PENGARUH JENIS PEMBEBANAN DALAM ANALISIS STRUKTUR PERKERASAN LENTUR TERHADAP KINERJA PERKERASAN

dokumen-dokumen yang mirip
PENGEMBANGAN MODEL STRUKTUR PERKERASAN LENTUR PADA KONDISI CROSS ANISOTROPIC DAN INTERFACE TIDAK KASAR DENGAN MENGGUNAKAN PROGRAM SAP2000

Tujuan Penelitian Adapun tujuan penelitian ini adalah: Jurnal Rekayasa Sipil ASTONJADRO 13

EVALUASI UMUR SISA DAN TEBAL OVERLAY STRUKTUR PERKERASAN LENTUR JALAN TOL JAKARTA CIKAMPEK (STUDI KASUS: RUAS CIBITUNG-CIKARANG) TESIS

BAB II TINJAUAN PUSTAKA PERENCANAAN MEKANISTIK EMPIRIS OVERLAY PERKERASAN LENTUR

Evaluasi Struktural Perkerasan Kaku Menggunakan Metoda AASHTO 1993 dan Metoda AUSTROADS 2011 Studi Kasus : Jalan Cakung-Cilincing

BAB II TINJAUAN PUSTAKA. A. Tinjauan Umum

Prosiding Seminar Nasional Teknik Sipil 2016 ISSN: Fakultas Teknik Universitas Muhammadiyah Surakarta

Studi Penanganan Ruas Jalan Bulu Batas Kota Tuban Provinsi Jawa Timur Menggunakan Data FWD dan Data Mata Garuda

ANALISIS TEBAL LAPIS TAMBAHAN (OVERLAY) PADA PERKERASAN KAKU (RIGID PA VEMENT) DENGAN PROGRAM ELCON DAN METODE ASPHALT INSTITUTE TESIS

PENGARUH BEBAN BERLEBIH TRUK BATUBARA TERHADAP UMUR SISA DAN UMUR RENCANA PERKERASAN LENTUR ABSTRAK

Analisis Struktur Perkerasan Multi-Layer Menggunakan Program Komputer ELMOD Studi Kasus: Jalan Tol Jakarta - Cikampek

Perencanaan Tebal Lapis Tambah Perkerasan Lentur Menggunakan Metode Benkelman Beam Pada Ruas Jalan Kabupaten Dairi-Dolok Sanggul, Sumatera Utara

EVALUASI FUNGSIONAL DAN STRUKTURAL PERKERASAN LENTUR PADA JALAN NASIONAL BANDUNG-PURWAKARTA DENGAN METODE AUSTROADS 2011

BAB V HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN

Perbandingan Perencanaan Tebal Lapis Tambah Metode Bina Marga 1983 dan Bina Marga 2011

Bab V Analisa Data. Analisis Kumulatif ESAL

PERANCANGAN STRUKTURAL PERKERASAN BANDAR UDARA

Evaluasi Kondisi Struktural Perkerasan Lentur Menggunakan Metoda AASHTO 1993 Studi Kasus: Ruas Ciasem-Pamanukan (Pantura)

Bab III Pendekatan Simulasi Terhadap Kondisi Bonding Antar Lapis Perkerasan Beraspal

Teknik Sipil Itenas No. x Vol. xx Jurnal Online Institut Teknologi Nasional Agustus 2015

Analisis Struktur Perkerasan Lentur Menggunakan Program Everseries dan Metoda AASHTO 1993 Studi kasus: Jalan Tol Jakarta - Cikampek

konfigurasi sumbu, bidang kontak antara roda perkerasan. Dengan demikian

ANALISIS KONDISI BONDING ANTAR LAPISAN BERASPAL SECARA TEORITIS DAN PENGUJIAN DI LABORATORIUM

Putri Nathasya Binus University, Jakarta, DKI Jakarta, Indonesia. Abstrak

Rentang Modulus dari Thin Layer yang Menunjukkan Kondisi Bonding Antar Lapisan Beraspal. Eri Susanto Hariyadi 1)

ANALISIS PENGARUH SUHU PERKERASAN TERHADAP UMUR PELAYANAN JALAN DENGAN MENGGUNAKAN METODE ANALITIS (STUDI KASUS JALAN TOL SEMARANG)

Perbandingan Perencanaan Tebal Perkerasan Lentur Metode Bina Marga 2011 Dengan Metode Jabatan Kerja Raya Malaysia 2013

BAB V HASIL DAN PEMBAHASAN. A. Metode Analisa Komponen

BAB III METODOLOGI PENELITIAN. Agustus 2005 oleh Washington State Departement of Transportation (WSDOT).

BAB II TINJAUAN PUSTAKA. Istilah umum Jalan sesuai dalam Undang-Undang Republik Indonesia. Nomor 38 Tahun 2004 tentang JALAN, sebagai berikut :

BAB 4 HASIL DAN PEMBAHASAN

Perbandingan Perencanaan Tebal Perkerasan Lentur Jalan Baru Menggunakan Metode Jabatan Kerja Raya Malaysia 2013 Dengan Metode Road Note 31

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2008

STUDI KASUS: JALAN RUAS KM. 35 PULANG PISAU. Adi Sutrisno 06/198150/TK/32229

Bab VII Kesimpulan, Kontribusi Penelitian dan Rekomendasi

ANALISIS PERBANDINGAN PERHITUNGAN TEBAL PERKERASAN KAKU DENGAN METODE BINA MARGA 2013 DAN AASHTO 1993 (STUDI KASUS JALAN TOL SOLO NGAWI STA

BAB I PENDAHULUAN. Metode desain tebal lapis tambah (overlay) terkinimenggunakan. lendutan/defleksi ini menjadi lebih kecil dari lendutan ijin.

Perencanaan Tebal Perkerasan Lentur Menggunakan Metode Austroads 1992

ANALISIS BEBAN BERLEBIH (OVERLOAD) TERHADAP UMUR PELAYANAN JALAN DENGAN MENGGUNAKAN METODE ANALITIS (STUDI KASUS RUAS JALAN TOL SEMARANG)

Analisis Nilai ACN dan PCN untuk Struktur Perkerasan Kaku dengan menggunakan Program Airfield. Djunaedi Kosasih 1)

BAB I PENDAHULUAN. Permukaan tanah pada umumnya tidak mampu menahan beban kendaraan

Studi Perencanaan Tebal Lapis Tambah Di Atas Perkerasan Kaku

Perencanaan Bandar Udara

Traffic Analisis. 1. Design Lane, jumlah arus lalulintas pada setiap lane. Pakai lane (lajur) yang terbesar ESAL arus lalulintasnya.

Wita Meutia Mahasiswa Jurusan Teknik Sipil S1 Fakultas Teknik Universitas Riau Tel , Pekanbaru Riau,

BAB II TINJAUAN PUSTAKA

ESTIMASI NILAI MODULUS ELASTIS LAPISAN BERASPAL MENGGUNAKAN HAMMER TEST

PENCAPAIAN TEBAL PERKERASAN JALAN KAKU ANTARA BEBAN AKTUAL DAN STANDAR

ANALISA PERBANDINGAN PERENCANAAN TEBAL PERKERASAN KAKU ANTARA METODE AASHTO 1993 DENGAN METODE BINA MARGA 1983 TUGAS AKHIR

DESKRIPSI PERENCANAAN TEBAL PERKERASAN JALAN MENGGUNAKAN METODE AASHTO

1) Staf Pengajar Departemen Teknik Sipil, FTSP-ITB, Bandung, dan Jurusan Teknik Sipil, FT-Untar, Jakarta.

Analisis Disain Struktur Perkerasan Kaku Landasan Pesawat Udara dengan menggunakan Program Airfield

Prosiding Seminar Nasional Manajemen Teknologi XIX Program Studi MMT-ITS, Surabaya 2 November 2013

MODULUS RESILIENT TANAH DASAR DALAM DESAIN STRUKTUR PERKERASAN LENTUR SECARA ANALITIS

Naskah Publikasi Ilmiah. untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil. diajukan oleh :

BAB III LANDASAN TEORI. Dimensi, berat kendaraan, dan beban yang dimuat akan menimbulkan. dalam konfigurasi beban sumbu seperti gambar 3.

STUDI BANDING DESAIN TEBAL PERKERASAN LENTUR MENGGUNAKAN METODE SNI F DAN Pt T B

KELAS JALAN, MUATAN SUMBU TERBERAT, DAN PERMASALAHAN BEBAN LEBIH KENDARAAN

BAB I PENDAHULUAN A. Latar Belakang

Bab III Metodologi Penelitian

PERANCANGAN PERKERASAN CONCRETE BLOCK DAN ESTIMASI BIAYA

RINGKASAN. Kata Kunci : Tanah Ekspansif, Pengaruh Kadar Air Subgrade, Rutting Aspal, Deformasi arah Vertikal Aspal, Regangan Aspal, Model Perkerasan

PERENCANAAN GEOMETRIK JALAN DAN TEBAL PERKERASAN LENTUR PADA RUAS JALAN GARENDONG-JANALA

Seismic Design of Landfill

PENGARUH KELEBIHAN BEBAN TERHADAP UMUR RENCANA JALAN BAB I PENDAHULUAN

Institut Teknologi Nasional

Studi Pengaruh Pengurangan Tebal Perkerasan Kaku Terhadap Umur Rencana Menggunakan Metode AASHTO 1993

PERENCANAAN KONSTRUKSI JALAN RAYA RIGID PAVEMENT (PERKERASAN KAKU)

STUDI PENGARUH PENGAMBILAN ANGKA EKIVALEN BEBAN KENDARAAN PADA PERHITUNGAN TEBAL PERKERASAN FLEKSIBEL DI JALAN MANADO BITUNG

KEUNTUNGAN DAN KERUGIAN FLEXIBLE PAVEMENT DAN RIGID PAVEMENT. Oleh : Dwi Sri Wiyanti

KERUSAKAN DAN PERBAIKAN PERKERASAN KAKU PADA RUAS JALAN TOL CIPULARANG ABSTRAK

RINGKASAN. Kata Kunci : Tanah Ekspansif, Repetisi Beban, Tegangan Tanah, Penurunan Tanah

BAB 1 PENDAHULUAN 1.1 Latar Belakang

PERHITUNGAN SLAB LANTAI JEMBATAN

ANALISIS PENGARUH KONDISI PONDASI MATERIAL BERBUTIR TERHADAP UMUR PELAYANAN JALAN DENGAN METODE ANALITIS

BAB 3 METODOLOGI PENELITIAN

SKRIPSI PERBANDINGAN PERHITUNGAN PERKERASAN LENTUR DAN KAKU, DAN PERENCANAAN GEOMETRIK JALAN (STUDI KASUS BANGKALAN-SOCAH)

BAB 1 PENDAHULUAN. negara adalah infrastruktur jalan. Menurut Undang Undang Republik Indonesia

PERILAKU BALOK BETON SANDWICH DALAM MENERIMA BEBAN LENTUR TESIS MAGISTER OLEH FIRDAUS

ANALISA PENGARUH SUHU TERHADAP UMUR PELAYANAN JALAN DENGAN METODE ANALITIS (STUDI KASUS PADA JALAN PANTURA RUAS REMBANG - BULU)

STUDI ANALISIS PERTEMUAN BALOK KOLOM BERBENTUK T STRUKTUR RANGKA BETON BERTULANG DENGAN PEMODELAN STRUT-AND- TIE ABSTRAK

Evaluasi Struktural Perkerasan Lentur Menggunakan Metode AASHTO 1993 dan Metode Bina Marga 2013 Studi Kasus: Jalan Nasional Losari - Cirebon

BAB I PENDAHULUAN. satu atau beberapa lapis perkerasan dari bahan-bahan yang diproses, dimana

I. PENDAHULUAN A. Latar Belakang

BAB 3 METODOLOGI. Adapun rencana tahap penelitian ini adalah : 1. Penelitian ini dimulai dengan mengidentifikasikan masalah yang dilakukan

Tugas Akhir. untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S - 1 Teknik Sipil. diajukan oleh :

Bab III Metodologi Penelitian

PERENCANAAN TEBAL PERKERASAN TAMBAHAN MENGGUNAKAN METODE BENKELMAN BEAM PADA RUAS JALAN SOEKARNO HATTA, BANDUNG

STUDI KARAKTERISTIK PENENTUAN TINGKAT PEMBEBANAN KENDARAAN TERHADAP TEBAL LAPIS PERKERASAN JALAN

KOMPENSASI BIAYA PEMELIHARAAN JALAN BERBASIS BEBAN KENDARAAN TESIS MERY CHRISTINA PAULINA SILALAHI NIM :

PENGARUH TEMPERATUR TERHADAP MODULUS ELASTISITAS DAN ANGKA POISSON BETON ASPAL LAPIS AUS DENGAN BAHAN PENGISI KAPUR

BAB II TINJAUAN PUSTAKA

Parameter perhitungan

BAB V EVALUASI V-1 BAB V EVALUASI

BAB I PENDAHULUAN Latar Belakang Masalah

PENENTUAN TEBAL LAPIS TAMBAH PERKERASAN LENTUR BERDASARKAN LENDUTAN BALIK PADA RUAS JALAN WANAYASA BATAS PURWAKARTA SUBANG ABSTRAK

PERENCANAAN STRUKTUR PERKERASAN LANDAS PACU BANDAR UDARA SYAMSUDIN NOOR BANJARMASIN

Potensi Pengaruh Beban Overloading Terhadap Perkerasan (Studi Kasus : Jalan Raya Lubuk Pakam, Sumatera Utara)

BAB I PENDAHULUAN. memberikan dampak yang buruk pula. Jalan yang baik memberikan manfaat seperti ;

Transkripsi:

Volume 2 Nomor 2, Desember 213 ISSN 232-424 PENGARUH JENIS PEMBEBANAN DALAM ANALISIS STRUKTUR PERKERASAN LENTUR TERHADAP KINERJA PERKERASAN Eri Susanto Hariyadi 1, Rulhendri 2 Program Studi Teknik Sipil dan Lingkungan ITB Bandung (erisdi@yahoo.com) Program Studi Teknik Sipil FT UIKA Bogor (rulhendri@gmail.com) ABSTRAK Dasar dari metoda analisis struktur memerlukan perhitungan tegangan dan regangan pada suatu perkerasan yang merupakan respons struktur terhadap kondisi pembebanan tertentu. Didalam solusi analitis tegangan dan regangan tersebut, seringkali dilakukan simplifikasi dengan mengambil beberapa asumsi, seperti : kondisi isotropik dari setiap lapis perkerasan, kondisi interface antar lapis sangat kasar serta beban yang diterima struktur perkerasan yang diakibatkan roda kendaraan mempunyai arah vertikal. Asumsi diatas akan menghasilkan nilai tegangan, dan regangan yang belum sesuai dengan kenyataan. Oleh karena itu diperlukan pengembangan asumsi kearah faktor-faktor tersebut terutama faktor tipe pembebanan. Untuk variasi pembebanan ada 4 jenis pembebanan yang mungkin terjadi yaitu beban arah vertikal yang saat ini secara luas dipakai pada analisis struktur perkerasan lentur, beban vertikal yang dikombinasikan dengan tegangan geser arah radial memusat akibat cengkeraman ban, beban vertikal yang dikombinasikan dengan tegangan arah horizontal akibat percepatan dan pengereman kendaraan dan beban verikal yang dikombinasikan dengan momen akibat kendaraan membelok. Dengan menggunakan kriteria fatigue dapat dianalisis bahwa jenis pembebanan arah vertikal yang dikombinasikan dengan arah radial menghasilkan jumlah repetisi yang tiga kali lebih besar dibandingkan dengan pembebanan vertikal saja. Dalam pengertian umur perkerasan, pembebanan dengan mengabaikan beban arah pusat radial akan mengakibatkan perkiraan rencana umur perkerasan yang berlebihan. Penerapan model ini pada Jalan Tol Jakarta- Cikampek menunjukkan bahwa pengabaian beban geser radial memusat akan menyebabkan kerusakan jalan yang terlambat diantisipasi dengan program overlay akibat estimasi umur rencana yang lebih dari perkiraan. Kata Kunci : Perkerasan, Umur Perkerasan, Fatigue ABSTRACT The basis of structural analysis methods require the calculation of stress and strain in a pavement structure which is a response to specific loading conditions. In the analytical solutions of stresses and strains, the simplification is often done by taking a few assumptions, such as isotropic condition of each pavement layer, inter-layer interface conditions are very rough and received loads of pavement structure caused by a vehicle wheel having a vertical direction. The above assumptions would produce a voltage value, and the strain that has not fit with reality. Therefore, the assumption is needed towards the development of these factors, especially factor loading type. For loading variations there are 4 types of loading that may occur is the vertical load that is currently widely used in the analysis of flexible pavement structure, the vertical load combined with converging radial direction of the shear stress due to 'grip' tires, vertical loads are combined with horizontal tension due to acceleration and braking of the vehicle and load verikal combined with the moment due to turning vehicles. By using the criteria of fatigue can be analyzed that the type of loading the vertical direction, combined with the radial direction produces the number of repetitions three times larger than the vertical loading only. Pavement in terms of age, regardless of loading direction of the central radial load will result in estimates of pavement life plan is excessive. The application of this model on Jakarta-Cikampek toll road showed that the neglect of radial concentrated load shear will cause damage to the road overlay program anticipated to be late due to the estimated design life of more than forecast. Keywords: Load Pavement, Pavement Age, Fatigue 1. PENDAHULUAN Dasar dari metoda analisis struktur memerlukan perhitungan tegangan dan regangan pada suatu perkerasan yang merupakan respons struktur terhadap kondisi pembebanan tertentu. Didalam solusi analitis tegangan dan regangan tersebut, seringkali dilakukan simplifikasi dengan mengambil beberapa asumsi, seperti : kondisi isotropik dari setiap lapis perkerasan, kondisi interface antar lapis sangat kasar serta beban yang diterima struktur perkerasan yang diakibatkan roda kendaraan mempunyai arah vertikal. [1] Asumsi diatas akan menghasilkan nilai tegangan, dan regangan yang belum Jurnal Rekayasa Sipil ASTONJADRO 49

Eri Susanto Hariyadi, RUlhendri, Pengaruh Jenis Pembebanan Dalam Analisis Struktur Perkerasan Lentur Terhadap Kinerja Perkerasan sesuai dengan kenyataan. Oleh karena itu diperlukan pengembangan asumsi kearah faktor-faktor tersebut terutama faktor tipe pembebanan. Seiring dengan perkembangan analisis struktur yang berbasis teknologi komputer, pengembangan asumsi diatas dapat direalisasikan dengan melibatkan kondisi anisotropik, kondisi interface tidak kasar dan variasi tipe pembebanan, sehingga dihasilkan solusi tegangan dan regangan yang dapat mengakomodasi kondisi sebenarnya di lapangan. Salah satu program komputer yang dapat dipakai adalah CIRCLY yang berbasis metoda transformasi integral. [2] Tujuan dari studi ini adalah melakukan analisis variasi pembebanan dan mengevaluasi pengaruhnya terhadap perilaku fatigue dan permanent deformation serta hubungannya dengan umur perkerasan dengan mengambil studi kasus pada Jalan Tol Jakarta-Cikampek 2. VARIASI PEMBEBANAN TEORITIS PADA STRUKTUR PERKERASAN Struktur perkerasan teoritis yang akan ditinjau adalah struktur perkerasan lentur yang multilayer, elastis dan isotropis seperti terlihat pada Gambar 1. 1 cm Lapis Permukaan E=3 v=.4 4 cm Lapis Pondasi E = 5 V =.35 Tak terhingga Subgrade E = 5 V =.45 Gambar 1 Struktur Perkerasan Teoritis Dalam menganalisis variasi pembebanan, secara teoritis terdapat empat tipe pembebanan seperti terlihat pada Gambar 2 [3]. TIPE I TIPE II TIPE III TIPE IV SKEMA PEMBEBANAN + + + KETERANGAN vertikal Kombinasi beban vertikal&geser radial memusat akibat cengkeraman ban Kombinasi beban vertikal dan beban horizontal akibat pengereman Kombinasi beban vertikal & momen akibat kendaraan menikung Gambar 2 Variasi Pembebanan [3] 5 hal 49-57 aspal beton baja hidro

Volume 2 Nomor 2, Desember 213 ISSN 232-424 akibat roda kendaraan diasumsikan berbentuk lingkaran. tipe I adalah beban arah vertikal yang saat ini secara luas dipakai pada analisis struktur perkerasan lentur. Pembebanan tipe II adalah beban tipe I yang dikombinasikan dengan tegangan geser arah radial memusat akibat cengkeraman ban, yang merupakan representasi terbaik dari pergerakan kendaraan dengan kecepatan konstan [3]. Pembebanan Tipe III adalah beban tipe I yang dikombinasikan dengan tegangan arah horizontal akibat percepatan dan pengereman kendaraan. Pembebanan tipe IV adalah beban tipe I yang dikombinasikan dengan momen pada sumbu vertikal akibat kendaraan membelok. Setiap tipe beban seperti pada Gambar 2 mempunyai konfigurasi beban roda ganda dengan as tunggal atau Single Axle Dual Wheel dengan jarak antar sumbu roda sebesar 33 mm dan jari-jari bidang kontak sebesar 17.6 mm, seperti pada Gambar 3. Nilai tegangan setiap pola beban dapat dilihat pada Tabel 1. Gambar 3 Layout Pembebanan Tabel 1 Nilai Tegangan Kontak [4] Vertikal Radial Horizontal Momen Tegangan Kontak (KPa) 55 413 275 413 3. KONTUR TEGANGAN DAN REGANGAN AKIBAT VARIASI PEMBEBANAN Keempat tipe pembebanan pada Gambar 2 diterapkan pada Struktur Perkerasan Isotropik Gambar 1, dan dengan bantuan program. CIRCLY didapat nilai tegangan regangan untuk setiap tipe pembebanan. Kontur tegangan dan regangan horizontal pada lapis permukaan untuk setiap tipe pembebanan dapat dilihat pada Gambar 4 Tegangan (KPa) Regangan (microstrain) Jurnal Rekayasa Sipil ASTONJADRO 51

Eri Susanto Hariyadi, Pengaruh Jenis Pembebanan Dalam Analisis Struktur Perkerasan Lentur Terhadap Kinerja Perkerasan 2 4 6 8 2 4 6 8 1 1 Pembebanan Tipe I (vertikal) 2 4 6 8 2 4 6 8 1 1 Pembebanan Tipe II (vertikal+radial) -2-4 -6-8 2 4 6 8-1 1 Pembebanan Tipe III (vertikal+horizontal) 2 4 6 8 2 4 6 8 1 1 Pembebanan Tipe IV (vertikal+momen) Gambar 4 Kontur Tegangan dan Regangan Horizontal Pada Gambar 4 kontur tegangan dan regangan untuk pembebanan tipe I, III, dan IV mempunyai pola yang sama, artinya penambahan tipe beban horizontal dan momen tidak terlalu berpengaruh terhadap tegangan regangan yang terjadi. Sedangkan pembebanan tipe II kontur tegangan dan regangan mempunyai pola yang berbeda, yaitu terjadi pola tegangan tarik pada daerah tepi roda kiri dan kanan bagian atas. Pola tegangan tarik di daerah permukaan ini, terkait dengan perilaku fatigue, sehingga apabila terakumulasi selama umur perkerasan, akan menyebabkan retak di lapis permukaan. Oleh karena itu analisis terkait dengan fatigue akan diuraikan pada analaisis berikut. 4. ANALISIS VARIASI PEMBEBANAN TERHADAP PRILAKU FATIGUE Untuk menganalisis pengaruh variasi pembebanan terhadap perilaku fatigue, dilakukan perbandingan antar variasi berdasarkan jumlah repetisi beban kriteria fatigue seperti terlihat persamaan 1. [4] Nf 6918(.856V Smix t B 1.8).36 5 (1) N f = jumlah repetisi beban kriteria fatigue 52 hal 49-57 aspal beton baja hidro

Volume 2 Nomor 2, Desember 213 ISSN 232-424 V B = kadar aspal dalam campuran dinyatakan sebagai % volume Smix = stiffness modulus campuran t = regangan tarik horizontal maksimum Pertama-tama ditentukan terlebih dahulu tipe pembebanan yang menyebabkan regangan maksimum tertentu yang dijadikan referensi. Kemudian regangan maksimum akibat variasi pembebanan yang lain dibandingkan dengan tipe pembebanan referensi tersebut, sehingga didapat rasio repetisi beban kriteria fatigue seperti pada persamaan 2, yaitu : R f = rasio repetisi beban kriteria fatigue tref = regangan tarik horizontal maksimum tipe pembebanan referensi t = regangan tarik horizontal maksimum Rf 5 tref t (2) dengan mengambil pembebanan tipe I dan II sebagai referensi, maka dengan menggunakan persamaan (2) nilai rasio repetisi beban dengan kriteria fatigue untuk setiap variasi pembebanan dapat dilihat pada Tabel 2. Tabel 2 Nilai Rasio Repetisi kriteria Fatigue NO VARIASI (microstrain) Jurnal Rekayasa Sipil ASTONJADRO 53 R Keterangan 1 Tipe I : Vertikal -11.2 3 Tipe II sebagai referensi 2 Tipe II : Vertikal+Radial -137.6 1 Tipe II sebagai referensi 3 Tipe III : Vertikal+Horizontal -11.8.97 Tipe I sebagai referensi 4 Tipe IV : Vertikal+Momen -11.6.98 Tipe I sebagai referensi Dari tiga variasi pembebanan seperti yang terlihat pada Tabel 2, variasi nomor 1 mempunyai rasio yang cukup signifikan dibandingkan dengan variasi nomor 3 dan variasi nomor 4. Rasio dengan nilai 3 artinya jumlah repetisi beban tipe I adalah tiga kali lebih besar dibandingkan tipe II. Dalam pengertian umur perkerasan, pembebanan dengan mengabaikan beban arah pusat radial akan mengakibatkan perkiraan rencana umur perkerasan yang berlebihan (over estimate). Variasi nomor 3 yang melibatkan beban akibat pengereman serta variasi nomor 4 yang melibatkan beban kendaraan akibat menikung, tidak berpengaruh pada jumlah repetisi beban untuk pembebanan apabila beban horizontal dan momen diabaikan. Hal ini terlihat dari nilai indeks relatifnya yang mendekati nilai 1. 4. ANALISIS UMUR SISA PERKERASAN LENTUR Umur sisa atau Remaining Life sebenarnya merupakan alat kontrol untuk mengevaluasi sampai sejauh mana posisi pembebanan lalu lintas aktual terhadap pembebanan lalu lintas rencana. Analisis yang dilakukan adalah pada tahun saat evaluasi, pembebanan lalu lintas rencana telah terlampaui atau masih tersisa pada tahun rencana, sehingga dapat menjadi bahan masukan untuk mengevaluasi perlu atau tidaknya dilakukan pelapisan ulang atau overlay. Karena melibatkan pembebanan lalu lintas aktual, maka diperlukan studi kasus untuk mendukung analisis umur sisa perkerasan lentur. Studi kasus yang akan diambil adalah ruas Jalan Tol Jakarta-Cikampek pada sub ruas Bekasi Timur Cibitung (Km.18+5

Eri Susanto Hariyadi, Rulhendri, Pengaruh Jenis Pembebanan Dalam Analisis Struktur Perkerasan Lentur Terhadap Kinerja Perkerasan Km.25+), arah ke Cikampek (Jalur A), dalam rentang evaluasi dari tahun 1988 sampai dengan 21. Jalan Tol Jakarta-Cikampek ini mempunyai umur rencana 2 tahun tetapi masih jauh dari selesainya umur rencana tersebut, pada tahun 1995 sepanjang sub ruas ini telah dilakukan pekerjaan pelapisan ulang (overlay) [5]. Model struktur Perkerasan yang dilibatkan pada analisis umur sisa ini terlihat pada Gambar 5. Gambar 5 Geometri Perkerasan Jalan Tol Jakarta-Cikampek [5] 4.1 Analisis beban lalu lintas Data volume lalu lintas harian yang dapat dikumpulkan terbagi dalam dua jenis, yaitu AADT dari tahun 1988 sampai dengan 1994 dan ADT (bulanan) dari tahun 1995 sampai dengan 21 dengan klasifikasi sesuai kategori pembayaran tol. Data jenis AADT (1988-1994) didapat dari penelitian sebelumnya dengan studi kasus Jalan Tol Jakarta-Cikampek [6]. Sedangkan data volume jenis ADT (1995-21) didapat dari PT. Jasa Marga. Tabel 3 berikut adalah rangkuman data volume lalu lintas dalam bentuk AADT. Data volume lalu lintas yang sudah didapatkan ini harus dikonversi ke Equivalent Standard Axle Load (ESAL) dengan suatu faktor ekivalen, yaitu LEF (Load Equivalency Factors) untuk kategori sumbu (axle) atau TF (Truck Factor) untuk kategori kendaraan. Nilai ekivalen jenis TF, komposisi lalu lintas dan faktor distribusi kendaraan berat didapat dari WIM Survey pada KM 19+875. 54 hal 49-57 aspal beton baja hidro

Volume 2 Nomor 2, Desember 213 ISSN 232-424 Tabel 3. Data Volume Lalu lintas 4.2 Perhitungan Repetisi Rencana (N d ) Untuk mendapatkan nilai Repetisi Rencana (N d ) perlu dihitung dulu nilai t pada bagian bawah AC dan ATB dan c pada bagian atas limestone dan subgrade untuk setiap variasi. Dari nilai t dan c ini dihitung nilai N f dan N d untuk setiap variasi. Nilai N f dihitung dari Np 7. 8511 14 c persamaan 1 dengan nilai VB=6% dan Smix adalah nilai modulus elastis lapisan yang merupakan persamaan berdasarkan kriteria fatigue, sedangkan nilai N p dihitung dari persamaan 3 yang merupakan persamaan berdasarkan kriteria permanen deformation [4].(3) N p = jumlah repetisi beban (umur perkerasan) terkait kriteria permanent deformation c = regangan tekan vertikal maksimum. Tabel 4. Variasi Model Pembebanan No Nama Variasi Pembebanan 1 Variasi A Vertikal 2 Variasi B Vertikal+Radial 3 Variasi C Vertikal+Horizontal 4 Variasi D Vertikal+Momen Jurnal Rekayasa Sipil ASTONJADRO 55

Eri Susanto Hariyadi, Pengaruh Jenis Pembebanan Dalam Analisis Struktur Perkerasan Lentur Terhadap Kinerja Perkerasan Dari empat variasi yang dikembangkan seperti yang terlihat pada Tabel 4, diambil nilai yang terkecil dari N f dan N p untuk setiap variasi sebagai nilai N rencana (N d ) yang terangkum pada Tabel 5. Tabel 5. Nilai N d Setiap Variasi Variasi Lapis Nf Np N d AC 12.4-1.1E+11 ATB 61.6-9.14E+7 Variasi IA Limestone - 23.5 3.77E+11 Subgrade - 134.3 7.34E+12 AC 1.9-2.1E+11 - ATB 68.2-5.49E+7 - Variasi IB Limestone - 28.8-3.14E+11 Subgrade - 136.5-6.53E+12 AC 12.4-1.1E+11 - ATB 61.6-9.14E+7 - Variasi IC Limestone - 23.5 3.77E+11 Subgrade - 134.3 7.34E+12 AC 12.4-1.1E+11 - ATB 61.6-9.14E+7 - Limestone - 23.5 3.77E+11 Variasi ID Subgrade - 134.3 7.34E+12 ATB 77.98-2.81E+7 - Limestone - 29.7-2.96E+1 Subgrade - 189.7-6.23E+11 9.14E+7 5.49E+7 9.14E+7 9.14E+7 4.3 Analisis variasi terhadap Umur Sisa Seperti yang telah dijelaskan sebelumnya bahwa umur sisa merupakan suatu parameter untuk mengevaluasi sampai sejauh mana posisi pembebanan lalu lintas aktual terhadap pembebanan lalu lintas rencana. Selisih dari pembebanan lalu lintas rencana dengan lalu lintas aktual adalah umur sisa dari perkerasan tersebut, seperti terlihat pada Tabel 6. Tabel 6. Umur Sisa Setiap Variasi Pada Kondisi Jalan Belum Di Overlay Variasi Lalu Lintas Rencana Lalu Lintas Aktual Umur Sisa (1) (2) (3) (4)=(2) - (3) Variasi A 9.14E+7 8.12E+7 1.1E+7-2.63E+7 Variasi B 5.49E+7 8.12E+7 (*) Variasi C 9.14E+7 8.12E+7 1.1E+7 Variasi D 9.14E+7 8.12E+7 1.1E+7 Terdapat beberapa hal yang dapat dianalisis terkait dengan perhitungan umur sisa dari berbagai macam variasi seperti yang terlihat pada Tabel 6, yaitu : (*) Umur perkerasan sudah terlewati 1) Pada variasi A yaitu pembebanan arah vertikal, masih terdapat umur sisa sebesar 56 hal 49-57 aspal beton baja hidro

Volume 2 Nomor 2, Desember 213 ISSN 232-424 1 juta repetisi beban as standar berdasarkan nilai repetisi beban rencana terkait dengan kriteria fatigue pada lapis ATB. 2) Jika variasi B dianggap mewakili kondisi pembebanan yang sebenarnya di lapangan, maka program overlay harus dilakukan sebelum tahun 21. Pengabaian beban geser radial memusat akan menyebabkan kerusakan jalan yang terlambat diantisipasi dengan program overlay. 3) Pengabaian beban horizontal dan momen tidak berpengaruh secara signifikan terhadap umur sisa, seperti terlihat pada variasi C dan variasi D. 5 KESIMPULAN 1) Pada variasi pembebanan vertikal dengan melibatkan tegangan geser radial memusat (radial inward shear stress), akan menaikkan nilai regangan tarik pada bagian bawah lapis aspal. tipe ini merupakan representasi pembebanan dari kendaraan yang bergerak dengan kecepatan konstan. 2) Pembebanan dengan mengabaikan beban radial memusat akan mengakibatkan perkiraan rencana umur perkerasan yang berlebihan (over estimate) atau desain tebal perkerasan yang kurang (under estimate). 3) Untuk variasi pembebanan vertikal dengan melibatkan tegangan arah horizontal atau gaya momen, tidak menyebabkan kenaikan regangan tarik pada bagian bawah lapis aspal yang signifikan. Pembebanan vertikal dengan melibatkan tegangan horizontal atau momen, berturut-turut merupakan representasi dari pembebanan akibat pengereman atau kendaran membelok pada tikungan. 4) Pembebanan dengan melibatkan beban horizontal atau momen, tidak berpengaruh pada perkiraan rencana umur perkerasan atau desain tebal perkerasan apabila beban horizontal dan momen tersebut diabaikan 5) Akumulasi ESAL dalam rentang evaluasi dari tahun 1988-21 adalah sebesar 8.12x1 7 pada lajur perencanaan. Perhitungan umur sisa didasarkan atas kriteria kritis yang merupakan repetisi beban rencana (N d ) minimum setiap variasi. Dari studi kasus yang diambil, kriteria kritisnya adalah kriteria fatigue pada lapis ATB yang terjadi pada semua variasi. 6) Dari perhitungan jumlah repetisi beban rencana (Nd), Variasi A sebagai kasus yang biasanya dilakukan pada desain perkerasan lentur, mempunyai nilai Nd yang paling besar disamping Variasi C dan D. Dibandingkan dengan Variasi A, terjadi penurunan Lalu lintas Rencana pada Variasi B menjadi 6% nya. 7) Variasi perkerasan lentur yang mewakili kondisi ruas jalan tol, adalah variasi pada kondisi pembebanan pada variasi B (beban vertikal dikombinasikan dengan beban radial memusat) namun masih perlu studi lanjutan dengan data yang lebih lengkap pada jalan tol lainnya untuk menguji model ini DAFTAR PUSTAKA AUSTROADS (1992), Pavement Design, Australian Road Research Board, Sydney Brown, S.F., Pappin, J.W. (1982) Use of A Pavement Test Facility for The Validation of Analytical Design Methods. Proceeding Fifth International Conference on The Structural Design of Asphalt Pavement, Volume 1. University of Michigan. Gerrard, C.M., Wardle, L.J. (198) Rational Design of Surface Pavement Layer. Australian Road Research. Vol 1 No. 2. JASA MARGA, P.T. (21), Volume Kendaraan pada Jalan Tol di Indonesia. PT. Jasa Marga Persero. Jakarta Suwendi (1995), Pengkajian Keutuhan Struktur Perkerasan Jalan Tol Jakarta-Cikampek, Thesis Program Sistem dan Teknik Jalan Raya Institut Teknologi Bandung. Wardle, L J (1977), Program Circly. A Computer Program for the Analysis of Multiple Complex Circular Loads on Layered Anisotropic Media. Users Manual. CSIRO Division of Appliedd Geomechanics (Geomechanics Program No.2). Melbourne Australia Jurnal Rekayasa Sipil ASTONJADRO 57