BAB 2 TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.)

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.)

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo,

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston)

BAB 3 METODE PENELITIAN

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K

BAB II TINJAUAN PUSTAKA. nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1.

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014,

BAB 2 TINJAUAN PUSTAKA

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di

BAB 1 TINJAUAN PUSTAKA

UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) Surakarta 57127

BAB 1 TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L

II. TINJAUAN PUSTAKA. Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc)

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal.

BAB 2 TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB I TINJAUAN PUSTAKA

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1.

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil

Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.)

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar

BAB II TINJAUAN PUSTAKA. Toona sinensis (sinonim.cedrella sinensis A. Juss.) adalah spesies Toona

J. Gaji dan upah Peneliti ,- 4. Pembuatan laporan ,- Jumlah ,-

BAB V HASIL PENELITIAN. 5.1 Penyiapan Bahan Hasil determinasi tumbuhan yang telah dilakukan di UPT Balai

BAB I PENDAHULUAN. A. Latar Belakang Masalah. Kecenderungan kembali ke alam (back to nature) telah mendorong

II. TINJAUAN PUSTAKA. berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah biji paria (Momordica charantia)

IDENTIFIKASI SENYAWA FLAVONOID DALAM FASE n-butanol DARI EKSTRAK METANOL DAUN MAHKOTA DEWA Phaleria macrocarpa (Scheff) Boerl

Lampiran 1. Universitas Sumatera Utara

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung.

BAB I TINJAUAN PUSTAKA

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Agustus April 2013, bertempat di

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di

Lampiran 1. Surat Identifikasi Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian dan Pengembangan Biologi-Bogor.

BAB IV HASIL DAN PEMBAHASAN. A. Ekstraksi Zat Warna Rhodamin B dalam Sampel

PEMISAHAN ZAT WARNA SECARA KROMATORAFI. A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan.

BAB II TINJAUAN PUSTAKA. Uraian tumbuhan meliputi, morfologi tumbuhan, sistematika tumbuhan,

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis

ISOLASI DAN IDENTIFIKASI KANDUNGAN KIMIA DALAM EKSTRAK n-heksan DARI BUAH TANAMAN KAYU ULES (Helicteres isora L.)

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA. Uraian tumbuhan meliputi sistematika tumbuhan, sinonim, nama daerah,

Noda tidak naik Minyak 35 - Noda tidak naik Minyak 39 - Noda tidak naik Minyak 43

BAB II TINJAUAN PUSTAKA. serta negara-negara di kawasan Asia Tenggara seperti Indonesia, Malaysia dan

Lampiran 1. Lampiran Universitas Sumatera Utara

BAB IV HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA. Ranti (Solanum nigrum Linn) termasuk tumbuhan semak dengan tinggi ±

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun

BAB IV HASIL DAN PEMBAHASAN

LEMBAR PENGESAHAN. Jurnal yang berjudul Isolasi dan Identifikasi Senyawa Flavonoid dalam Daun Tembelekan. Oleh Darmawati M. Nurung NIM:

BAB III METODOLOGI. Metodologi penelitian ini meliputi penyiapan dan pengolahan sampel, uji

Lampiran 1. Identifikasi tumbuhan.

IV. HASIL DAN PEMBAHASAN

Bab III Metodologi Penelitian

BAB III METODOLOGI PENELITIAN. Muhammadiyah Semarang di Jalan Wonodri Sendang Raya 2A Semarang.

BAB I TINJAUAN PUSTAKA

OLIMPIADE SAINS NASIONAL Medan, 1-7 Agustus 2010 BIDANG KIMIA. Ujian Praktikum KIMIA ORGANIK. Waktu 150 menit. Kementerian Pendidikan Nasional

BAB IV HASIL DAN PEMBAHASAN. Tujuan penelitian ini adalah untuk mengidentifikasi kandungan rhodamin

ISOLASI DAN IDENTIFIKASI SENYAWA KIMIA DALAM FRAKSI NON-POLAR DARI TANAMAN PURWOCENG (Pimpinella pruatjan Molk)

BAB II TINJAUAN PUSTAKA. makin meluas. Sebelum tahun 1950-an hanya satu varietas yang dikenal yaitu

BAB III METODE PENELITIAN. A. Waktu dan Tempat Penelitian. November Pengambilan sampel Phaeoceros laevis (L.) Prosk.

IDENTIFIKASI SENYAWA FLAVONOID DARI DAUN KEMBANG BULAN (TITHONIA DIVERSIFOLIA) DENGAN METODE PEREAKSI GESER

Lampiran 1. Universitas Sumatera Utara

BAB 3 METODOLOGI PENELITIAN. - Beaker glass 1000 ml Pyrex. - Erlenmeyer 1000 ml Pyrex. - Labu didih 1000 ml Buchi. - Labu rotap 1000 ml Buchi

III. METODELOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Mei-Desember 2013, bertempat di

BAB II TINJAUAN PUSTAKA

III. METODE PENELITIAN. Penelitian ini telah dilakukan dari bulan Agustus 2009 sampai dengan bulan

BAB 2 TINJAUAN PUSTAKA. Sistematika tumbuhan Sambang Darah adalah sebagai berikut : : Excoecaria cochinchinensis Lour.

BAB I PENDAHULUAN. A. Latar Belakang Masalah. Senyawa flavonoid adalah senyawa polifenol yang mempunyai 15 atom -C 3 -C 6

BAB IV METODE PENELITIAN. glukosa darah mencit yang diinduksi aloksan dengan metode uji toleransi glukosa.

Transkripsi:

BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mahkota Dewa 2.1.1 Morfologi Tumbuhan Mahkota Dewa Tumbuhan Mahkota dewa merupakan tumbuhan yang hidup di daerah tropis, juga bisa ditemukan di pekarangan rumah sebagai tanaman hias atau di kebun-kebun sebagai tanaman peneduh. Perdu ini tumbuh tegak dengan tinggi 1-2,5 m. Daun mahkota dewa dapat dihasilkan sepanjang tahun sedangkan buahnya tidak berbuah sepanjang tahun dan buah tumbuhan ini dapat digunakan setelah masak atau berwarna merah. Daun dan buah tumbuhan mahkota dewa merupakan tanaman obat. (Dalimartha, 2004). 2.1.2 Sistematika Tumbuhan Mahkota Dewa Sistematika tumbuhan mahkota dewa adalah sebagai berikut: Kingdom : Plantae Divisi : Spermatophyta Sub divisi : Dicotyledon Kelas : Thymelaeales Famili : Thymelaeaceae Marga : Phaleria Spesies : Phaleria macrocarpa Nama Daerah Melayu : Simalakama Jawa : Makuto rojo Pohon : Tinggi 1 2.5 meter. Batang : Berkayu, pendek dan bercabang banyak.

Daun : Bulat panjang, daun tunggal, bertangkai pendek, runcing, pertulangan menyirip dan rata, berwarna hijau tua, panjang daun 7 10 cm, lebar daun 2 5 cm. Bunga : Muncul sepanjang tahun, tersebar dibatang atau ketiak daun, berwarna putih. Buah : Berbentuk bulat, permukaan licin serta beralur, saat masih muda berwarna hijau dan bila sudah masak bewarna merah dan daging buah bewarna putih, berserat dan berair. Akar : Berjenis tunggang. (Hartono, H. Soesanti, 2004). 2.1.3 Kandungan Kimia Tumbuhan Mahkota Dewa Tumbuhan mahkota dewa adalah termasuk dari salah satu famili Thymelaeaceae dan spesies Phaleria macrocarpa. Dari sumber literatur, mahkota dewa mengandung antihistamin alkaloida, sebab daun maupun buahnya agak pahit, mengandung senyawa triterpen, saponin dan polifenol (lignan). Kulit buahnya juga mengandung alkaloida, triterpen, saponin dan flavonoida. (Gotama, dkk, 1999). 2.1.4 Manfaat Tumbuhan Mahkota Dewa Sebagian masyarakat telah mengetahui manfaat buah mahkota dewa, tetapi belum mengetahui kegunaan dari daunnya. Khasiat dari daun tumbuhan mahkota dewa dapat mengobati penyakit seperti: kanker, tumor, diabetes (kencing manis), pembengkakan prostad, asam urat, darah tinggi (hipertensi), reumatik, batu ginjal, hepatitis, dan penyakit jantung. (Harmanto, 2001). Dosis efektif yang aman dan bermanfaat belum diketahui secara tepat. Untuk obat yang diminum biasanya digunakan beberapa irisan buah kering (tanpa biji). Selama beberapa hari baru dosis ditingkatkan sedikit demi sedikit, sampai dirasakan manfaatnya. Untuk penyakit berat seperti kanker dan psoriaris, dosis pemakaian

kadang harus lebih besar agar mendapat manfaat perbaikan. Efek samping yang timbul harus diperhatikan. (Dalimartha, 2004). 2.2 Senyawa Flavonoida Senyawa-senyawa flavonoida adalah senyawa-senyawa polifenol yang mempunyai 15 atom karbon, terdiri dari dua cincin benzena yang dihubungkan menjadi satu oleh rantai linier yang terdiri dari tiga atom karbon. Senyawa-senyawa flavonoida adalah senyawa 1,3 diaril propana, senyawa isoflavonoida adalah senyawa 1,2 diaril propana, sedangkan senyawa-senyawa neoflavonoida adalah 1,1 diaril propana. Istilah flavonoida diberikan pada suatu golongan besar senyawa yang berasal dari kelompok senyawa yang paling umum, yaitu senyawa flavon; suatu jembatan oksigen terdapat diantara cincin A dalam kedudukan orto, dan atom karbon benzil yang terletak disebelah cincin B. Senyawa heterosoklik ini, pada tingkat oksidasi yang berbeda terdapat dalam kebanyakan tumbuhan. Flavon adalah bentuk yang mempunyai cincin C dengan tingkat oksidasi paling rendah dan dianggap sebagai struktur induk dalam nomenklatur kelompok senyawa-senyawa ini. (Manitto, 1981) Senyawa flavonoida sebenarnya terdapat pada semua bagian tumbuhan termasuk daun, akar, kayu, kulit, tepung sari, bunga, buah, dan biji. Kebanyakan flavonoida ini berada di dalam tumbuh-tumbuhan, kecuali alga. Namun ada juga flavonoida yng terdapat pada hewan, misalnya dalam kelenjar bau berang-berang dan sekresi lebah. Dalam sayap kupu - kupu dengan anggapan bahwa flavonoida berasal dari tumbuh-tumbuhan yang menjadi makanan hewan tersebut dan tidak dibiosintesis di dalam tubuh mereka. Penyebaran jenis flavonoida pada golongan tumbuhan yang tersebar yaitu angiospermae, klorofita, fungi, briofita. (Markham, 1988) 2.2.1 Struktur dasar senyawa flavonoida Senyawa flavonoida adalah senyawa yang mengandung C15 terdiri atas dua inti fenolat yang dihubungkan dengan tiga satuan karbon. Struktur dasar flavonoida dapat digambarkan sebagai berikut :

A C C C B Kerangka dasar senyawa flavonoida Cincin A adalah karakteristik phloroglusinol atau bentuk resorsinol tersubstitusi. H A H A H C 3 C 6 Namun sering terhidroksilasi lebih lanjut : C 3 C 6 B H H A H C 3 C 6 B H 3 C H 3 C CH 3 A CH 3 C 3 C 6 B Cincin B adalah karakteristik 4-, 3,4-, 3,4,5- terhidroksilasi R C 6 (A) C 3 B R' R'' R = R = H, R = H R = H, R = R = H R = R = R = H (juga, R = R = R = H) (Sastrohamidjojo, 1996) 2.2.2 Klasifikasi Senyawa Flavonoida Flavonoida mengandung sistem aromatik yang terkonjugasi sehingga menunjukkan pita serapan kuat pada daerah spektrum sinar ultraviolet dan spektrum sinar tampak, umumnya dalam tumbuhan terikat pada gula yang disebut dengan glikosida. (Harborne, 1996)

Pada flavonoida -glikosida, satu gugus hidroksil flavonoida (atau lebih) terikat pada satu gula (lebih) dengan ikatan yang tahan asam. Glukosa merupakan gula yang paling umum terlibat dan gula lain yang sering juga terdapat adalah galaktosa, ramnosa, silosa, arabinosa, dan rutinosa. Waktu yang diperlukan untuk memutuskan suatu gula dari suatu flavonoida -glukosida dengan hidrolisis asam ditentukan oleh sifat gula tersebut. Pada flavonoida C-glikosida, gula terikat pada atom karbon flavonoida dan dalam hal ini gula tersebut terikat langsung pada inti benzena dengan suatu ikatan karbon-karbon yang tahan asam. Gula yang terikat pada atom C hanya ditemukan pada atom C nomor 6 dan 8 dalam inti flavonoida, misalnya pada orientin. (Markham, 1988) Menurut Robinson (1995), flavonoida dapat dikelompokkan berdasarkan keragaman pada rantai C 3 yaitu : 1. Flavonol Flavonol paling sering terdapat sebagai glikosida, biasanya 3-glikosida, dan aglikon flavonol yang umum yaitu kamferol, kuersetin, dan mirisetin yang berkhasiat sebagai antioksidan dan antiimflamasi. Flavonol lain yang terdapat di alam bebas kebanyakan merupakan variasi struktur sederhana dari flavonol. Larutan flavonol dalam suasana basa dioksidasi oleh udara tetapi tidak begitu cepat sehingga penggunaan basa pada pengerjaannya masih dapat dilakukan. H Struktur flavonol

2. Flavon Flavon berbeda dengan flavonol dimana pada flavon tidak terdapat gugusan 3-hidroksi. Hal ini mempunyai serapan UV-nya, gerakan kromatografi, serta reaksi warnanya. Flavon terdapat juga sebagai glikosidanya lebih sedikit daripada jenis glikosida pada flavonol. Flavon yang paling umum dijumpai adalah apigenin dan luteolin. Luteolin merupakan zat warna yang pertama kali dipakai di Eropa. Jenis yang paling umum adalah 7-glukosida dan terdapat juga flavon yang terikat pada gula melalui ikatan karbon-karbon. Contohnya luteolin 8-C-glikosida. Flavon dianggap sebagai induk dalam nomenklatur kelompok senyawa flavonoida. 7 6 2' 1 8 9 2 1' 3 10 4 5 3' 6' 4' 5' Struktur flavon 3. Isoflavon Isoflavon merupakan isomer flavon, tetapi jumlahnya sangat sedikit dan sebagai fitoaleksin yaitu senyawa pelindung yang terbentuk dalam tumbuhan sebagai pertahanan terhadap serangan penyakit. Isoflavon sukar dicirikan karena reaksinya tidak khas dengan pereaksi warna manapun. Beberapa isoflavon (misalnya daidzein) memberikan warna biru muda cemerlang dengan sinar UV bila diuapi amonia, tetapi kebanyakan yang lain tampak sebagai bercak lembayung yang pudar dengan amonia berubah menjadi coklat. Struktur Isoflavon

4. Flavanon Flavanon terdistribusi luas di alam. Flavanon terdapat di dalam kayu, daun dan bunga. Flavanon glikosida merupakan konstituen utama dari tanaman genus prenus dan buah jeruk ; dua glikosida yang paling lazim adalah neringenin dan hesperitin, terdapat dalam buah anggur dan jeruk. Struktur Flavanon 5. Flavanonol Senyawa ini berkhasiat sebagai antioksidan dan hanya terdapat sedikit sekali jika dibandingkan dengan flavonoida lain. Sebagian besar senyawa ini diabaikan karena konsentrasinya rendah dan tidak berwarna. H Struktur Flavanonol 6. Katekin Katekin terdapat pada seluruh dunia tumbuhan, terutama pada tumbuhan berkayu. Senyawa ini mudah diperoleh dalam jumlah besar dari ekstrak kental Uncaria gambir dan daun teh kering yang mengandung kira-kira 30% senyawa ini. Katekin berkhasiat sebagai antioksidan. H H H H Struktur Katekin H

7. Leukoantosianidin Leukoantosianidin merupakan senyawa tan warna, terutama terdapat pada tumbuhan berkayu. Senyawa ini jarang terdapat sebagai glikosida, contohnya melaksidin, apiferol. H H H Struktur Leukoantosianidin 8. Antosianin Antosianin merupakan pewarna yang paling penting dan paling tersebar luas dalam tumbuhan. Pigmen yang berwarna kuat dan larut dalam air ini adalah penyebab hampir semua warna merah jambu, merah marak, ungu, dan biru dalam daun, bunga, dan buah pada tumbuhan tinggi. Secara kimia semua antosianin merupakan turunan suatu struktur aromatik tunggal yaitu sianidin, dan semuanya terbentuk dari pigmen sianidin ini dengan penambahan atau pengurangan gugus hidroksil atau dengan metilasi atau glikosilasi. H Struktur Antosianin 9.Khalkon Khalkon adalah pigmen fenol kuning yang berwarna coklat kuat dengan sinar UV bila dikromatografi kertas. Aglikon flavon dapat dibedakan dari glikosidanya, karena hanya pigmen dalam bentuk glikosida yang dapat bergerak pada kromatografi kertas dalam pengembang air. (Harborne, 1996) Struktur Khalkon

10. Auron Auron berupa pigmen kuning emas yang terdapat dalam bunga tertentu dan briofita. Dalam larutan basa senyawa ini berwarna merah ros dan tampak pada kromatografi kertas berupa bercak kuning, dengan sinar ultraviolet warna kuning kuat berubah menjadi merah jingga bila diberi uap amonia. (Robinson, 1995) HC Struktur Auron Menurut Harborne (1996), dikenal sekitar sepuluh kelas flavonoida dimana semua flavonoida, menurut strukturnya, merupakan turunan senyawa induk flavon dan semuanya mempunyai sejumlah sifat yang sama yakni: Golongan flavonoida Penyebaran Ciri khas Antosianin pigmen bunga merah larut dalam air, λmaks 515-545 nm, marak,dan biru juga dalam bergerak dengan BAA pada kertas. Proantosianidin daun dan jaringan lain. terutama tan warna, dalam menghasilkan antosianidin (warna daun tumbuhan berkayu. dapat diekstraksi dengan amil alkohol ) bila jaringan dipanaskan dalam HCl 2M selama setengah jam. Flavonol terutama ko-pigmen setelah hidrolisis, berupa bercak tanwarna dalam bunga kuning murup pada kromatogram sianik dan asianik; Forestal bila disinari dengan sinar UV; Flavon Glikoflavon tersebar luas dalam daun. seperti flavonol seperti flavonol maksimal spektrum pada 330 350 setelah hidrolisis, berupa bercak coklat redup pada kromatogram Forestal; maksimal spektrum pada 330-350 nm. mengandung gula yang terikat melalui ikatan C-C; bergerak dengan pengembang air, tidak seperti flavon biasa.

Biflavonil Khalkon dan auron Flavanon Isoflavon tanwarna; hampir seluruhnya terbatas pada gimnospermae. pigmen bunga kuning, kadang-kadang terdapat juga dalam jaringan lain tanwarna; dalam daun dan buah ( terutama dalam Citrus ) tanwarna; sering kali dalam akar; hanya terdapat dalam satu suku, Leguminosae pada kromatogram BAA beupa bercak redup dengan R F tinggi. dengan amonia berwarna merah ; maksimal spektrum 370-410 nm. berwarna merah kuat dengan Mg / HCl; kadang kadang sangat pahit. bergerak pada kertas dengan pengembang air; tak ada uji warna yang khas. 2.2.3 Metoda isolasi senyawa flavonoida Metoda Isolasi Senyawa Flavonoida oleh Harborne Dalam metoda ini, daun yang segar dimaserasi dengan MeH, lalu disaring. Ekstrak MeH dipekatkan dengan rotari evaporator. Lalu ekstrak pekat yang dihasilkan, diasamkan dengan H 2 S 4 2M, didiamkan, lalu diesktraksi dengan Kloroform. Lapisan Kloroform diambil, lalu diuapkan, sehingga dihasilkan ekstrak polar pertengahan (Terpenoida atau senyawa Fenol). (Harborne, 1996) 2.2.4 Sifat kelarutan flavonoida Aglikon flavonoida adalah polifenol dan karena itu mempunyai sifat kimia senyawa fenol, yaitu bersifat agak asam sehingga dapat larut dalam basa. Tetapi harus diingat, bila dibiarkan dalam larutan basa, dan disamping itu terdapat oksigen, banyak yang akan terurai. Karena mempunyai sejumlah gugus hidroksil, atau suatu gula,flavonoida merupakan senyawa polar, maka umumnya flavonoida cukup larut dalam pelarut polar seperti Etanol (EtH), Metanol (MeH), Butanol (BuH), Aseton, Dimetilsulfoksida

(DMS), Dimetilformamida (DMF), Air dan lain-lain. Adanya gula yang terikat pada flavonoida (bentuk yang umum ditemukan) cenderung menyebabkan flavonoida lebih mudah larut dalam air dan dengan demikian campuran pelarut yang disebut diatas dengan air merupakan pelarut yang lebih baik untuk glikosida. Sebaliknya, aglikon yang kurang polar seperti isoflavon, flavanon dan flavon serta flavonol yang termetoksilasi cenderung lebih mudah larut dalam pelarut seperti Eter dan Kloroform. (Markham, 1988) 2.3 Teknik Pemisahan Tujuan dari teknik pemisahan adalah untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponenkomponen lainnya. Ada 2 jenis teknik pemisahan: 1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan. 2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam suatu golongan. (Muldja, 1995) 2.3.1 Kromatografi Kromatografi merupakan suatu cara pemisahan fisik dengan unsur-unsur yang akan dipisahkan terdistribusikan antara dua fasa, satu dari fasa-fasa ini membentuk lapisan stasioner denagn luas permukaan yang besar dan yang lainnya merupakan cairan yang merembes lewat. Fasa stasioner mungkin suatu zat padat atau suatu cairan dan fase yang bergerak mungkin suatu cairan atau suatu gas. (Underwood, 1981) Cara-cara kromatografi dapat digolongkan sesuai dengan sifat sifat dari fasa diam, yang dapat berupa zat padat atau zat cair. Jika fasa diam berupa zat padat disebut kromatografi serapan, jika berupa zat cair disebut kromatografi partisi. Karena fase

gerak dapat berupa zat cair atau gas maka ada empat macam sistem kromatografi yaitu: 1. Fasa gerak cair fasa diam padat (kromatografi serapan): a. kromatografi lapis tipis b. kromatografi penukar ion 2. Fasa gerak gas fasa diam padat, yakni kromatografi gas padat. 3. Fasa gerak cair fasa diam cair (kromatografi partisi), yakni kromatografi kertas. 4. Fasa gerak gas fasa diam zat cair, yakni : a. kromatografi gas cair b. kromatografi kolom kapiler Semua pemisahan dengan kromatografi tergantung pada kenyataan bahwa senyawa senyawa yang dipisahkan terdistribusi diantara fasa gerak dan fasa diam dalam perbandingan yang sangat berbeda beda dari satu senyawa terhadap senyawa yang lain (Sastrohamidjojo, 1991). 2.3.1.1 Kromatografi Lapis Tipis Kromatografi Lapis Tipis pada plat berlapis yang berukuran lebih besar, biasanya 5x20 cm, 10x20 cm, atau 20x20 cm. Biasanya memerlukan waktu pengembangan 30 menit sampai satu jam. Pada hakikatnya KLT melibatkan dua fase yaitu fase diam atau sifat lapisan, dan fase gerak atau campuran pelarut pengembang. Fase diam dapat berupa serbuk halus yang berfungsi sebagai permukaan penyerap atau penyangga untuk lapisan zat cair. Fase gerak dapat berupa hampir segala macam pelarut atau campuran pelarut. (Sudjadi, 1986) Pemisahan senyawa dengan Kromatografi Lapis Tipis seperti senyawa organik alam dan senyawa organik sintetik dapat dilakukan dalam beberapa menit dengan alat yang harganya tidak terlalu mahal. Jumlah cuplikan beberapa mikrogram atau sebanyak 5g dapat ditangani. Kelebihan KLT yang lain ialah pemakaian jumlah pelarut dan jumlah cuplikan yang sedikit. Kromatografi Lapis Tipis (KLT) merupakan salah satu metode pemisahan yang cukup sederhana yaitu dengan menggunakan plat kaca yang dilapisi silika gel dengan menggunakan pelarut tertentu. (Gritter,1991)

Nilai utama Kromatografi Lapis Tipis pada penelitian senyawa flavonoida ialah sebagai cara analisis cepat yang memerlukan bahan sangat sedikit. Menurut Markham, Kromatografi Lapis Tipis terutama berguna untuk tujuan berikut: 1. Mencari pelarut untuk kromatografi kolom 2. Analisis fraksi yang diperoleh dari kromatografi kolom 3. Identifikasi flavonoida secara ko-kromatografi. 4. Isolasi flavonoida murni skala kecil 5. Penyerap dan pengembang yang digunakan umumnya sama dengan penyerap dan pengembang pada kromatografi kolom dan kromatografi kertas. (Markham, 1988) 2.3.1.2 Kromatografi Kolom Kromatografi cair yang dilakukan dalam kolom besar merupakan metode kromatografi terbaik untuk pemisahan dalam jumlah besar (lebih dari 1 g). Pada kromatografi kolom, campuran yang akan dipisahkan diletakkan berupa pita pada bagian atas kolom penyerap yang berada dalam tabung kaca, tabung logam, dan tabung plastik. Pelarut atau fasa gerak dibiarkan mengalir melalui kolom karena aliran yang disebabkan oleh gaya berat atau didorong dengan tekanan. Pita senyawa linarut bergerak melalui kolom dengan laju yang berbeda, memisah, dan dikumpulkan berupa fraksi ketika keluar dari atas kolom (Gritter, 1991). Dengan menggunakan cara ini, skala isolasi flavonoida dapat ditingkatkan hampir ke skala industri. Pada dasarnya, cara ini meliputi penempatan campuran flavonoida (berupa larutan) diatas kolom yang berisi serbuk penyerap (seperti selulose, silika atau poliamida), dilanjutkan dengan elusi beruntun setiap komponen memakai pelarut yang cocok. Kolom hanya berupa tabung kaca yang dilengkapi dengan keran pada salah satu ujung. (Markham, 1988) 2.3.1.3 Harga Rf (Reterdation Factor) Mengidentifikasi noda-noda dalam lapisan tipis lazim menggunakan harga Rf yang diidentifikasikan sebagai perbandingan antara jarak perambatan suatu zat dengan jarak perambatan pelarut yang dihitung dari titik penotolan pelarut zat. Jarak yang

ditempuh oleh tiap bercak dari titik penotolan diukur dari pusat bercak. Untuk mengidentifikasi suatu senyawa, maka harga Rf senyawa tersebut dapat dibandingkan dengan harga Rf senyawa pembanding. Jarak perambatan bercak dari titik penotolan Rf = Jarak perambatan pelarut dari titik penotolan (Sastrohamidjojo, 1991). 2.3.2 Kristalisasi Kristalisasi adalah pengendapan kristal dari larutan yang terbuat dari bahan tertentu. selama proses pembentukan kristal, molekul akan cenderung menjadi melekat kristal tumbuh terdiri dari jenis yang sama molekul karena lebih cocok dalam kisi kristal untuk molekul struktur yang sama daripada molekul lain. Jika proses kristalisasi diperbolehkan untuk terjadi dalam dekat - kondisi kesetimbangan, preferensi molekul untuk deposit pada permukaan terdiri dari molekul seperti akan menyebabkan peningkatan dalam kemurnian bahan kristal. Sehingga proses rekristalisasi adalah salah satu metode yang paling penting tersedia bagi ahli kimia untuk pemurnian padatan. Prosedur tambahan dapat dimasukkan ke dalam proses kristalisasi untuk menghilangkan kotoran. Ini termasuk filtrasi untuk menghilangkan padatan undissolved dan adsorpsi untuk menghilangkan kotoran yang sangat polar.(daniel J.Pasto,1992) 2.3.3 Ekstraksi Ekstraksi dapat dilakukan dengan metoda maserasi, sokletasi, dan perkolasi. Sebelum ekstraksi dilakukan, biasanya serbuk tumbuhan dikeringkan lalu dihaluskan dengan derajat kehalusan tertentu, kemudian diekstraksi dengan salah satu cara di atas. Ekstraksi dengan metoda sokletasi dapat dilakukan secara bertingkat dengan berbagai pelarut berdasarkan kepolarannya, misalnya n-heksana, Eter, Benzena, Kloroform, Etil asetat, Etanol, Metanol, dan Air. Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak yang pekat biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator. (Harborne, 1996)

2.4 Teknik Spektroskopi Teknik spektroskopi adalah salah satu teknik analisis kimia fisika yang mengamati tentang interaksi atom atau molekul dengan radiasi elektromagnetik. Ada dua macam instrumen pada teknik spektroskopi yaitu spektrometer dan spektrofotometer. Instrumen yang memakai monokromator celah tetap pada bidang fokus disebut sebagai spektrometer. Apabila spektrometer tersebut dilengkapi dengan detektor yang bersifat fotoelektrik maka disebut spektrofotometer (Muldja, 1955). Informasi Spektroskopi Inframerah menunjukkan tipe tipe dari adanya gugus fungsi dalam satu molekul dan Resonansi Magnetik Inti yang memberikan informasi tentang bilangan dari setiap tipe dari atom hidrogen dan juga memberikan informasi yang menyatakan tentang lingkungan dari setiap tipe dari atom hidrogen. Kombinasinya dan data yang ada kadang kadang menentukan struktur yang lengkap dari molekul yang tidak diketahui. (Pavia, 1979). 2.4.1 Spektrofotometri Ultra Violet Serapan molekul di dalam derah ultra violet dan terlihat dari spektrum bergantung pada struktur ultra elektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yang berenergi lebih tinggi di dalam keadaan tereksitasi (Silverstein, 1986). Spektrum Flavonoida biasanya ditentukan dalam larutan dengan pelarut Metanol (MeH) atau Etanol (EtH). Spektrum khas terdiri atas dua maksima pada rentang 240-285 nm (pita II) dan 300-550 nm (pita I). Kedudukan yang tepat dan kekuatan nisbi maksima tersebut memberikan informasi yang berharga mengenai sifat flavonoida dan pola oksigenasinya. Ciri khas spektrum tersebut ialah kekuatan nisbi yang rendah pada pita I dalam dihidroflavon, dihidroflavonol, dan isoflavon serta kedudukan pita I pada spektrum khalkon, auron dan antosianin yang terdapat pada panjang gelombang yang tinggi.

Ciri spektrum golongan flavonoida utama dapat ditunjukkan sebagai berikut: (Markham,1988) λ maksimum utama (nm) 475-560 390-430 365-390 350-390 250-270 330-350 300-350 275-295 ± 225 310-330 λ maksimum tambahan (nm) (dengan intensitas nisbi) ± 275 (55%) 240-270 (32%) 240-260 (30%) ± 300 (40%) ± 300 (40%) tidak ada tidak ada 310-330 (30%) 310-330 (30%) 310-330 (25%) Jenis flavonoida Antosianin Auron Kalkol Flavonol Flavonol Flavon dan biflavonil Flavon dan biflavonil Flavanon dan flavononol Flavonon dan flavononon Isoflavon 2.4.2 Spektrofotometri infra merah (FT-IR) Spektrum inframerah suatu molekul adalah hasil transisi antara tingkat energi getaran yang berlainan. Pancaran inframerah yang kerapatannya kurang dari 100 cm -1 (panjang gelombang lebih daripada 100 µm) diserap oleh sebuah molekul organik dan diubah menjadi putaran energi molekul. Penyerapan ini tercantum, namun spektrum getaran terlihat bukan sebagai garis garis melainkan berupa pita pita. Hal ini disebabkan perubahan energi getaran tunggal selalu disertai sejumlah perubahan energi putaran (Silverstein, 1986). Dalam molekul sederhana beratom dua atau beratom tiga tidak sukar untuk menentukan jumlah dan jenis vibrasinya dan menghubungkan vibrasi-vibrasi tersebut dengan energi serapan. Tetapi untuk molekul-molekul beratom banyak, analisis jumlah dan jenis vibrasi itu menjadi sukar sekali atau tidak mungkin sama sekali, karena bukan saja disebabkan besarnya jumlah pusat pusat vibrasi, melainkan

karena juga harus diperhitungkan terjadinya saling mempengaruhi (inter-aksi) beberapa pusat vibrasi. Vibrasi molekul dapat dibagi dalam dua golongan, yaitu vibrasi regang dan vibrasi lentur. 1. Vibrasi regang Di sini terjadi terus menerus perubahan jarak antara dua atom di didalam suatu molekul. Vibrasi regang ini ada dua macam yaitu vibrasi regang simetris dan tak simetri. 2.Vibrasi lentur Di sini terjadi perubahan sudut antara dua ikatan kimia. Ada empat macam vibrasi lentur yaitu vibrasi lentur dalam bidang yang dapat berupa vibrasi scissoring atau vibrasi rocking dan vibrasi keluar bidang yang dapat berupa waging atau berupa twisting (Noerdin, 1985)