAN 41 PENDAHULUAN Bab IV ini menjelaskan mengenai Perancangan dan Perhitungan Hanggar TPA Rawa Kucing Kota Tangerang dengan menggunakan profil baja Untuk mempermudah proses

Lebih terperinci

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450 PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI 03-1726-2002 DAN FEMA 450 Calvein Haryanto NRP : 0621054 Pembimbing : Yosafat Aji Pranata, S.T.,M.T. JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

Materi Pembelajaran : 10. WORKSHOP/PELATIHAN II PERENCANAAN DAN EVALUASI STRUKTUR.

Materi Pembelajaran : 10. WORKSHOP/PELATIHAN II PERENCANAAN DAN EVALUASI STRUKTUR. STRUKTUR BAJA 1 MODUL 3 S e s i 3 Batang Tarik (Tension Member) Dosen Pengasuh : Materi Pembelajaran : 10. WORKSHOP/PELATIHAN II PERENCANAAN DAN EVALUASI STRUKTUR. Tujuan Pembelajaran : Mahasiswa dapat

Lebih terperinci

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

PRESENTASI TUGAS AKHIR PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PRESENTASI TUGAS AKHIR oleh : PROGRAM STUDI D III TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 LATAR BELAKANG SMA Negeri 17 Surabaya merupakan salah

Lebih terperinci

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka: BAB VIII SAMBUNGAN MOMEN DENGAN PAKU KELING/ BAUT Momen luar M diimbangi oleh

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG DEWAN KERAJINAN NASIONAL DAERAH (DEKRANASDA) JL. KOLONEL SUGIONO JEPARA Merupakan Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan

Lebih terperinci

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi DAFTAR NOTASI A cp = Luas yang dibatasi oleh keliling luar penampang beton, mm 2 Ag = Luas bruto penampang (mm 2 ) An = Luas bersih penampang (mm 2 ) Atp = Luas penampang tiang pancang (mm 2 ) Al = Luas

Lebih terperinci

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA

PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA 25 PERENCANAAN PEMBANGUNAN GEDUNG PARKIR UNISMA BEKASI DENGAN MENGGUNAKAN STRUKTUR BAJA Nana Suryana 1), Eko Darma 2), Fajar Prihesnanto 3) 1,2,3) Teknik Sipil Universitas Islam 45 Bekasi Jl. Cut Mutia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi DAFTAR SIMBOL a tinggi balok tegangan persegi ekuivalen pada diagram tegangan suatu penampang beton bertulang A b luas penampang bruto A c luas penampang beton yang menahan penyaluran geser A cp luasan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Perhitungan Struktur Perhitungan struktur meliputi perencanaan atap, pelat, balok, kolom dan pondasi. Perhitungan gaya dalam menggunakan bantuan program SAP 2000 versi 14.

Lebih terperinci

STRUKTUR BAJA 2 TKS 1514 / 3 SKS

STRUKTUR BAJA 2 TKS 1514 / 3 SKS STRUKTUR BAJA 2 TKS 1514 / 3 SKS MODUL 1 TEKUK TORSI LATERAL Panjang elemen balok tanpa dukungan lateral dapat mengalami tekuk torsi lateral akibat beban lentur yang terjadi (momen lentur). Tekuk Torsi

Lebih terperinci

BAB III METODOLOGI PERANCANGAN. Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi

BAB III METODOLOGI PERANCANGAN. Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi BAB III METODOLOGI PERANCANGAN 3.1. Umum Permasalahan utama yang dihadapi dalam perencanaan gedung bertingkat tinggi adalah masalah kekakuan dari struktur. Pada prinsipnya desain bangunan gedung bertingkat

Lebih terperinci

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member)

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member) STRUKTUR BAJA 1 MODUL 3 S e s i 1 Batang Tarik (Tension Member) Dosen Pengasuh : Materi Pembelajaran : 1. Elemen Batang Tarik.. 2. Kekuatan Tarik Nominal Metode LRFD. Kondisi Leleh. Kondisi fraktur/putus.

Lebih terperinci

NAMA ANGGOTA KELOMPOK 1:

NAMA ANGGOTA KELOMPOK 1: MATERI TUGAS : SAMBUNGAN BAUT PADA KONSTRUKSI BAJA OLEH NAMA ANGGOTA : RIZAL FEBRI K. (0 643 00) ESMU PRAMONO (0 643 002) RISKA M.( 0 643 003) FAJRI TRIADI (0 643 004) SANDI H.S.A.P (0 643 005) GUSTI DENI

Lebih terperinci

Kata Kunci : Tegangan batang tarik, Beban kritis terhadap batang tekan

Kata Kunci : Tegangan batang tarik, Beban kritis terhadap batang tekan ANALISIS BAJA RINGAN SEBAGAI BAHAN KONSTRKSI ATAP PADA PEMBANGUNAN RUMAH DINAS BANK INDONESIA PALANGKA RAYA AFRIJONI, ST Alumni Mahasiswa Program Studi Teknik Sipil Universitas Muhammadiyah Palangka Raya

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Metode Desain LRFD dengan Analisis Elastis o Kuat rencana setiap komponen struktur tidak boleh kurang dari kekuatan yang dibutuhkan yang ditentukan berdasarkan kombinasi pembebanan

Lebih terperinci

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Setrata I (S-1) Disusun oleh : NAMA : WAHYUDIN NIM : 41111110031

Lebih terperinci

DAFTAR PUSTAKA. Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat

DAFTAR PUSTAKA. Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat DAFTAR PUSTAKA Analisis Harga Satuan Pekerjaan Kota Bandung. Dinas Tata Kota Propinsi Jawa Barat. 2004. Catatan Kuliah Konstruksi Kayu Dr. Ir Saptahari Soegiri, MP. Catatan Kuliah Manajemen Konstruksi

Lebih terperinci

BAB IV PERMODELAN DAN ANALISIS STRUKTUR

BAB IV PERMODELAN DAN ANALISIS STRUKTUR BAB IV PERMODELAN DAN ANALISIS STRUKTUR 4.1 Permodelan Elemen Struktur Di dalam tugas akhir ini permodelan struktur dilakukan dalam 2 model yaitu model untuk pengecekan kondisi eksisting di lapangan dan

Lebih terperinci

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun.

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun. SAMBUNGAN LAS 13.5.1 Lingkup 13.5.1.1 Umum Pengelasan harus memenuhi standar SII yang berlaku (2441-89, 2442-89, 2443-89, 2444-89, 2445-89, 2446-89, dan 2447-89), atau penggantinya. 13.5.1.2 Jenis las

Lebih terperinci

PERENCANAAN STRUKTUR GEDUNG UKM DUA LANTAI

PERENCANAAN STRUKTUR GEDUNG UKM DUA LANTAI PERENCANAAN STRUKTUR GEDUNG UKM DUA LANTAI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Memperoleh Gelar Ahli Madya Pada Program DIII Teknik Sipil Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas

Lebih terperinci

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Agustus 16 STUDI KOMPARASI PERANCANGAN STRUKTUR GEDUNG BERDASARKAN SNI 3 847 DAN SNI 847 : 13 DENGAN SNI 3 176 1 (Studi Kasus : Apartemen 11 Lantai

Lebih terperinci

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom A cp Acv Ag An Atp Al Ao Aoh As As At Av b bo bw C Cc Cs d DAFTAR NOTASI = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom (mm²) = Luas

Lebih terperinci

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording

Tugas Besar Struktur Bangunan Baja 1. PERENCANAAN ATAP. 1.1 Perhitungan Dimensi Gording 1.1 Perhitungan Dimensi Gording 1. PERENCANAAN ATAP 140 135,84 cm 1,36 m. Direncanakan gording profil WF ukuran 100x50x5x7 A = 11,85 cm 2 tf = 7 mm Zx = 42 cm 2 W = 9,3 kg/m Ix = 187 cm 4 Zy = 4,375 cm

Lebih terperinci

KAJIAN KEKUATAN SAMBUNGAN STRUKTUR PELENGKUNG RANGKA BAJA MENERUS PADA JEMBATAN UTAMA TAYAN PROVINSI KALIMANTAN BARAT

KAJIAN KEKUATAN SAMBUNGAN STRUKTUR PELENGKUNG RANGKA BAJA MENERUS PADA JEMBATAN UTAMA TAYAN PROVINSI KALIMANTAN BARAT KAJIAN KEKUATAN SAMBUNGAN STRUKTUR PELENGKUNG RANGKA BAJA MENERUS PADA JEMBATAN UTAMA TAYAN PROVINSI KALIMANTAN BARAT Riyan Pradana 1)., Elvira 2)., Aryanto 2) Abstrak Jembatan secara umum adalah suatu

Lebih terperinci

Gambar 5.1. Proses perancangan

Gambar 5.1. Proses perancangan 5. PERANCANGAN SAMBUNGAN BAMBU 5.1. Pendahuluan Hasil penelitian tentang sifat fisik dan mekanik bambu yang telah dilakukan, menunjukkan bahwa bambu, khususnya bambu tali, cukup baik untuk digunakan sebagai

Lebih terperinci

6. EVALUASI KEKUATAN KOMPONEN

6. EVALUASI KEKUATAN KOMPONEN 6. EVALUASI KEKUATAN KOMPONEN 6.1. Pendahuluan Pada dasarnya kekuatan komponen merupakan bagian terpenting dalam perencanaan konstruksi rangka batang ruang, karena jika komponen tidak dapat menahan beban

Lebih terperinci