PERBANDINGAN NILAI KOORDINAT DAN ELEVASI ANTAR MODEL STEREO PADA FOTO UDARA HASIL TRIANGULASI UDARA

dokumen-dokumen yang mirip
Jurnal Geodesi Undip Oktober 2016

PEMBUATAN MODEL ORTOFOTO HASIL PERKAMAN DENGAN WAHANA UAV MENGGUNAKAN PERANGKAT LUNAK FOTOGRAMETRI

ANALISIS PARAMETER ORIENTASI LUAR PADA KAMERA NON-METRIK DENGAN MEMANFAATKAN SISTEM RTK-GPS

Metode Titik Kontrol Horisontal 3.1. Metode Survei Klasik Gambar. Jaring Triangulasi

PEMBUATAN MODEL ELEVASI DIGITAL DARI STEREOPLOTTING INTERAKTIF FOTO UDARA FORMAT SEDANG DENGAN KAMERA DIGICAM

PEMBUATAN MODEL ELEVASI DIGITAL DARI STEREOPLOTTING INTERAKTIF FOTO UDARA FORMAT SEDANG DENGAN KAMERA DIGICAM

APLIKASI CLOSE RANGE PHOTOGRAMMETRY UNTUK PERHITUNGAN VOLUME OBJEK

3.3.2 Perencanaan Jalur Terbang Perencanaan Pemotretan Condong Perencanaan Penerbangan Tahap Akuisisi Data...

METODE KALIBRASI IN-FLIGHT KAMERA DIGITAL NON-METRIK UNTUK KEPERLUAN CLOSE- RANGE PHOTOGRAMMETRY

MAPPING THE OUTERMOST SMALL ISLANDS UTILIZING UAV- BASED AERIAL PHOTOGRAPHY OUTLINE

REVIEW HASIL CEK LAPANGAN PEMETAAN RUPABUMI INDONESIA (RBI) SKALA 1:25

Analisis Ketelitian Geometric Citra Pleiades 1A untuk Pembuatan Peta Dasar Lahan Pertanian (Studi Kasus: Kecamatan Socah, Kabupaten Bangkalan)

Pemetaan Foto Udara Menggunakan Wahana Fix Wing UAV (Studi Kasus: Kampus ITS, Sukolilo)

PENGGUNAAN FOTO UDARA FORMAT KECIL MENGGUNAKAN WAHANA UDARA NIR-AWAK DALAM PEMETAAN SKALA BESAR

ANALISIS PARAMETER ORIENTASI LUAR PADA KAMERA NON- METRIK DENGAN MEMANFAATKAN SISTEM RTK-GPS

BAB III PELAKSANAAN PENELITIAN

Analisis Ketelitian Objek pada Peta Citra Quickbird RS 0,68 m dan Ikonos RS 1,0 m

Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya)

Membandingkan Hasil Pengukuran Beda Tinggi dari Hasil Survei GPS dan Sipat Datar

EKSTRAKSI GARIS PANTAI MENGGUNAKAN HYPSOGRAPHY TOOLS

PENDAHULUAN I.1. Latar Belakang

Pengaruh Penambahan Jumlah Titik Ikat Terhadap Peningkatan Ketelitian Posisi Titik pada Survei GPS

PEMBUATAN PETA ORTOFOTO DENGAN UAV UNTUK RENCANA PENYUSUNAN PETA DESA

II.1. Persiapan II.1.1. Lokasi Penelitian II.1.2. Persiapan Peralatan Penelitian II.1.3. Bahan Penelitian II.1.4.

Analisa Ketelitian Geometric Citra Pleiades Sebagai Penunjang Peta Dasar RDTR (Studi Kasus: Wilayah Kabupaten Bangkalan, Jawa Timur)

BAB III IMPLEMENTASI METODE CRP UNTUK PEMETAAN

PENGARUH JUMLAH DAN SEBARAN GCP PADA PROSES REKTIFIKASI CITRA WORLDVIEW II

Oghy Octori 1, Agung Budi Cahyono 1 1 Jurusan Teknik Geomatika FTSP Institut Teknologi Sepuluh Nopember

KAJIAN KETELITIAN KOREKSI GEOMETRIK DATA SPOT-4 NADIR LEVEL 2 A STUDI KASUS: NUSA TENGGARA TIMUR

BAB 3 PEMBAHASAN START DATA KALIBRASI PENGUKURAN OFFSET GPS- KAMERA DATA OFFSET GPS- KAMERA PEMOTRETAN DATA FOTO TANPA GPS FINISH

BAB I PENDAHULUAN I.1. Latar Belakang

PENGGUNAAN CITRA SATELIT RESOLUSI TINGGI UNTUK PEMBUATAN PETA DASAR SKALA 1:5.000 KECAMATAN NGADIROJO, KABUPATEN PACITAN

BAB I PENDAHULUAN I.1. Latar Belakang

Analisa Ketelitian Planimetris Citra Quickbird Guna Menunjang Kegiatan Administrasi Pertanahan (Studi Kasus: Kabupaten Gresik, 7 Desa Prona)

Jurnal Geodesi Undip Oktober 2016

BAB I PENDAHULUAN I.1. Latar Belakang

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

BAB I PENDAHULUAN. Latar belakang

BAB III METODE PENELITIAN

PENGEMBANGAN KAMERA NON-METRIK UNTUK KEPERLUAN PEMODELAN BANGUNAN

ANALISIS KETINGGIAN MODEL PERMUKAAN DIGITAL PADA DATA LiDAR (LIGHT DETECTION AND RANGING) (Studi Kasus: Sei Mangkei, Sumatera Utara)

Pencocokan Citra Terkoreksi Histogram Ekualisasi TUGAS AKHIR. Rivai Nursetyo NIM

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1.

Analisa Kalibrasi Kamera Sony Exmor Pada Nilai Orientasi Parameter Interior untuk Keperluan Pemetaan (FUFK)

BADAN INFORMASI GEOSPASIAL PUSAT PEMETAAN RUPABUMI DAN TOPONIM JL. Raya Bogor KM. 46, Cibinong Bogor 16911, Indonesia Telp/Fax.

UJI KETELITIAN HASIL REKTIFIKASI CITRA QUICKBIRD DENGAN PERANGKAT LUNAK GLOBAL MAPPER akurasi yang tinggi serta memiliki saluran

STUDI ANALISIS KETELITIAN GEOMETRIK HORIZONTAL CITRA SATELIT RESOLUSI TINGGI SEBAGAI PETA DASAR RDTR PESISIR (STUDI KASUS: KECAMATAN BULAK, SURABAYA)

ACARA IV KOREKSI GEOMETRIK

ORTHOREKTIFIKASI CITRA RESOLUSI TINGGI UNTUK KEPERLUAN PEMETAAN RENCANA DETAIL TATA RUANG Studi Kasus Kabupaten Nagekeo, Provinsi Nusa Tenggara Timur

PEMANFAATAN FOTOGRAMETRI RENTANG DEKAT DALAM BIDANG ARSITEKTUR LANSEKAP (STUDI KASUS : CAMPUS CENTER INSTITUT TEKNOLOGI BANDUNG)

Jurnal Geodesi Undip Januari 2017

BAB III METODOLOGI PENELITIAN

I. BAB I PENDAHULUAN

BAB I PENDAHULUAN I.1.

9. PEMOTRETAN UDARA. Universitas Gadjah Mada

BAB 4 ANALISIS. Tabel 4.1 Offset GPS-Kamera dalam Sistem Koordinat Kamera

Analisis Pengaruh Sebaran Ground Control Point terhadap Ketelitian Objek pada Peta Citra Hasil Ortorektifikasi

PENGEMBANGAN MODEL KOREKSI GEOMETRI ORTHO LANDSAT UNTUK PEMETAAN PENUTUP LAHAN WILAYAH INDONESIA

LAPORAN PRAKTIKUM PENGINDERAAN JAUH REGISTRASI DAN REKTIFIKASI DENGAN MENGGUNAKAN SOFTWARE ENVI. Oleh:

Pemetaan Eksterior Gedung 3 Dimensi (3D) Menggunakan Electronic Total Station (ETS)

PENGAMBILAN DATA 2,5D UNTUK VISUALISASI KOTA 3D

APLIKASI CLOSE RANGE PHOTOGRAMMETRY DALAM PEMETAAN BANGUN REKAYASA DENGAN KAMERA DIJITAL NON METRIK TERKALIBRASI. Oleh:

BAB I PENDAHULUAN I-1

Analisa Data Foto Udara untuk DEM dengan Metode TIN, IDW, dan Kriging

BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI

Perbandingan Hasil Pengolahan Data GPS Menggunakan Hitung Perataan Secara Simultan dan Secara Bertahap

Mekanisme Persetujuan Peta untuk RDTR. Isfandiar M. Baihaqi Diastarini Pusat Pemetaan Tata Ruang dan Atlas Badan Informasi Geospasial

ANALISA PENENTUAN POSISI HORISONTAL DI LAUT DENGAN MAPSOUNDER DAN AQUAMAP

Defry Mulia

Bab I Pendahuluan. I.1 Latar Belakang

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

PEMBENTUKAN MODEL DAN PARAMETER UNTUK ESTIMASI KELAPA SAWIT MENGGUNAKAN DATA LIGHT DETECTION AND RANGING

APLIKASI UAV (UNMANNED AERIAL VEHICLE) UNTUK MENDUKUNG PEMANTAUAN TATA RUANG

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA,

BAB II DASAR TEORI. Tabel 2.1 Jenis Peta menurut Skala. Secara umum, dasar pembuatan peta dapat dinyatakan seperti Gambar 2.1

BAB I PENDAHULUAN Latar Belakang

BAB 3 LIDAR DAN PENDETEKSIAN POHON

KAJIAN TERHADAP PENYATUAN PETA-PETA BLOK PAJAK BUMI DAN BANGUNAN DALAM SATU SISTEM KOORDINAT KARTESIAN DUA DIMENSI DENGAN MENGGUNAKAN CITRA QUICKBIRD

Jurnal Konstruksi ISSN : UNSWAGATI CIREBON JURNAL KONSTRUKSI. Kajian Penentuan Luas Bangunan dari Orthofoto untuk Keperluan Kadaster Fiskal

& Kota TUGAS AKHIR. Oleh Wahyu Prabowo

SISTEM PENGENALAN PENGUCAPAN HURUF VOKAL DENGAN METODA PENGUKURAN SUDUT BIBIR PADA CITRA 2 DIMENSI ABSTRAK

SIDANG TUGAS AKHIR RG

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang

SURVEYING (CIV-104) PERTEMUAN : PENGUKURAN DENGAN TOTAL STATION

KAJIAN PROSEDUR PEMBUATAN AUTOMATIC DEM (DIGITAL ELEVATION MODEL) MENGGUNAKAN CITRA SATELIT PLEIADES (STUDI KASUS KOTA BANDUNG JAWA BARAT)

BAB II DASAR TEORI 2. 1 Fotogrametri

Perbandingan Penentuan Volume Suatu Obyek Menggunakan Metode Close Range Photogrammetry Dengan Kamera Non Metrik Terkalibrasi Dan Pemetaan Teristris

PEMANFAATAN FOTO UDARA UAV UNTUK PEMODELAN BANGUNAN 3D DENGAN METODE OTOMATIS

Visualisasi 3D Objek Menggunakan Teknik Fotogrametri Jarak Dekat

LAPORAN PRAKTIKUM MATA KULIAH PENGOLAHAN CITRA DIGITAL

Mekanisme Penyelenggaraan Citra Satelit Tegak Resolusi Tinggi Sesuai Inpres Nomor 6 Tahun 2012

C I N I A. Survei dan Pemetaan Untuk Perencanaan Jaringan Gas Bumi Bagi Rumah Tangga Menggunakan Metode Terrestrial dan Fotogrametri Jarak Dekat

EVALUASI PEMETAAN JALAN RAYA DENGAN VIDEO KAMERA STEREO

BAB IV ANALISIS. Ditorsi radial jarak radial (r)

METODOLOGI. Gambar 4. Peta Lokasi Penelitian

BAB 2 DASAR TEORI. 2.1 Tinjauan Umum Teknologi Pemetaan Tiga Dimensi

Pengaruh Koneksitas Jaring Terhadap Ketelitian Posisi Pada Survei GPS

TEKNOLOGI RIMS (RAPID IMAGING AND MAPPING SYSTEMS)

Transkripsi:

Perbandingan Nilai Koordinat dan Elevasi Antar Model pada Foto Udara Hasil Triangulasi Udara... (Susetyo & Gularso) PERBANDINGAN NILAI KOORDINAT DAN ELEVASI ANTAR MODEL STEREO PADA FOTO UDARA HASIL TRIANGULASI UDARA (Comparison of Coordinate And Elevation Value Between Stereo Models on Aerial Photo of Aerial Triangulation Result) Danang Budi Susetyo & Herjuno Gularso Badan Informasi Geospasial Jl. Raya Jakarta-Bogor Km 46 Cibinong, Jawa Barat 16911 E-mail: danang.budi@big.go.id ABSTRAK Triangulasi udara (Aerial Triangulation/AT) merupakan tahap penting dalam akuisisi foto udara. Hasil pemrosesan AT akan berpengaruh terhadap ketelitian foto udara yang dihasilkan, sehingga menentukan kualitas geometrik peta yang menggunakan foto udara tersebut sebagai data dasar. Kualitas hasil AT ditentukan dengan hasil statistik perataan dan membandingkan nilai Independent Check Point (ICP) yang diukur menggunakan GPS Geodetik dengan nilai titik yang sama pada model stereo di foto yang sudah dilakukan AT. Namun meski sudah memenuhi standar ketelitian, terdapat beberapa kasus dimana pada lokasi yang sama di model yang berbeda memiliki nilai ketinggian (Z) yang berbeda. Hal ini tentunya akan menjadi masalah, terutama ketika selisihnya di atas toleransi ketelitian yang ditentukan. Penelitian ini menguji nilai koordinat dan elevasi pada beberapa lokasi yang tercakup dalam dua model. Objek yang dipilih adalah objek-objek yang tegas dan mudah diinterpretasi di foto seperti siku lapangan atau bangunan, dengan jumlah objek sejumlah 15 titik. Penelitian dilakukan dengan data foto udara Palu yang diakuisisi pada tahun 2013. Hasil AT menunjukkan sigma naught = 1,9 mikron dengan uji akurasi menghasilkan ketelitian horizontal (CE90) = 0,786 m dan ketelitian vertikal (LE90) = 1,782 m, dimana CE90 dan LE90 didapatkan dari membandingkan koordinat ICP hasil pengukuran GPS dan di model stereo. Dengan hasil AT tersebut, objek-objek yang diuji memiliki rata-rata ΔX = 0,174 m, ΔY = 0,288 m, dan ΔZ = 0,278 m, dimana angka tersebut didapatkan dengan membandingkan pengecekan titik pada objek yang sama di dua model stereo yang berbeda. Kata kunci: foto udara, triangulasi udara, koordinat, elevasi, model ABSTRACT Aerial triangulation (AT) is an important step in aerial photo acquisition. AT result will affect the accuracy of resulting aerial photo, so it decides geometric accuracy of the map that uses that aerial photo as base data. The quality of AT result decided by bundle adjustment result and comparing Independent Check Point (ICP) value that measured using Geodetic GPS with same point value on the stereo model in aerial photo from AT process. But although it meets the accuracy standard, there are some cases where there is the difference in elevation value (Z) in the same location but located in a different model. It can be a problem, especially when the deviation above the specified tolerance of accuracy. This research examines coordinate and elevation value in some locations that covered in two models. The selected objects are clear and easy to interpret objects, such as field or building corner, and we choose 15 points as sample. Data used is aerial photo located in Palu that acquired in 2013. AT result shows sigma naught = 1,9 micron and test accuracy produce horizontal accuracy (CE90) = 0,786 m and vertical accuracy (LE90) = 1,782 m, where CE90 and LE90 obtained from comparing the coordinate ICP from GPS measurement and in the stereo model. From that result, objects being test has average ΔX = 0,174 m, ΔY = 0,288 m, and ΔZ = 0,278 m, where the number is obtained by comparing the check points on the same object in two different stereo models. Keywords: aerial photo, aerial triangulation, coordinate, elevation, model PENDAHULUAN Triangulasi udara (Aerial Triangulation/ AT) merupakan tahap penting dalam akuisisi foto udara. AT merupakan istilah fotogrametri untuk menentukan koordinat tanah X, Y, dan Z dari setiap titik berdasarkan pengukuran yang diambil dari foto yang saling bertampalan (Zomrawi et 541

Seminar Nasional Geomatika 2017: Inovasi Teknologi Penyediaan Informasi Geospasial untuk Pembangunan Berkelanjutan al., 2013). Hasil pemrosesan AT akan berpengaruh terhadap ketelitian foto udara yang dihasilkan, sehingga menentukan kualitas geometrik peta yang menggunakan foto udara tersebut sebagai data dasar. Berdasarkan grafik yang dibuat oleh Schenk (1997) (Gambar 1), AT analitik dimulai pada tahun 1970-an, dan seiring dengan perkembangan GPS dan teknologi komputer, AT digital mulai berkembang pada akhir tahun 1990-an. Otomasi dalam proses AT dapat meningkatkan efisiensi secara ekonomi (Krzystek et al., 1995), dan pada aspek teknis, otomasi AT membuat ekstraksi DTM dan pembentukan orthofoto dapat dilakukan dalam sebuah proses tunggal (Ackermann, 1995 dalam Krzystek et al., 1995). Oleh karena itu, triangulasi udara digital semakin banyak dilakukan disebabkan efisiensi yang lebih besar karena proses otomasi (Kersten, 1999). Gambar 1. Perkembangan triangulasi udara (Schenk, 1997) Kualitas hasil AT ditentukan dari dua parameter, yaitu orientasi relatif dan orientasi absolut. Orientasi relatif didapatkan dari hasil statistik perataan AT berupa sigma naught dan residu antar tie point, sedangkan orientasi absolut didapatkan dengan dengan membandingkan nilai Independent Check Point (ICP) yang diukur menggunakan GPS Geodetik dengan nilai titik yang sama pada model stereo di foto yang sudah dilakukan AT. Pada orientasi absolut, jika selisih keduanya memenuhi toleransi, maka foto udara tersebut dianggap sudah memenuhi spesifikasi secara geometrik. Selain itu, yang tidak kalah penting adalah harus dipastikan bahwa posisi horizontal dan vertikal dari setiap model stereo yang terbentuk sudah konsisten. Meski spesifikasi ketelitian sudah ditetapkan dan hasil ketelitian AT masuk pada toleransi ketelitian tersebut, terdapat beberapa kasus dimana pada lokasi yang sama di model yang berbeda memiliki nilai ketinggian (Z) yang berbeda. Beberapa masih dalam rentang toleransi ketelitian, namun ada beberapa yang nilainya berada di atas rentang ketelitian yang diberikan. Ketika selisih tersebut berada di atas toleransi ketelitian yang ditentukan, hal tersebut tentunya akan menjadi masalah dalam proses pemetaan yang menggunakan foto udara tersebut sebagai data dasar. Berdasarkan permasalahan tersebut, penelitian ini dilakukan untuk menguji nilai koordinat dan elevasi pada beberapa lokasi yang tercakup dalam dua model stereo. Penelitian ini dilakukan dengan terlebih dahulu melakukan AT pada foto udara yang digunakan sebagai data dalam penelitian ini. Setelah AT memenuhi ketelitian secara statistik perataan maupun uji akurasi dalam model stereo, selanjutnya dipilih objek-objek yang tercakup dalam dua model stereo. Objek yang dipilih adalah objek-objek yang tegas dan mudah diinterpretasi di foto seperti siku lapangan atau bangunan, dengan jumlah objek sejumlah 15 titik. Objek-objek tersebut diukur nilai X, Y, dan Z- 542

Perbandingan Nilai Koordinat dan Elevasi Antar Model pada Foto Udara Hasil Triangulasi Udara... (Susetyo & Gularso) nya dalam kedua model stereo dan untuk kemudian dibandingkan. Hasil penelitian ini dapat menjadi salah satu sumber analisis ketika nantinya terdapat permasalahan sama. Data-data yang digunakan dalam penelitian ini adalah sebagai berikut: 1. Foto udara wilayah Palu Data foto udara yang digunakan adalah foto udara Palu yang diakuisisi pada tahun 2013 (Gambar 2). GSD (Ground Sampling Distance) yang ditentukan saat akuisisi foto udara tersebut adalah 20 cm. Overlap antar foto sebesar 60% dan sidelap sebesar 30%, dengan toleransi masing-masing adalah 5%. Jumlah foto yang digunakan sebanyak 77 foto. Kamera yang digunakan untuk pemotretan adalah Leica RCD30. Kamera format medium Leica RCD30 adalah kamera 60MP pertama yang dapat menghasilkan foto RGB multispektral dan NIR dari satu camera head (Wagner, 2011). Spesifikasi kamera RCD30 dapat dilihat pada Tabel 1. Gambar 2. Lokasi penelitian (sumber: Badan Informasi Geospasial, 2013) Tabel 1. Spesifikasi kamera RCD30 (Lumbantobing, Wikantika, & Harto, 2017) Sensor Tipe Panjang Band Ukuran Ukuran Sudut Sudut GSD Sensor Fokus CCD Piksel Across Long Kamera RCD30 Exposure Frame 53 mm RGB, NIR 8956 x 6708 piksel 6 μm 56 44 16 cm 2. Parameter Exterior Orientation (EO) Paramater EO menggambarkan lokasi dan orientasi berkas sinar pada sistem koordinat objek dengan 6 parameter: koordinat pusat proyeksi (X0, Y0, Z0) dan rotasi di sekitar 3 sumbu (omega, phi dan kappa) (Jacobsen, 2001). Parameter EO didapatkan dari sensor GPS/INS di pesawat secara real-time (Tanathong & Lee, 2014). 3. Koordinat GCP dan ICP Pengukuran GPS dilakukan secara diferensial menggunakan receiver GPS Geodetik dual frequency. Akurasi horizontal yang disyaratkan adalah 20 cm, sedangkan akurasi vertikal adalah 15 cm. Jumlah GCP yang digunakan adalah 3 titik, sedangkan ICP yang digunakan sejumlah 4 titik. Distribusi GCP dapat dilihat pada Gambar 3. Titik GCP berupa premark, sedangkan ICP dapat berupa premark (Gambar 4) maupun TTG (Titik Tinggi Geodesi) (Gambar 5). 543

Seminar Nasional Geomatika 2017: Inovasi Teknologi Penyediaan Informasi Geospasial untuk Pembangunan Berkelanjutan Gambar 3. Posisi GCP (lingkaran merah) Gambar 4. ICP dalam bentuk premark Gambar 5. ICP dalam bentuk TTG Penelitian ini bertujuan untuk menguji pengaruh hasil triangulasi udara terhadap konsistensi nilai koordinat dan elevasi antar model stereo foto udara. Konsistensi antar model menjadi hal yang sangat penting dalam pemetaan agar tidak ada permasalahan yang diakibatkan terkait geometri peta yang dihasilkan karena model foto udara yang tidak konsisten. METODE Proses AT dilakukan pada 77 foto dengan menggunakan 3 GCP dan 4 ICP. Setelah statistik perataan masuk dalam toleransi, selanjutnya dilakukan pengukuran koordinat X, Y, Z pada 15 objek yang tercakup dalam dua model stereo. Objek yang dipilih adalah objek-objek yang tegas dan mudah diinterpretasi di foto, seperti disajikan pada Tabel 2. Beberapa contoh objek tersebut ada pada Gambar 6. Analisis dilakukan terhadap selisih pengukuran di kedua model untuk setiap titiknya. 544

Perbandingan Nilai Koordinat dan Elevasi Antar Model pada Foto Udara Hasil Triangulasi Udara... (Susetyo & Gularso) Tabel 2. Objek pengukuran di model stereo DESKRIPSI TITIK Pojok lapangan tenis, sisi luar garis Siku marka jalan, sisi dalam Pojok objek, sisi dalam (tinggi objek + 2 m) Pojok atap (tinggi bangunan + 2 m) Pojok pagar, sisi luar Pojok pagar, sisi dalam Siku atap tertinggi masjid (tinggi bangunan + 8 m) Pojok bangunan, sisi dalam (tinggi bangunan 1-2 m) Pojok atap (tinggi bangunan + 5 m) Siku lapangan basket (dibatasi oleh garis sisi dalam) Pojok Kerangka Bangunan, sisi luar (posisi di ground) Pojok Kerangka Bangunan, sisi luar (posisi di atas, tinggi bangunan + 4 m) Siku pagar, sisi luar Pojok bangunan (tinggi bangunan + 8 m) Siku ujung selokan MODEL 190032_190033 190033_190034 200029_200030 200030_200031 200038_200039 200039_200040 180054_180055 180055_180056 190039_190040 190040_190041 200026_200027 200027_200028 200026_200027 200027_200028 200032_200033 200033_200034 200039_200040 200040_200041 200032_200033 200033_200034 200039_200040 200040_200041 200039_200040 200040_200041 200028_200029 200029_200030 200028_200029 200029_200030 200029_200030 200030_200031 a b 545

Seminar Nasional Geomatika 2017: Inovasi Teknologi Penyediaan Informasi Geospasial untuk Pembangunan Berkelanjutan c d Gambar 6. Contoh objek pengukuran di model stereo: (a) pojok lapangan tenis, (b) siku marka jalan, (c) pojok pagar, (d) siku ujung selokan HASIL DAN PEMBAHASAN Hasil statistik perataan AT menunjukkan sigma naught = 1,9 mikron. Hasil tersebut berada dalam toleransi 1 piksel, dimana kamera RCD30 ukuran pikselnya adalah 6 mikron. Hasil statistik lainnya disajikan pada Tabel 3. Tabel 3. Hasil statistik perataan AT x 1.155 [micron] rms image points y 1.172 [micron] rms control in image max res. control rms check points max res. check x y x y z x y z x y z 2.361 [micron] 2.905 [micron] -0.035 [m] 0.041 [m] 0.024 [m] 0.060 [m] 0.276 [m] 0.037 [m] -0.060 [m] 0.276 [m] 0.037 [m] Berdasarkan Kerangka Acuan Kerja Pemotretan Udara Tahun 2013, parameter kontrol kualitas yang digunakan disajikan pada Tabel 4. Tabel 4. Parameter kontrol kualitas statistik hasil AT (Badan Informasi Geospasial, 2013) Sigma naught < ukuran piksel (mikron) RMSE titik minor Nilai residual maksimal titik minor RMSE titik kontrol Nilai residual maksimal titik kontrol < 0,5 x ukuran piksel (mikron) < 1,5 x ukuran piksel (mikron) < 0,5 meter < 1 meter Jika dibandingkan dengan parameter di Tabel 4, maka hasil statistik AT sudah memenuhi toleransi yang disyaratkan. Selanjutnya dilakukan uji akurasi menggunakan 4 ICP di beberapa model stereo, dengan hasil seperti disajikan pada Tabel 5. Dapat dilihat pada tabel tersebut, nilai akurasi (yang direpresentasikan dalam CE90 untuk ketelitian horizontal dan LE90 untuk ketelitian vertikal) adalah 0,786 m (untuk ketelitian horizontal) dan 1,782 m (untuk ketelitian vertikal). Berdasarkan SNI Ketelitian Peta Dasar, keduanya masuk pada skala 1:5.000, namun untuk ketelitian vertikal hanya berada di kelas 3. 546

Perbandingan Nilai Koordinat dan Elevasi Antar Model pada Foto Udara Hasil Triangulasi Udara... (Susetyo & Gularso) Tabel 5. Hasil uji akurasi hasil AT Model Titik ΔX ΔY ΔZ ΔX 2 ΔY 2 ΔX 2 + ΔY 2 ΔZ 2 180050_180051 CP18 0,3002 0,5755 1,5057 0,09012 0,33120025 0,42132029 2,267132 180051_180052 CP18 0,2657 0,3296 1,2314 0,070596 0,10863616 0,17923265 1,516346 200030_200031 CP19-0,0734 0,3172-0,0588 0,005388 0,10061584 0,1060034 0,003457 190032_190033 TTG700-0,4735 0,3846 0,609 0,224202 0,14791716 0,37211941 0,370881 190033_190034 TTG700-0,6243 0,1706 1,5674 0,38975 0,02910436 0,41885485 2,456743 200038_200039 TTG701 0,2071 0,2622 1,2886 0,04289 0,06874884 0,11163925 1,66049 SUM 1,60916985 8,27505 MEAN 0,268194975 1,379175 RMSE 0,517875444 1,174383 CE90/LE90 0,785875986 1,782126 Selanjutnya dilakukan pengukuran nilai X, Y, Z di model stereo pada 15 titik uji yang sudah dipilih. Hasilnya disajikan pada Tabel 6. DESKRIPSI TITIK Pojok lapangan tenis, sisi luar garis Siku marka jalan, sisi dalam Pojok objek, sisi dalam (tinggi objek + 2 m) Pojok atap (tinggi bangunan + 2 m) Pojok pagar, sisi luar Pojok pagar, sisi dalam Siku atap tertinggi masjid (tinggi bangunan ± 8 m) Pojok bangunan, sisi dalam (tinggi bangunan 1-2 m) Pojok atap (tinggi bangunan ± 5 m) Siku lapangan basket (dibatasi oleh garis sisi dalam) Pojok Kerangka Bangunan, sisi luar (posisi di ground) Pojok Kerangka Bangunan, sisi luar (posisi di atas, tinggi bangunan + 4 m) Siku pagar, sisi luar Pojok bangunan (tinggi bangunan + 8 m) Tabel 6. Hasil perbandingan antar model di seluruh titik uji MODEL KOORDINAT X Y Z X Y Z 190032_190033 811634,254 9912574,752 15,598 190033_190034 811634,038 9912575,019 15,757 200029_200030 812445,983 9910874,701 11,464 200030_200031 812445,971 9910874,832 11,36 200038_200039 813676,021 9906693,838 1,405 200039_200040 813675,925 9906693,984 1,405 180054_180055 811312,481 9907991,846 375,755 180055_180056 811312,368 9907991,999 376,293 190039_190040 812018,712 9909702,689 97,363 190040_190041 812018,531 9909702,862 97,363 200026_200027 811642,226 9912114,671 34,38 200027_200028 811642,497 9912115,003 34,847 200026_200027 811628,463 9912114,118 42,141 200027_200028 811628,936 9912114,251 43,146 200032_200033 812807,55 9909366,879 12,523 200033_200034 812807,485 9909366,992 12,651 200039_200040 813657,138 9906159,973 31,16 200040_200041 813656,712 9906160,221 31,291 200032_200033 812846,347 9909357,638 9,802 200033_200034 812846,348 9909357,795 9,835 200039_200040 814062,838 9906100,478 13,379 200040_200041 814062,713 9906101,646 13,379 200039_200040 814061,963 9906100,503 17,445 200040_200041 814062,045 9906100,743 16,836 200028_200029 812094,267 9911321,619 8,463 200029_200030 812093,948 9911322,275 8,07 200028_200029 812047,819 9911245,633 17,243 200029_200030 812047,668 9911245,93 16,751 0,216-0,267-0,159 0,012-0,131 0,104 0,096-0,146 0 0,113-0,153-0,538 0,181-0,173 0-0,271-0,332-0,467-0,473-0,133-1,005 0,065-0,113-0,128 0,426-0,248-0,131-0,001-0,157-0,033 0,125-1,168 0-0,082-0,24 0,609 0,319-0,656 0,393 0,151-0,297 0,492 Siku ujung selokan 200029_200030 812493,754 9910807,175 10,692 0,08-0,111 0,112 547

Seminar Nasional Geomatika 2017: Inovasi Teknologi Penyediaan Informasi Geospasial untuk Pembangunan Berkelanjutan DESKRIPSI TITIK Pojok lapangan tenis, sisi luar garis Siku marka jalan, sisi dalam Pojok objek, sisi dalam (tinggi objek + 2 m) Pojok atap (tinggi bangunan + 2 m) Pojok pagar, sisi luar Pojok pagar, sisi dalam Siku atap tertinggi masjid (tinggi bangunan ± 8 m) Pojok bangunan, sisi dalam (tinggi bangunan 1-2 m) Pojok atap (tinggi bangunan ± 5 m) Siku lapangan basket (dibatasi oleh garis sisi dalam) Pojok Kerangka Bangunan, sisi luar (posisi di ground) KOORDINAT MODEL X Y Z X Y Z 190032_190033 811634,254 9912574,752 15,598 0,216-0,267-0,159 190033_190034 811634,038 9912575,019 15,757 200029_200030 812445,983 9910874,701 11,464 0,012-0,131 0,104 200030_200031 812445,971 9910874,832 11,36 200038_200039 813676,021 9906693,838 1,405 0,096-0,146 0 200039_200040 813675,925 9906693,984 1,405 180054_180055 811312,481 9907991,846 375,755 0,113-0,153-0,538 180055_180056 811312,368 9907991,999 376,293 190039_190040 812018,712 9909702,689 97,363 0,181-0,173 0 190040_190041 812018,531 9909702,862 97,363 200026_200027 811642,226 9912114,671 34,38-0,271-0,332-0,467 200027_200028 811642,497 9912115,003 34,847 200026_200027 811628,463 9912114,118 42,141-0,473-0,133-1,005 200027_200028 811628,936 9912114,251 43,146 200032_200033 812807,55 9909366,879 12,523 0,065-0,113-0,128 200033_200034 812807,485 9909366,992 12,651 200039_200040 813657,138 9906159,973 31,16 0,426-0,248-0,131 200040_200041 813656,712 9906160,221 31,291 200032_200033 812846,347 9909357,638 9,802-0,001-0,157-0,033 200033_200034 812846,348 9909357,795 9,835 200039_200040 814062,838 9906100,478 13,379 0,125-1,168 0 200040_200041 814062,713 9906101,646 13,379 200030_200031 812493.674 9910807.286 10.58 RATA-RATA 0,174 0,288 0,278 Tabel di atas menunjukkan tidak ada perbedaan nilai X, Y, Z yang signifikan antara satu model stereo dengan model stereo lainnya, dan rata-rata masih berada di bawah 0,3 m. Artinya, ketika foto udara tersebut digunakan untuk proses stereokompilasi, tidak akan ada masalah yang signifikan terkait perbedaan nilai koordinat dan elevasi antar model stereonya. Jika kembali melihat data-data di atas, uji akurasi tidak berpengaruh terhadap perbandingan nilai X, Y, Z antar model stereo. Seperti diketahui, akurasi vertikal hasil AT adalah 1,782 m, namun hanya satu objek yang memiliki nilai ΔZ di atas 1 m. Artinya, nilai koordinat dan elevasi antar model tidak ditentukan dari akurasi hasil AT, namun dapat ditentukan oleh faktor-faktor lain, seperti ikatan, jumlah, atau distribusi tie point. Namun meski tidak terdapat selisih signifikan antar model stereo, akurasi di setiap model stereo yang dihasilkan tidak akan berbeda jauh dari hasil uji akurasi yang dilakukan. Nilai selisih terbesar terdapat pada objek siku atap tertinggi bangunan, dimana tinggi bangunan tersebut adalah ±8 m (Gambar 7). Nilai ΔX mencapai 0,473 m, dan nilai ΔZ lebih dari 1 m, tepatnya 1,005 m. Begitu pula objek pojok atap bangunan dengan tinggi bangunan ± 5 m (Gambar 8), nilai ΔX mencapai 0,426 m. Sebaliknya, objek siku lapangan basket (Gambar 9) memiliki selisih paling kecil. Artinya, jika stereokompilasi dilakukan pada objek-objek yang tidak berada di atas tanah, maka akan semakin besar pergeseran posisi dan elevasi yang mungkin terjadi pada objek tersebut. 548

Perbandingan Nilai Koordinat dan Elevasi Antar Model pada Foto Udara Hasil Triangulasi Udara... (Susetyo & Gularso) Gambar 7. Objek siku atap tertinggi masjid (tinggi bangunan ± 8 m) Gambar 8. Objek pojok atap (tinggi bangunan ± 5 m) KESIMPULAN Gambar 9. Objek siku lapangan basket Kualitas hasil AT ditentukan dari dua parameter, yaitu orientasi relatif dan orientasi absolut. Orientasi relatif didapatkan dari hasil statistik perataan AT berupa sigma naught dan residu antar tie point, sedangkan orientasi absolut didapatkan dengan dengan membandingkan nilai Independent Check Point (ICP) yang diukur menggunakan GPS Geodetik dengan nilai titik yang sama pada model stereo di foto yang sudah dilakukan AT. Pada orientasi absolut, jika selisih keduanya memenuhi toleransi, maka foto udara tersebut dianggap sudah memenuhi spesifikasi secara geometrik. Selain itu, yang tidak kalah penting adalah harus dipastikan bahwa posisi horizontal dan vertikal dari setiap model stereo yang terbentuk sudah konsisten. 549

Seminar Nasional Geomatika 2017: Inovasi Teknologi Penyediaan Informasi Geospasial untuk Pembangunan Berkelanjutan Meski spesifikasi ketelitian sudah ditetapkan dan hasil ketelitian AT masuk pada toleransi ketelitian tersebut, terdapat beberapa kasus dimana pada lokasi yang sama di model yang berbeda memiliki nilai ketinggian (Z) yang berbeda. Ketika selisih tersebut berada di atas toleransi ketelitian yang ditentukan, hal tersebut tentunya akan menjadi masalah dalam proses pemetaan yang menggunakan foto udara tersebut sebagai data dasar. Berdasarkan permasalahan tersebut, penelitian ini dilakukan untuk menguji nilai koordinat dan elevasi pada beberapa lokasi yang tercakup dalam dua model. Hasil statistik perataan AT menunjukkan sigma naught = 1,9 mikron, sedangkan hasil uji akurasi menunjukkan akurasi horizontal (CE90) adalah 0,786 m dan akurasi vertikal (LE90) adalah 1,782 m. Dengan hasil AT tersebut, tidak ada perbedaan nilai X, Y, Z yang signifikan antara satu model stereo dengan model stereo lainnya, dan rata-rata masih berada di bawah 0,3 m. Jika melihat hasil uji akurasi, uji akurasi tidak berpengaruh terhadap perbandingan nilai X, Y, Z antar model stereo. Artinya, nilai koordinat dan elevasi antar model tidak ditentukan dari akurasi hasil AT, namun dapat ditentukan oleh faktor-faktor lain, seperti ikatan, jumlah, atau distribusi tie point. Nilai selisih terbesar terdapat pada objek siku atap tertinggi bangunan, dimana tinggi bangunan tersebut adalah ± 8 m. Nilai ΔX mencapai 0,473 m, dan nilai ΔZ lebih dari 1 m, tepatnya 1,005 m. Begitu pula objek pojok atap bangunan dengan tinggi bangunan ±5 m, nilai ΔX mencapai 0,426 m. Sebaliknya, objek siku lapangan basket memiliki selisih paling kecil. Artinya, jika stereokompilasi dilakukan pada objek-objek yang tidak berada di atas tanah, maka akan semakin besar pergeseran posisi dan elevasi yang mungkin terjadi pada objek tersebut. UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih kepada Pusat Pemetaan Rupabumi dan Toponim (PPRT) Badan Informasi Geospasial yang telah memfasilitasi terkait semua instrumen yang digunakan dalam penelitian ini, mulai data foto udara beserta kelengkapannya dan software pengolah Triangulasi Udara yang dipersilakan untuk digunakan dalam penelitian ini. DAFTAR PUSTAKA Badan Informasi Geospasial. (2013). Kerangka Acuan Kerja Pekerjaan Pemotretan Udara dan Pemetaan Rupabumi Indonesia Skala 1:10.000 Palu dan Kendari. Cibinong. Badan Standardisasi Nasional. (2015). SNI Ketelitian Peta Dasar. Jakarta. Jacobsen, K. (2001). Exterior Orientation Parameters. Photogrammetric Engineering and Remote Sensing, 1321 1332. Retrieved from http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/jac_exteror.pdf Kersten, T. (1999). Results of digital aerial triangulation using different software packages. In OEEPE Workshop on Automation in Digital Photogrammetric Production (pp. 1 9). Paris. Krzystek, P., T. Heuchel, U. Hirt, & F. Petran (1995). A New Concept for Automatic Digital Aerial Triangulation. Photogrammetric Week, 215 223. Retrieved from http://scholar.google.com/scholar?hl=en&btng=search&q=intitle:a+new+concept+for+automatic+di gital+aerial+triangulation#0 Lumbantobing, M., K. Wikantika, & A.B. Harto. (2017). Peningkatan Akurasi Interpretasi Foto Udara Menggunakan Metode Pembobotan Berbasis Objek untuk Pembuatan Peta Skala 1 : 5000. Reka Geomatika, 1, 1 11. Schenk, T. (1997). Towards Automatic Aerial Triangulation. ISPRS Journal of Photogrammetry and Remote Sensing, 52(3), 110 121. https://doi.org/10.1016/s0924-2716(97)00007-5 Tanathong, S., & I. Lee. (2014). Using GPS/INS Data to Enhance Image Matching for Real-time Aerial Triangulation. Computers and Geosciences, 72, 244 254. https://doi.org/10.1016/j.cageo.2014.08.003 Wagner, R. (2011). The Leica RCD30 Medium Format Camera: Imaging Revolution. Photogrammetric Week 2011, 89 95. Retrieved from http://www.ifp.uni-stuttgart.de/publications/phowo11/095wagner.pdf Zomrawi, N., M.A. Hussien, & H. Mohamed (2013). Accuracy Evaluation of Digital Aerial Triangulation. International Journal of Engineering and Innovative Technology, 2(10), 7 11. 550