ANALOG TO DIGITAL CONVERTER (ADC) dan Mengerjakan Soal-soal Pada Buku Principles of Measurement Systems SISTEM DAN INSTRUMENTASI PENGUKURAN

dokumen-dokumen yang mirip
ADC ( Analog To Digital Converter Converter konversi analog ke digital ADC (Analog To Digital Convertion) Analog To Digital Converter (ADC)

Gambar 3. 1 Diagram blok system digital

INSTRUMENTASI INDUSTRI (NEKA421)

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER)

$'&$QDORJWR'LJLWDO&RQYHUWLRQ

DAC - ADC Digital to Analog Converter Analog to Digital Converter

Elektronika Lanjut. Sensor Digital. Elektronika Lanjut Missa Lamsani Hal 1

CONVERSION. 1. Analog To Digital Converter 2. Digital To Analog Converter 3. Voltage to Frequency 4. Current To Pneumatic

TUJUAN : Setelah mempelajari bab ini mahasiswa diharapkan mampu : Menjelaskan pengertian dasar dari DAC dan ADC secara prinsip

ADC dan DAC Rudi Susanto

RANGKAIAN DIGITAL TO ANALOG CONVERTER (DAC) DAN ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER

BAB II TEORI DASAR SISTEM C-V METER PENGUKUR KARAKTERISTIK KAPASITANSI-TEGANGAN

Investigasi Terhadap Kemampuan 2 Tipe ADC

FISIKA 1 PENGUKURAN :: BESARAN DAN SATUAN

TEORI ADC (ANALOG TO DIGITAL CONVERTER)

BAB II DASAR TEORI. sebagian besar masalahnya timbul dikarenakan interface sub-part yang berbeda.

Sistem Kontrol Digital

PENGKONDISI SINYAL OLEH : AHMAD AMINUDIN

Materi-3 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

Materi-2 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

BAB III KONSEP DASAR PERANCANGAN

DASAR-DASAR AKUISISI DATA

BAB IV PENGUJIAN ALAT DAN ANALISIS DATA Kalibrasi IDAC sebagai pembangkit tegangan bias

SINYAL DISKRIT. DUM 1 September 2014

APLIKASI ATMEGA 8535 DALAM PEMBUATAN ALAT UKUR BESAR SUDUT (DERAJAT)

ANALISA ADC 0804 dan DAC 0808 MENGGUNAKAN MODUL SISTEM AKUISISI DATA PADA PRAKTIKUM INSTRUMENTASI ELEKTRONIKA

BAB II LANDASAN TEORI

APLIKASI PENGOLAHAN DATA DARI SENSOR-SENSOR DENGAN KELUARAN SINYAL LEMAH

TIN310 - Otomasi Sistem Produksi. h t t p : / / t a u f i q u r r a c h m a n. w e b l o g. e s a u n g g u l. a c. i d

Gambar 1 UVTRON R2868. Gambar 2 Grafik respon UVTRON

ADC (Analog to Digital Converter)

Pengkondisian Sinyal. Rudi Susanto

BAB II LANDASAN TEORI...

BAB III PERANCANGAN SISTEM

PERTEMUAN #4 SENSOR, AKTUATOR & KOMPONEN KENDALI 6623 TAUFIQUR RACHMAN TKT312 OTOMASI SISTEM PRODUKSI

BAB 2 LANDASAN TEORI. yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam

Dalam sistem komunikasi saat ini bila ditinjau dari jenis sinyal pemodulasinya. Modulasi terdiri dari 2 jenis, yaitu:

KONVERTER PERTEMUAN 13. Sasaran Pertemuan 13

DTG2F3. Sistem Komunikasi. Siskom Digital ADC, SOURCE CODING, MULTIPLEXING. By : Dwi Andi Nurmantris

BAB II DASAR TEORI. Sistem pengukur pada umumnya terbentuk atas 3 bagian, yaitu:

ANALOG SIGNAL PROCESSING USING OPERASIONAL AMPLIFIERS

KUIS Matakuliah Mikrokontroler Dosen Pengampu: I Nyoman Kusuma Wardana, M.Sc.

Dasar Sistem Pengukuran

Perancangan Sistim Elektronika Analog

BAB III HARDWARE & SOFTWARE

Control II ( ADC DAC)

BAB II ANALOG SIGNAL CONDITIONING

BAB IV PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB III PERANCANGAN ALAT

Analog to Digital Converter (ADC)

BAB II LANDASAN TEORI

PENGUKURAN DAN INSTRUMENTASI THERMINOLOGY TEMPERATURE / SUHU

BAB IV PENGUKURAN DAN ANALISIS

BAB I PENGENALAN KONSEP DIGITAL

BAB III KEGIATAN PENELITIAN TERAPAN

Sistem Akuisisi Data Suhu Multipoint Dengan Mikrokontroler

Informatika Industri

BAB IV PENGUJIAN DAN ANALISA

ADC-DAC 28 IN-3 IN IN-4 IN IN-5 IN IN-6 ADD-A 5 24 IN-7 ADD-B 6 22 EOC ALE msb ENABLE CLOCK

Pengenalan SCADA. Dasar Sistem Pengukuran

PERTEMUAN 13 KONVERTER

Institut Teknologi Sepuluh Nopember Surabaya. MATERI Sensor dan Tranduser

SCADA dalam Sistem Tenaga Listrik

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

Dasar Sistem Pengukuran

BAB III PERANCANGAN SISTEM

BAB III SISTEM PENGUKURAN ARUS & TEGANGAN AC PADA WATTMETER DIGITAL

PENDETEKSI OTOMATIS ARAH SUMBER CAHAYA MATAHARI PADA SEL SURYA. Ahmad Sholihuddin Universitas Islam Balitar Blitar Jl. Majapahit no 4 Blitar.

Telemetri dan Pengaturan Remote

BAB III PERANCANGAN DAN CARA KERJA SISTEM. Pada bab ini diterangkan tentang langkah dalam merancang cara kerja

BAB III PERANCANGAN ALAT

TRAINER VOLTMETER DIGITAL SEBAGAI MEDIA PEMBELAJARAN TEKNIK DIGITAL SEKUENSIAL PADA KOMPETENSI KEAHLIAN TEKNIK AUDIO VIDEO DI SMK N 2 YOGYAKARTA

Kelebihan pada sinyal sistem digital Signal digital memiliki kelebihan dibanding signal analog; yang meliputi :

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar

Rijal Fadilah. Transmisi & Modulasi

Clamp-Meter Pengukur Arus AC Berbasis Mikrokontroller

BAB 3 PERANCANGAN SISTEM

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

BAB IV PENGUKURAN DAN ANALISA

BAB II DASAR TEORI Suara. Suara adalah sinyal atau gelombang yang merambat dengan frekuensi dan

MATERI PENGOLAHAN SINYAL :

BAB III PERANCANGAN SISTEM

BAB 4 HASIL UJI DAN ANALISA

BAB III PERANCANGAN SISTEM

Instrumentasi Sistem Pengaturan

DASAR PENGUKURAN LISTRIK

BAB IV DATA DAN ANALISA

PENGEMBANGAN SENSOR JARAK GP2Y0A02YK0F UNTUK MEMBUAT ALAT PENGUKUR KETINGGIAN PASANG SURUT (PASUT) AIR LAUT

PERCOBAAN I. ENCODER DAN DECODER PCM (Pulse Code Modulation)

BAB II. PENJELASAN MENGENAI System-on-a-Chip (SoC) C8051F Pengenalan Mikrokontroler

BAB IV PENGUJIAN DAN ANALISA

BAB IV PEMBAHASAN DAN HASIL PENGUJIAN

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

JURNAL Teori dan Aplikasi Fisika Vol. 04, No. 02, Juli Tahun 2016

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM

KARAKTERISASI SENSOR KAPASITIF UNTUK PENENTUAN LEVEL AQUADES (CHARACTERISATION OF CAPACITIVE SENSOR TO IDENTIFY AN AQUADES LEVEL )

OP-01 UNIVERSAL OP AMP

Transkripsi:

ANALOG TO DIGITAL CONVERTER (ADC) dan Mengerjakan Soal-soal Pada Buku Principles of Measurement Systems SISTEM DAN INSTRUMENTASI PENGUKURAN Tugas II Mata Kuliah Sistem dan Instrumentasi Pengukuran TF60 Oleh LINO HUGUN SAPUTRA NIM: 2335309 PROGRAM STUDI TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI BANDUNG September 206

. Pendahuluan Analog to Digital Converters (ADC) adalah sebuah rangkaian elektronik yang berfungsi mengubah sinyal analog (continuous) menjadi sinyal digital (discrete). Sinyal analog merupakan sinyal yang langsung dapat diukur. Sedangkan sinyal digital hanya memiliki dua keadaan, untuk komputer digital merujuk pada status biner yakni 0 dan. ADC diperlukan karena microprocessor hanya dapat menyelesaikan suatu proses kompleks dalam bentuk sinyal digital. Ketika sinyal berada dalam bentuk sinyal digital maka akan lebih mudah untuk menghilangkan noise yang terjadi. ADC berfungsi sebagai penghubung antara dunia analog (tranduser/sensor) dan dunia digital (signal processing and data handling). ADC biasa digunakan hampir disemua tempat dimana sinyal analog diperlukan untuk diproses, disimpan, atau dikirimkan dalam bentuk sinyal digital. Contohnya penggunaan ADC adalah pada voltmeter digital, handphone, termokopel, dan osiloskop digital. Mikrokontroler biasanya menggunakan 8, 0, 2, atau 6 bit ADC. 2. Cara kerja ADC Gambar. ADC process Gambar menunjukan cara kerja dari ADC. Terdapat dua langkah yang dilakukan oleh ADC untuk mengubah sinyal analog menjadi sinyal digital, yakni: a. Sampling dan Holding (S/H) Holding signal berguna untuk menentukan akurasi dari pengubahan sinyal analog menjadi sinyal oleh ADC. Dan sampling rate terendah seharusnya paling tidak dua kali lebih besar disbanding dengan frekuensi tertinggi dari data yang diperoleh oleh sinyal analog. Kecepatan sampling suatu ADC menyatakan seberapa sering sinyal analog dikonversikan ke bentuk sinyal digital pada

selang waktu tertentu. Kecepatan sampling biasanya dinyatakan dalam sample per second (SPS). Gambar 2. Sampling and Holding Resolusi ADC menentukan ketelitian nilai hasil konversi ADC. Sebagai contoh: ADC 8 bit akan memiliki output 8 bit data digital, ini berarti sinyal input dapat dinyatakan dalam 255 (2n ) nilai diskrit. ADC 2 bit memiliki 2 bit output data digital, ini berarti sinyal input dapat dinyatakan dalam 4096 nilai diskrit. Dari contoh diatas ADC 2 bit akan memberikan ketelitian nilai hasil konversi yang jauh lebih baik daripada ADC 8 bit. Resolusi merepresentasikan ketidakpastian dari kuantisasi yang melekat pada perubahan sinyal analog menjadi sinyal digital. Vr = Tegangan referensi V = V r 2 N N = Banyaknya bit data dari sinyal output V = Resolusi b. Quantizing dan Encoding (Q/E) Quantizing berfungsi untuk membagi sinyal referensi (tegangan referensi) kedalam kuantitas / bentuk diskrit, kemudian mengkosresinya agar 2

diperoleh kuantitas yang benar. Encoding berfungsi untuk menentukan kode digital unik berdasarkan kuantitas yang dipilih, kemudian mengalokasikannya kedalam sinyal input. Gambar 3. Quantizing and Encoding Agar hasil konversi sinyal analog menjadi sinyal digital dapat lebih akurat, maka dapat dengan meningkatkan Sampling Rate dan Resolusi yang digunakan. c. Komparator ADC Bentuk komunikasi yang paling mendasar antara wujud digital dan analog adalah piranti (biasanya berupa IC) yang disebut komparator. Piranti ini, yang diperlihatkan secara skematik pada gambar 4, secara sederhana membandingkan dua tegangan pada kedua terminal inputnya. Bergantung pada tegangan mana yang lebih besar, outputnya akan berupa sinyal digital (high) atau 0 (low). Komparator ini digunakan secara luas untuk sinyal alarm ke komputer atau sistem pemroses digital. Elemen ini juga merupakan salah satu bagian dari konverter analog ke digital dan digital ke analog. Gambar 4. Konsep Komparator pada ADC 3

3. Jenis-Jenis ADC a. ADC Simultan ADC Simultan atau biasa disebut flash converter atau parallel converter. Input analog Vi yang akan diubah ke bentuk digital diberikan secara simultan pada sisi + pada komparator tersebut, dan input pada sisi tergantung pada ukuran bit converter. Ketika Vi melebihi tegangan input dari suatu komparator, maka output komparator adalah high dan jika sebaliknya akan memberikan output low. Gambar 5. ADC Simultan Bila Vref diset pada nilai 5 Volt, maka dari gambar 3 dapat didapatkan : V(-) untuk C7 = Vref * (3/4) = 4,64 V(-) untuk C6 = Vref * (/4) = 3,93 V(-) untuk C5 = Vref * (9/4) = 3,2 V(-) untuk C4 = Vref * (7/4) = 2,5 V(-) untuk C3 = Vref * (5/4) =,78 V(-) untuk C2 = Vref * (3/4) =,07 V(-) untuk C = Vref * (/4) = 0,36 4

Misal : Vin diberi sinyal analog 3 Volt, maka output dari C7=0, C6=0, C5=0, C4=, C3=, C2=, C=, sehingga didapatkan output ADC yaitu 00 biner. b. Counter Ramp ADC Gambar 6. Tabel Output ADC Simultan Gambar 7. Blok Diagram Counter Ramp ADC Pada gambar 7 ditunjukkan blok diagram Counter Ramp ADC, didalamnya tedapat DAC yang diberi masukan dari counter, masukan counter dari sumber clock. Dimana sumber clock dikontrol dengan cara meng-andkan dengan keluaran Komparator. Komparator berfungsi membandingkan antara tegangan masukan analog dengan tegangan keluaran DAC, apabila tegangan masukan yang akan dikonversi belum sama dengan tegangan keluaran dari DAC maka keluaran comparator = sehingga Clock dapat memberi masukan counter dan hitungan counter naik. Misal akan dikonversi tegangan analog 2 volt, dengan mengasumsikan counter reset, sehingga keluaran pada DAC juga 0 volt. Apabila konversi dimulai maka counter akan naik dari 0000 ke 000 karena mendapatkan pulsa masuk dari Clock oscillator dimana saat itu keluaran Comparator =, karena 5

mendapatkan kombinasi biner dari counter 000 maka tegangan keluaran DAC naik dan dibandingkan lagi dengan tegangan masukan demikian seterusnya nilai counter naik dan keluaran tegangan DAC juga naik hingga suatu saat tegangan masukan dan tegangan keluaran DAC akan sama yang mengakibatkan keluaran komparator = 0 dan Clock tidak dapat masuk. Nilai counter saat itulah yang merupakan hasil konversi dari analog yang dimasukkan. Kelemahan dari counter tersebut adalah lama, karena harus melakukan trace mulai dari 0000 hingga mencapai tegangan yang sama sehingga butuh waktu. c. SAR (Successive Aproximation Register) ADC Gambar 8. Blok Diagram SAR ADC Pada gambar 8 ditunjukkan diagram ADC jenis SAR, prinsip kerjanya yaitu dengan memakai konvigurasi yang hampir sama dengan counter ramp. Tetapi dalam melakukan trace dengan cara tracking dengan mengeluarkan kombinasi bit MSB = ====> 000 0000. Apabila belum sama (kurang dari tegangan analog input maka bit MSB berikutnya = ===>00 0000 dan apabila tegangan analog input ternyata lebih kecil dari tegangan yang dihasilkan DAC maka langkah berikutnya menurunkan kombinasi bit ====> 000000. Untuk mempermudah pengertian dari metode ini diberikan contoh seperti pada timing diagram gambar 9. Misalkan diberi tegangan analog input sebesar 6,84 volt dan tegangan referensi ADC 0 volt sehingga apabila keluaran tegangan sebagai berikut: Jika D7 = Vout=5 volt 6

Jika D6 = Vout=2,5 volt Jika D5 = Vout=,25 volt Jika D4 = Vout=0,625 volt Jika D3 = Vout=0,325 volt Jika D2 = Vout=0,625 volt Jika D = Vout=0,07825 volt Jika D0 = Vout=0,0390625 volt Gambar 9. Timing Diagram Urutan Trace SAR ADC Setelah diberikan sinyal start maka konversi dimulai dengan memberikan kombinasi 000 0000 ternyata menghasilakan tegangan 5 volt dimana masih kurang dari tegangan input 6,84 volt, kombinasi berubah menjadi 00 0000 sehingga Vout = 7,5 volt dan ternyata lebih besar dari 6,84 sehingga kombinasi menjadi 00 0000 tegangan Vout = 6,25 volt kombinasi naik lagi 0 0000 demikian seterusnya hingga mencapai tegangan 6,8359 volt dan membutuhkan hanya 8 clock. Kajian pustaka http://zonaelektro.net/adc-analog-to-digital-converter/ 7

Tugas mengerjakan soal dari buku Principles of Measurement Systems 8.3 A variable dielectric capacitive displacement sensor consists of two square metal plates of side 5 cm, separated by a gap of mm. A sheet of dielectric material mm thick and of the same area as the plates can be slid between them as shown in Figure 8.9. Given that the dielectric constant of air is and that of the dielectric material 4, calculate the capacitance of the sensor when the input displacement x = 0.0, 2.5 and 5.0 cm. Penyelesaian: Diketahui: s (sisi persegi) = 5 cm, A (luas persegi) = 25 x 0-4 m 2, d (jarak antar lempeng) = mm = 0-3 m, εo= 8.85 pf m -, ε udara=, ε material=4. Tanya: Kapasitansi terukur ketika terjadi perpindahan x = 0.0, 2.5, dan 5.0 cm? Jawab: Persamaan yang digunakan untuk mencari kapasitansi dari pelat sejajar adalah sebagai berikut: Sehingga, a. Ketika x = 0.0 m C = C = εo ε A d + x εo ε A d + x = 8.85 0 2 4 25 0 4 0 3 + 0.0 b. Ketika x = 2.5 x 0-2 m C = = 8.85 0 F εo ε A d + x = 8.85 0 2 4 25 0 4 0 3 + 0.25 0 3 = 3.540 0 2 F c. Ketika x = 5.0 x 0-2 m C = εo ε A d + x = 8.85 0 2 4 25 0 4 0 3 + 0.5 0 3 =.77 0 2 F 8

8.7 An iron v. constantan thermocouple is to be used to measure temperatures between 0 and 300 C. The e.m.f. values are as given in Table 8.2. a. Find the non-linearity at 00 C and 200 C as a percentage of full scale. b. Between 00 C and 300 C the thermocouple e.m.f. is given by ET,0 = at + a2t 2. Calculate a and a2. c. The e.m.f. is 2 500 µv relative to a reference junction of 20 C and the corresponding reference junction circuit voltage is 000 µv. Use the result of (b) to estimate the measured junction temperature. Penyelesaian: Diketahui: Termokopel iron v. konstantan digunakan untuk mengukur temperatur antara 0 sampai 300 ⁰C. Nilai dari e.m.f. seperti diberikan pada Tabel 8.2. Tanya: a. Cari non-linearitas pengukuran pada temperatur 00 ⁰C dan 200 ⁰C sebagai presentase dari skala penuh. b. Nilai e.m.f. dari termokopel saat melakukan pengukuran temperatur antara 00 ⁰C dan 300 ⁰C diberikan oleh persamaan ET,0 = at + a2t 2. Cari nilai a dan a2. c. Nilai e.m.f. dari suatu pengukuran adalah 2 500 µv relative terhadap junction referensi dengan temperatur 20 ⁰C dan bersamaan dengan junction lainnya memiliki nilai e.m.f. sebesar 000 µv. gunakan hasil perhitungan b. untuk mencari temperatur hasil pengukuran yang dilakukan. Jawab: a. Mencari non-liniearitas pada suhu 00 ⁰C dan 200 ⁰C. 9

Temperatur ( o C) Grafik Hubungan antara e.m.f. dan Temperatur 600 500 400 300 200 00 0 y = 0.08x + 4.9325 0 0000 20000 30000 e.m.f. (µv) Series Linear (Series) Pada suhu 00 ⁰C, besarnya non linearitas yakni: Sehingga, 6327 300 5269 5442.3 6327 00 = 5442.3 μv 00% =.07% Pada suhu 200 ⁰C, besarnya non linearitas yakni: Sehingga, 6327 300 0779 0884.66 6327 200 = 0884.66 μv 00% = 0.65% b. Persamaan yang diketahui adalah ET,0 = at + a2t 2. Sehingga: Saat T = 00 ⁰C, E 00,0 = a (00) + a 2 (00 2 ) 5269 = a (00) + a 2 (00 2 ) 5269 = 0 2 a + 0 4 a 2 Saat T = 300 ⁰C, E 300,0 = a (300) + a 2 (300 2 ) 6327 = a (300) + a 2 (300 2 ) 6327 = 3 0 2 a + 9 0 4 a 2 0

Dari kedua hasil diatas, maka: 3 0 2 a + 9 0 4 a 2 = 6327 3 0 2 a + 3 0 4 a 2 = 5807 6 0 4 a 2 = 520 a 2 = 8.67 0 3 9 0 2 a + 9 0 4 a 2 = 4742 3 0 2 a + 9 0 4 a 2 = 6327 6 0 4 a = 3094 a = 5.8 Sehingga, persamaan yang diperoleh adalah ET,0 = 5.8 T + (8.67 0-3 )T 2 c. Dengan menggunakan persamaan yang diperoleh pada jawaban b, maka: E T,0 = 5.8 T + (8.67 0 3 ) T 2 E T,T 2 = 5.8 (T T 2 ) + (8.67 0 3 ) (T T 2 ) 2 E T E T2 = 5.8 (T T 2 ) + (8.67 0 3 ) (T T 2 ) 2 2500 000 = 5.8 (T 20) + (8.67 0 3 ) (T 20) 2 500 = 5.8 T 036.46 + (8.67 0 3 )(T 2 40 T + 400) 5.8 T 036.46 + 8.67 0 3 T 2 0.3468 T + 3.468 = 500 8.67 0 3 T 2 + 5.4762 T 032.992 = 500 8.67 0 3 T 2 + 5.4762 T 2532.992 = 0 Sehingga kemungkinan nilai temperatur terukur adalah: x,2 = b ± b2 4ac 2a x,2 = 5.4762 ± 5.47622 4 8.67 0 3 ( 2532.992) 2 8.67 0 3 x,2 = 5.4762 ± 2649.799 + 434.644 7.34 0 3 x,2 = 5.4762 ± 55.5377 7.34 0 3

5.4762 + 55.5377 x = 7.34 0 3 = 234.2 5.4762 55.5377 x 2 = 7.34 0 3 = 67.5 Sehingga hasil pengukuran yang paling mungkin diperoleh adalah 234.2. 8. A piezoelectric crystal, acting as a force sensor, is connected by a short cable of negligible capacitance and resistance to a voltage detector of infinite bandwidth and purely resistive impedance of 0 MΩ. a. Use the crystal data below to calculate the system transfer function and to sketch the approximate frequency response characteristics of the system. b. The time variation in the thrust of an engine is a square wave of period 0 ms. Explain carefully, but without performing detailed calculations, why the above system is unsuitable for this application. c. A charge amplifier with feedback capacitance CF = 000 pf and feedback resistance RF = 00 MΩ is incorporated into the system. By sketching the frequency response characteristics of the modified system, explain why it is suitable for the application of part (b). Penyelesaian: Diketahui: Stiffness k of the crystal is large, typically 2 x 0 9 N m - Jawab: a. System transfer function dapat dicari menggunakan persamaan: Sedangkan, x F (s) = k ω 2 s2 + 2ξ n ω s + n ω n = 2πf n 2

Sehingga, ω n = 2 3.4 37 0 3 ω n = 2.32 0 5 Hz x F (s) = 2 0 9 (2.32 0 5 ) 2 s2 + 2 0.0 2.32 0 5 s + x F (s) = 2 0 9 (2.32 0 5 ) 2 s2 + 2 09 (2 0.0) 2.32 0 5 s + 2 0 9 x F (s) = 0.037 s 2 + 0.07 0 4 s + 2 0 9 9.8 The capacitance level transducer of Section 8.2 and Figure 8.9 is to be used to measure the depth h of liquid in a tank between 0 and 7 m. The total length l of the transducer is 8 m and the ratio b/a of the diameters of the concentric cylinders is 2.0. The dielectric constant ε of the liquid is 2.4 and the permittivity of free space ε is 8.85pF m. The transducer is incorporated into the deflection bridge of Figure 9.5(a) with R2 = 00 Ω, R3 = 0 kω and Äs = 5V. a. Calculate the value of C0 so that the amplitude ÊTh is zero when the tank is empty. b. Using this value of C0 calculate ÊTh at maximum level. c. Explain why the relationship between ÊTh and h is non-linear and calculate the Penyelesaian: non- linearity at h = 3.5m as a percentage of full-scale deflection. Diketahui: 3

h (kedalaman air) = 0 sampai 7 m l (panjang tranduser) = 8 m b/a (rasio dari diameter silinder) = 2.0 ε cairan=2.4 εo= 8.85 pf m - Tranduser terhubung dengan rangkaian deflection bridge: Tanya: Jawab: R2 = 00 Ω, R3 = 0 kω, Vs = 5 V. a. Cari nilai C0 sehingga amplitude ETh bernilai 0 saat tangki kosong. b. Dengan menggunakan nilai C0 tersebut, cari nilai ETh saat tangki pada level maksimum. c. Jelaskan, mengapa hubungan antara ETh dan h adalah non-linier, dan cari nilai dari non-linearitas saat h = 3.5 m sebagai presentase dari defleksi terhadap skala penuh. a. Untuk mengetahui nilai C0 sehingga ETh bernilai 0, maka harus diketahui nilai dari Ch MIN karena: Dengan, C 0 = C hmin (R 3 R 2 ) Maka, C hmin = 2πε 0 log e ( b a) [l + (ε )h MIN] 4

C hmin = 2 3.4 8.85 0 2 [8 + (2.4 )0] log e (2) 444.624 0 2 C hmin = = 6.42 0 0 F 0.693 Sehingga, C 0 = C hmin (R 3 R 2 ) C 0 = 6.42 0 0 (0000 00) C 0 = 6.42 0 8 F b. Dengan menggunakan nilai C0 cari nilai ETh pada saat level maksimum. Persamaan untuk mencari nilai ETh yakni: E Th = V s [ + C 0 ChMAX + R 3 R2 ] Dari persamaan tersebut, maka harus dicari nilai dari ChMAX terlebih dahulu: C hmax = C hmax = 2πε 0 log e ( b a) [l + (ε )h Max] 2 3.4 8.85 0 2 [8 + (2.4 )7] log e (2) C hmax = 55.578 0 2 7.8 0.693 Sehingga, =.43 0 9 F E Th = V s [ + C 0 ChMAX + R 3 R2 ] E Th = 5 [ + 6.42 0 8.43 0 9 + 0000 00 ] 5

E Th = 5 [ 45.94 0 ] E Th = 5[0.02 0.0] E Th = 0.5 volt c. Mencari nilai ETh saat h = 3.5 m E Th = V s [ + C 0 Ch + R 3 R2 Dari persamaan tersebut, maka harus dicari nilai dari Ch terlebih dahulu: ] C h = C h = 2πε 0 log e ( b [l + (ε )h] a) 2 3.4 8.85 0 2 [8 + (2.4 )3.5] log e (2) C h = 55.578 0 2 2.9 0.693 Sehingga, =.03 0 9 F E Th = V s [ + C 0 Ch + R 3 R2 ] E Th = 5 [ + 6.42 0 8.03 0 9 E Th = 5 [ 63.33 0 ] E Th = 5[0.06 0.0] E Th = 0.09 volt + 0000 00 Pada h = 3.5 m, besarnya non linearitas yakni: ] 6

Sehingga, 0.5 7 0.075 0.09 7 3.5 m = 0.075 volt 00% = 0.2% 7