PERENCANAAN TRIBUN STADION UTAMA PALARAN KOTA SAMARINDA DENGAN BETON PRACETAK. Oleh : Maya Silva Dora

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA

MODIFIKASI PERENCANAAN GEDUNG SEKOLAH TERANG BANGSA DENGAN METODE PRACETAK (PRECAST) DAN SISTEM RANGKA GEDUNG (BUILDING FRAME SYSTEM)

MODIFIKASI PERENCANAAN GEDUNG APARTEMEN TRILIUM DENGAN METODE PRACETAK (PRECAST) PADA BALOK DAN PELAT MENGGUNAKAN SISTEM RANGKA GEDUNG (BUILDING

PERENCANAAN GEDUNG RESEARCH CENTER-ITS SURABAYA DENGAN METODE PRACETAK

BAB I PENDAHULUAN BAB II TINJAUAN PUSTAKA

MODIFIKASI STRUKTUR GEDUNG ASRAMA MAHASISWA UGM KOMPLEKS KINANTI MENGGUNAKAN METODE PRACETAK (PRECAST) DENGAN SISTEM RANGKA GEDUNG (BUILDING FRAME

TONNY RIZKYA NUR S ( ) DOSEN PEMBIMBING :

PERENCANAAN ULANG GEDUNG POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN BETON PRACETAK

BAB II STUDI PUSTAKA

EKO PRASETYO DARIYO NRP : Dosen Pembimbing : Ir. Djoko Irawan, MS

BAB II TINJAUAN PUSTAKA

MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

PERENCANAAN GEDUNG RESEARCH CENTER-ITS SURABAYA DENGAN METODE PRACETAK

MODIFIKASI GEDUNG BANK CENTRAL ASIA CABANG KAYUN SURABAYA DENGAN MENGGUNAKAN SISTEM GANDA

TUGAS AKHIR RC

PERANCANGAN MODIFIKASI STRUKTUR GEDUNG BPK RI SURABAYA MENGGUNAKAN BETON PRACETAK DENGAN SISTEM RANGKA GEDUNG

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

MODIFIKASI PERENCANAAN MENGGUNAKAN METODE PRACETAK DENGAN SHERWALL PADA GEDUNG BANK BCA CABANG RUNGKUT SURABAYA

PERENCANAAN STRUKTUR STADION MIMIKA MENGGUNAKAN SISTEM RANGKA PEMIKUL MOMEN MENENGAH DENGAN STRUKTUR ATAP SPACE FRAME

BAB III ANALISA PERENCANAAN STRUKTUR

BAB IV PEMODELAN STRUKTUR

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Permasalahan Dalam perancangan struktur gedung perkantoran dengan Sistem Rangka Gedung (Building Frame System)

PERENCANAAN GEDUNG HOTEL 4 LANTAI & 1 BASEMENT DENGAN SISTEM DAKTAIL PARSIAL DI WILAYAH GEMPA 4

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB 2 DASAR TEORI Dasar Perencanaan Jenis Pembebanan

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

Modifikasi Perencanaan Struktur Rumah Susun Sederhana Sewa (Rusunawa) Kota Probolinggo Dengan Metode Sistem Rangka Gedung

Modifikasi Perencanaan Gedung Rumah Sakit Umum Daerah (RSUD) Koja Jakarta Dengan Metode Pracetak

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

PERENCANAAN ULANG GEDUNG PERKULIAHAN POLITEKNIK ELEKTRONIKA NEGERI SURABAYA (PENS) DENGAN MENGGUNAKAN METODE PRACETAK

PERANCANGAN MODIFIKASI STRUKTUR FLAT SLAB DENGAN SISTEM STRUKTUR SRPMM DAN SHEAR WALL PADA GEDUNG RSUD KEPANJEN MALANG

PERENCANAAN STRUKTUR GEDUNG RUMAH SUSUN SEDERHANA DAN SEWA ( RUSUNAWA ) MAUMERE DENGAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS

PERENCANAAN MENARA SAINS FMIPA ITS DENGAN METODE PRACETAK

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Modifikasi Perencanaan Struktur Gedung Tower C Apartemen Aspen Admiralty Jakarta Selatan Dengan Menggunakan Baja Beton Komposit

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB III PEMODELAN STRUKTUR

BAB IV ANALISA STRUKTUR

MODIFIKASI PERENCANAAN STRUKTUR RUMAH SUSUN SEDERHANA SEWA (RUSUNAWA) KOTA PROBOLINGGO DENGAN METODE SISTEM RANGKA GEDUNG

Jl. Banyumas Wonosobo

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

T I N J A U A N P U S T A K A

LAPORAN PERHITUNGAN STRUKTUR

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA

PERANCANGAN MODIFIKASI STRUKTUR GEDUNG RUMAH SAKIT UMUM DAERAH (RSUD) KEPANJEN MALANG DENGAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS UNTUK DIBANGUN DI ACEH

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB II TINJAUAN PUSTAKA

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

BAB II TINJAUAN PUSTAKA. struktur yang paling utama dalam sebuah bangunan. Suatu struktur kolom

BAB III STUDI KASUS 3.1 UMUM

DAFTAR ISI. 1.1 Latar Belakang Perumusan Masalah Tujuan Batasan Masalah Manfaat... 4 BAB II TINJAUAN PUSTAKA...

MAHASISWA ERNA WIDYASTUTI. DOSEN PEMBIMBING Ir. HEPPY KRISTIJANTO, MS.

TEKNOLOGI APLIKASI BETON PRACETAK DAN PRATEGANG BIDANG PERUMAHAN DAN PERMUKIMAN

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

BAB 4 STUDI KASUS. Sandi Nurjaman ( ) 4-1 Delta R Putra ( )

BAB II TINJAUAN PUSTAKA

BAB III METODE PENELITIAN

STUDI PERILAKU SAMBUNGAN BALOK-KOLOM (BEAM-COLUMN JOINTS) PADA BANGUNAN STRUKTUR BETON BERTULANG KOMPOSIT (STEEL REINFORCED CONCRETE)

BAB II TINJAUAN PUSTAKA. tingkat kerawanan yang tinggi terhadap gempa. Hal ini dapat dilihat pada berbagai

PERANCANGAN MODIFIKASI STRUKTUR GEDUNG RUSUNAWA LAKARSANTRI SURABAYA MENGGUNAKAN METODE PRACETAK DENGAN SISTEM DINDING PENUMPU.

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

BAB I PENDAHULUAN Tujuan


MODIFIKASI PERENCANAAN UPPER STRUKTUR SISTEM RANGKA PEMIKUL MOMEN MENENGAH PADA GEDUNG PERKANTORAN DAN PERDAGANGAN JL. KERTAJAYA INDAH TIMUR SURABAYA

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

Kata kunci : Dinding Geser, Rangka, Sistem Ganda, Zona Gempa Kuat. Latar Belakang

PERANCANGAN MODIFIKASI DENGAN MENGGUNAKAN. Oleh : Sulistiyo NRP Dosen Pembimbing : Ir. Iman Wimbadi, MS

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB III LANDASAN TEORI. A. Pembebanan

BAB I PENDAHULUAN. Ada beberapa hal yang menyebabkan banyaknya bangunan tinggi diberbagai

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

MODIFIKASI PERENCANAAN GEDUNG GRAHA AMERTA RSU Dr. SOETOMO SURABAYA MENGGUNAKAN STRUKTUR KOMPOSIT BAJA BETON

BAB III ANALISA STRKTUR

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

BAB 2 DASAR TEORI. Bab 2 Dasar Teori. TUGAS AKHIR Perencanaan Struktur Show Room 2 Lantai Dasar Perencanaan

konstruksi Walaupun yaitu dari bahan dibuat pemecahan serta berubah.

Oleh : MUHAMMAD AMITABH PATTISIA ( )

MODIFIKASI PERENCANAAN JEMBATAN KALI BAMBANG DI KAB. BLITAR KAB. MALANG MENGGUNAKAN BUSUR RANGKA BAJA

PERANCANGAN ULANG STRUKTUR ATAS GEDUNG PERKULIAHAN FMIPA UNIVERSITAS GADJAH MADA

BAB I KOLOM BAJA, BALOK BAJA DAN PLAT LANTAI

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

Desain Struktur Beton Bertulang Tahan Gempa

BAB I PENDAHULUAN. Dewasa ini seiring dengan berkembangnya pengetahuan dan teknologi,

Transkripsi:

PERENCANAAN TRIBUN STADION UTAMA PALARAN KOTA SAMARINDA DENGAN BETON PRACETAK Oleh : Maya Silva Dora 302 00 00 Dosen Pembimbing : Prof.Dr.Ir. I Gusti Putu Raka Ir. Aman Subakti, MS ABSTRAK Dalam merencanakan stadion dibutuhkan perhitungan yang sangat teliti dan penuh hati-hati. Karena stadion merupakan bangunan besar yang nantinya akan digunakan atau diisi oleh manusia dalam jumlah yang banyak. Selain dikategorikan sebagai bangunan monumental, stadion juga direncanakan agar dapat digunakan pada keadaan emergensi. Perencanaan stadion meliputi struktur bagian atas dan struktur bagian bawah. Struktur bagian atas terdiri dari atap dan tribun, sedangkan yang termasuk struktur bagian bawah adalah poer dan pondasi. Dalam Tugas Akhir ini akan dibahas mengenai perencanaan tribun. Karena adanya keseragaman bentuk struktur dalam jumlah yang banyak, maka digunakan metode pelaksanaan dan material beton pracetak. Beton pracetak yang bertujuan untuk memudahkan pekerjaan di lapangan dan untuk mendapatkan hasil yang lebih akurat karena elemen-elemen stadion berupa beton sudah dicetak terlebih dahulu di pabrik dengan perhitungan yang matang. Selain itu, beton pracetak dapat mengatasi masalah pengadaan material di Kalimantan Timur. Contohnya material pasir yang tidak tersedia di Kaltim, melainkan didatangkan dari kota Palu. Sistem pracetak memiliki kelebihan dan kekurangan jika dibanding dengan sistem konvensional. Kelebihannya adalah dapat mempercepat waktu penyelesaian proyek sehingga pengembalian investasi lebih cepat, lebih praktis, dan biaya semakin hemat pada jumlah pemakaian elemen yang semakin banyak dengan tipe yang berulang. Kekurangannya adalah pada ketidakmampuannya didalam menahan gaya lateral, dan pelaksanaan pemasangan elemen stadion di lapangan karena kurangnya jumlah tenaga pelaksana di Indonesia yang terlatih dan berpengalaman pada proyek konstruksi dengan menggunakan sistem ini. Kata kunci : stadion, tribun, beton pracetak I. PENDAHULUAN.. LATAR BELAKANG Pada tahun 2008 mendatang, Indonesia akan menyelenggarakan PON (Pekan Olahraga Nasional) XIIV yang akan diselenggarakan di Kalimantan Timur. Untuk persiapan, dari tahun 2002 telah dibangun beberapa fasilitas pendukung. Fasilitas tersebut diantaranya perbaikan jalan, hotel, gedung olahraga, sirkuit, stadion dan lain-lain. Untuk fasilitas stadion, dibangun beberapa stadion madya di beberapa daerah dan satu stadion utama yang dibangun di daerah Simpang Pasir, Kecamatan Palaran, Kota Samarinda. Stadion ini dibangun dengan desain dan perhitungan yang paling efisien dan tepat. Mengingat dana yang tersedia sangatlah terbatas. Karena adanya keseragaman bentuk struktur dalam jumlah yang banyak, maka digunakan metode pelaksanaan dan material beton pracetak. Beton pracetak yang bertujuan untuk memudahkan pekerjaan di lapangan dan untuk mendapatkan hasil yang lebih akurat karena elemen-elemen stadion berupa beton sudah dicetak terlebih dahulu di pabrik dengan perhitungan yang matang. Selain itu, beton pracetak dapat mengatasi masalah pengadaan material di Kalimantan Timur. Sistem pracetak memiliki kelebihan dan kekurangan jika dibanding dengan sistem konvensional. Kelebihannya adalah dapat mempercepat waktu penyelesaian proyek sehingga pengembalian investasi lebih cepat, lebih praktis, dan biaya semakin hemat pada jumlah pemakaian elemen yang semakin banyak dengan tipe yang berulang. Kekurangannya adalah pada ketidakmampuannya didalam menahan gaya lateral, dan pelaksanaan pemasangan elemen stadion di lapangan karena kurangnya jumlah tenaga pelaksana di Indonesia yang terlatih dan berpengalaman pada proyek konstruksi dengan menggunakan sistem ini..2. PERMASALAHAN. Bagaimana merencanakan beton pracetak. 2. Bagaimana mengatasi masalah pengangkatan dan pemasangan beton pracetak. 3. Bagaimana menentukan jenis sambungan (Joint Connection)..3. TUJUAN PEMBUATAN TUGAS AKHIR Memberi alternatif perencanaan struktur Stadion Utama Palaran, Samarinda dengan beton pracetak dan pendetailan.

.4. BATASAN PERENCANAAN. Perencanaan hanya sebagian tribun, yaitu tribun D dan tribun G. 2. Perencanaan balok hanya menggunakan metode pracetak biasa (non prestresses). 3. Tidak melakukan analisa biaya. 4. Tidak meninjau segi arsitektural. 5. Tidak meninjau struktur bawah yang meliputi poer dan pondasi. 6. Tidak meninjau masalah perubahan volume akibat perubahan temperatur, creep dan shrinkage oleh beton..5. KONSEP DESAIN. Data bangunan : Nama banguna : Stadion Utama Palaran Lokasi : Kecamatan Palaran Samarinda, Kaltim Termasuk wilayah zona gempa 2. Fungsi : Stadion dan tempat pertunjukan Selain fungsi utama sebagai stadion, bangunan ini juga direncanakan untuk dapat digunakan sebagai tempat pertunjukan. Karena itu beban hidup yaitu penonton termasuk beban hidup bergerak atau dinamis. Tinggi gedung : 24 meter Jumlah lantai : 4 lantai tanpa atap Struktur gedung : Beton bertulang Jenis tanah : Tanah lunak 2. Mutu bahan : Beton : fc = 25 Mpa untuk elemen pracetak dan cor di tempat Baja : fy = 390 Mpa dari jenis ulir 3. Analisa pembebanan Berdasarkan RSNI 3 Tata Cara Penghitungan Pembebanan Untuk Bangunan Rumah Dan Gedung dan SNI 03-726-2002 Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan Gedung adalah :. Beban mati Berat seluruh bahan konstruksi gedung yang terpasang, termasuk dinding, lantai, atap, plafon, tangga, dinding partisi, finishing, komponen arsitektural dan struktural lainnya dan peralatan layan termasuk berat keran. 2. Beban hidup Beban yang dihasilkan akibat penggunaan dan penghunian gedung atau struktur lainnya tetapi tidak termasuk beban-beban konstruksi atau beban lingkungan, seperti beban angin, beban air hujan, beban gempa, beban air banjir, atau beban mati. Beban tribun LL = 4.79 kn/m 2 Beban lantai LL = 4.79 kn/m 2 Beban tempat duduk tetap LL = 2.87 kn/m 2 Beban tangga LL = 4.79 kn/m 2 3. Beban angin Semua beban yang bekerja pada gedung atau bagian gedung yang disebabkan oleh selisih dalam tekanan udara. Beban angin yang digunakan dalam desain system penahan angin utama untuk gedung tertutup atau gedung tertutup sebagian atau struktur lain, tidak boleh kurang dari 0.48 kn/m 2 dikalikan dengan luas gedung atau struktur yang diproyeksikan pada bidang vertikal tegak lurus terhadap arah angin yang diasumsikan. 4. Beban gempa Untuk struktur gedung tidak beraturan, pengaruh Gempa Rencana terhadap struktur gedung tersebut harus ditentukan melalui analisis respons dinamik 3 dimensi. Analisis Respons Dinamik (SNI 03 726 2002) Struktur stadion merupakan struktur gedung tidak beraturan. Oleh karena itu pengaruh Gempa Rencana harus ditinjau sebagai pengaruh pembebanan gempa dinamik, sehingga analisisnya harus dilakukan berdasarkan analisis respons dinamik. Nilai akhir respons dinamik struktur gedung terhadap pembebanan gempa nominal akibat pengaruh Gempa Rencana dalam suatu arah tertentu, tidak boleh diambil kurang dari 80% nilai respons ragam yang pertama. Bila respons dinamik struktur gedung dinyatakan dalam gaya geser dasar nominal V, maka persyaratan tersebut dapat dinyatakan menurut persamaan berikut : V 0,8 V V = C I W t R Dimana : V = gaya geser dasar nominal sebagai respons ragam yang pertama terhadap pengaruh Gempa Rencana C = nilai Faktor Respons Gempa yang didapat dari Spektrum Respons Gempa Rencana T = waktu getar alami pertama I = Faktor Keutamaan R = faktor reduksi gempa representatif dari struktur gedung yang bersangkutan W t = berat total gedung Pengaruh Gempa Vertikal Unsur unsur struktur gedung yang memiliki kepekaan yang tinggi terhadap beban gravitasi seperti balkon, kanopi dan balok kantilever berbentang panjang, balok transfer pada struktur gedung tinggi yang memikul beban gravitasi dari dua atau lebih tingkat di atasnya serta balok beton pratekan berbentang panjang, harus diperhitungkan terhadap komponen vertikal gerakan tanah akibat pengaruh Gempa Rencana, berupa beban gempa vertikal nominal statik ekuivalen yang harus ditinjau bekerja ke atas atau ke bawah yang besarnya harus dihitung sebagai perkalian Faktor Respons Gempa vertikal Cv dan beban gravitasi, termasuk beban hidup yang sesuai. 2

Cv = Ψ A o I V = Cv W Dimana : Cv =Faktor Respons Gempa vertikal Ψ=koefisien bergantung pada wilayah gempa Ao =percepatan puncak muka tanah I = faktor keutamaan gedung 4. Kombinasi pembebanan berdasarkan RSNI 3 Tata Cara Penghitungan Pembebanan Untuk Bangunan Rumah Dan Gedung. Combination :.4 D Combination 2 :.2 D+.6 L Combination 3 :.2 D+.0 L+.6 W Combination 4:.2 D+.0 L+.0 Ex+0.3 Ey.2 D+.0 L+0.3 Ex+.0 Ey Combination 5 :0.9 D+.6 W Combination 6 :0.9 D+.0 Ex+0.3 Ey 0.9 D+0.3 Ex+.0 Ey 5. Pada SNI 03-726-2002 Tabel, untuk stadion yang dianggap sebagai gedung penting pada keadaan darurat, faktor keutamaan, I =,4 Pada tabel 3, sistem dan subsistem struktur gedung termasuk Sistem Rangka Pemikul Momen Biasa (SRPMB). Untuk beton bertulang, faktor reduksi gempa maksimum, R m = 3,5 Dan pada tabel 6, spektrum respons gempa rencana untuk wilayah gempa 2 dan jenis tanah lunak, Tc =,0 detik 6. Sistem struktur yang dipakai adalah Sistem Rangka Pemikul Momen (SRPM). Karena bangunan berada di wilayah gempa zona 2, maka perencanaan desain berdasarkan SNI 03-2847-2002 pasal 3 sampai pasal 20. KOMPONEN Kolom Balok Pelat Over topping Tangga METODE cor ditempat Pracetak Pracetak cor ditempat Pracetak Balok, pelat dan tangga menggunakan beton pracetak karena memiliki bentuk yang seragam dan jumlah berulang yang dimaksudkan untuk optimasi. Sedangkan kolom tidak menggunakan beton pracetak melainkan menggunakan beton konvensional, karena kebutuhan tulangan yang beragam. Selain itu sambungan antara kolom dan pondasi sangat rawan dan pengerjaannya yang rumit. 7. Permodelan struktur : Saat pemasangan, balok dimodelkan sebagai balok sederhana di atas dua tumpuan. Pada akhir konstruksi (setelah diberi topping) dimodelkan sebagai balok menerus. Pelat lantai dimodelkan sebagai diafragma kaku yang berfungsi untuk mendistribusikan gaya gempa yang terjadi pada unsur penahan beban berupa frame balok dan kolom. Tangga mempunyai tumpuan rol pada balok bordes dan sendi pada balok lantai. 8. Untuk elemen pelat pracetak digunakan pelat pracetak tanpa lubang (Solid Slabs) dan untuk balok digunakan balok berpenampang persegi (Rectangular Beams). 9. Pengangkatan material pracetak dilakukan pada umur beton 3 hari. 0. Sambungan yang dipakai adalah sambungan cor di tempat atau disebut sambungan basah (Wet Connection). Sambungan ini diletakkan di pertemuan balok pracetak dengan kolom cast in situ. Sambungan juga diletakkan di pertemuan balok pracetak dengan pelat pracetak. Letak sambungan tidak boleh di daerah momen maksimum.. Daerah tribun dibagi atas beberapa bagian dengan menempatkan siar dilatasi untuk menampung berkembangnya struktur dan adanya simpangan struktur (drift) akibat beban gempa..6. DIAGRAM ALIR TUGAS AKHIR Metodologi yang digunakan dalam pembuatan Tugas Akhir ini adalah sebagai berikut:. Mengumpulkan dan mempelajari literatur serta data yang berkaitan dengan perencanaan. 2. Desain awal ( Preliminary Design ) Penentuan dimensi elemen-elemen struktur dengan memperhatikan kemudahan dalam pelaksanaan. 3. Analisa pembebanan Berdasarkan RSNI 3 Tata Cara Penghitungan Pembebanan Untuk Bangunan Rumah Dan Gedung dan SNI 03-726-2002 Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan. 4. Permodelan struktur meliputi : Struktur utama dimodelkan sebagai Momen Resisting Frame System. Pada saat pelaksanaan (pemasangan), balok dimodelkan sebagai simple span member. Sedangkan setelah akhir konstruksi (setelah diberi topping) dimodelkan sebagai continuous beam. Secara keseluruhan struktur direncanakan dengan menggunakan tingkat daktilitas terbatas. 5. Analisa gaya-gaya dalam akibat pembebanan yang terjadi pada struktur. 6. Detail elemen struktur termasuk didalamnya pemilihan tipe sambungan yang akan digunakan. II. TINJAUAN PUSTAKA 2.. PENGERTIAN SISTEM PRACETAK Sebagian besar dari elemen struktur pracetak dicetak di tempat tertentu (dapat di lokasi proyek ataupun di luar lokasi proyek yang memang pada umumnya memproduksi elemen-elemen beton pracetak). Selanjutnya komponen-komponen tersebut dipasang sesuai keberadaannya sebagai 3

komponen struktur, sebagai bagian dari sistem struktur beton. 2.2. PERBANDINGAN SISTEM KONVENSIONAL DAN SISTEM PRACETAK Tabel 2.. Perbandingan Sistem Konvensional Dengan Sistem Pracetak ITEM KONVENSIONAL PRACETAK Desain Sederhana Membutuhkan wawasan yang luas terutama yang ada kaitannya dengan fabrikasi sistem, transportasi serta pelaksanaan atau pemasangan komponen, sistem sambungan dan sebagainya. Efisien untuk bentuk Efisien untuk bentuk yang Bentuk dan yang tidak teratur dan teratur/relatif besar dengan jumlah ukurannya bentang-bentang yang bentuk-bentuk yang berulang tidak mengulang. Lebih cepat, karena dapat Waktu Lebih lama. dilaksanakan secara pararel sehingga pelaksanaan hemat waktu 20-25% Teknologi pelaksanaan Koordinasi pelaksanaan Pengawasan /kontrol kerja Kondisi lahan Kondisi cuaca Ketepatan/a kurasi ukuran Kualitas Konvensional Kompleks Bersifat kompleks, serta dilakukan dengan cara terus menerus. Butuh area yang relatif luas karena butuh adanya penimbunan material dan ruang gerak. Banyak dipengaruhi oleh keadaan cuaca. Sangat tergantung keahlian pelaksana. Sangat tergantung banyak faktor, terutama keahlian pekerja dan pengawasan. Butuh tenaga yang mempunyai keahlian Lebih sederhana, karena semua pengecoran elemen struktur pracetak telah dilakukan di pabrik. Sifatnya lebih mudah karena telah dilakukan pengawasan oleh kualitas kontrol di pabrik. Tidak memerlukan lahan yang luas untuk penyimpanan material selama proses pengerjaan konstruksi berlangsung, sehingga lebih bersih terhadap lingkungan. Tidak dipengaruhi cuaca karena dibuat di pabrik. Karena dilaksanakan di pabrik, maka ketepatan ukuran lebih terjamin. Lebih terjamin kualitasnya karena di kerjakan di pabrik dengan menggunakan sistem pengawasan pabrik. 2.3. ELEMEN STRUKTUR PRACETAK YANG UMUM DIPAKAI 2.3.. Pelat Pelat dianggap sebagai diafragma yang sangat kaku untuk mendistribusikan gempa. Pada waktu pengangkutan atau sebelum komposit, beban yang bekerja adalah berat sendiri pelat, sedangkan beban total yang diterima oleh pelat terjadi saat pelat sudah komposit. Untuk pelat pracetak (precast slab), ada beberapa jenis yang umum digunakan yaitu :. Pelat pracetak berlubang (Hollow Core Slab) Pelat pracetak dimana ukuran tebal lebih besar dibanding dengan pelat pracetak tanpa lubang. Biasanya pelat tipe ini menggunakan kabel pratekan. Keuntungan dari pelat jenis ini adalah lebih ringan, tingkat durabilitas yang tinggi dan ketahanan terhadap api sangat tinggi. Pelat jenis ini memiliki lebar rata-rata 2 hingga 8 feet dan tebal rata-rata 4inchi hingga 5 inchi. 2. Pelat pracetak tanpa lubang (Solid Slabs) Adalah pelat pracetak dimana tebal pelat lebih tipis dibandingkan dengan pelat pracetak dengan lubang. Keuntungan dari penggunaan pelat ini adalah mudah dalam penumpukan karena tidak memakan banyak tempat. Pelat ini bisa berupa pelat pratekan atau beton bertulang biasa dengan ketebalan dan lebar yang bervariasi. Umumnya bentang dari pelat ini antara 5 hingga 35 feet. 3. Pelat pracetak Double Tees dan Single Tee Pelat ini berbeda dengan pelat yang sudah dijelaskan sebelumnya. Pada pelat ini ada bagian berupa dua buah kaki sehingga tampak seperti dua T yang terhubung. 2.3.2. Balok Balok memikul beban pelat dan berat sendiri. Selain itu, balok juga berfungsi untuk memikul beban-beban lain yang bekerja pada struktur tersebut. Untuk balok pracetak (Precast Beam), ada dua jenis balok yang sering atau umum digunakan :. Balok berpenampang persegi (Rectangular Beam) : 2. Balok berpenampang L (L-Shaped Beam) 3. Balok berpenampang T terbalik (Inverted Tee Beam) 2.4. SAMBUNGAN 2.4.. Sambungan Daktail Dengan Cor Setempat Sambungan ini merupakan sambungan dengan menggunakan tulangan biasa sebagai penyambung / penghubung antar elemen beton baik antar pracetak ataupun antara pracetak dengan cor ditempat. Elemen pracetak yang sudah berada di tempatnya akan di cor bagian ujungnya untuk menyambungkan elemen satu dengan yang lain agar menjadi satu kesatuan yang monolit. Sambungan jenis ini disebut dengan sambungan basah. Penampang A cor dite mpat Penampang B Penampang A cor ditempat d.5 d Expected Relocated Hinging Zone Top of Beam Bottom of Beam Penampang B Sambungan Daktail dengan Cor Ditempat Skematis dari detail balok dengan penempatan sendi plastis 4

2.4.2. Sambungan Daktail Dengan Menggunakan Las Ochs dan Ehsani (993) mengusulkan dua sambungan las pada penempatan di lokasi sendi plastis pada permukaan kolom sesuai dengan konsep Strong Column Weak Beam. Pada konsep ini, sendi plastis direncanakan terjadi pada ujung balok dekat kolom. Sebagai gambaran, akan dicontohkan sambungan balok dengan kolom dengan menggunakan las. Untuk pertemuan antara balok dengan kolom, pada balok dan kolom dipasang pelat baja yang ditanam masuk pada daerah tulangan kolom dan kemudian di cor pada waktu pembuatan elemen pracetak. Pada kedua ujung balok, pelat baja ditanam pada bagian atas dan bawah. Pada perakitan komponen pracetak yang menggunakan las, untuk kolom terlebih dahulu berdiri kemudian dilakukan pengelasan pada kedua pelat tersebut untuk menyambungnya dengan balok. Keuntungan dari cara ini adalah dari segi pengerjaan dan pelaksanaannya, karena elemenelemennya tunggal dan berbentuk lurus, pengangkutan dan pengangkatannya lebih mudah sehingga lebih ekonomis. Kerugiannya adalah sambungan pada balok kolom sangatlah rawan, biaya relatif besar dan pekerjaan lebih sulit karena memerlukan ketelitian dalam pengelasan. 2.4.3. Sambungan Daktail Mekanik French and Friends (989) mengembangkan sambungan yang menggunakan post-tension untuk menghubungkan antara balok dan kolom. Pada sambungan post-tension ini dirancang pelelehan terjadi pada daerah lokasi antara pertemuan balok dan kolom. Sebagai alat penyambung, digunakanlah treaded coupler yang dipasang pada ujung tulangan. Dengan adanya treaded coupler, maka ujung tulangan baja dapat dimasukkan pada lubang tersebut. Satu hal yang perlu mendapat perhatian adalah ketelitian, ketrampilan dan keahlian khusus dalam memasang alat ini. post-tensioning rod 2.4.4. Sambungan Daktail Dengan Menggunakan Baut grout coupler bearing strips Englekirk dan Nakaki, Inc. Irvine California dan Dywidag System International USA, Inc. Long Beach California telah mengembangkan sistem dengan menggunakan penyambungan daktail yang dikenal dengan DPCF System (Ductile Precast Concrete Frame System). Penyambungan ini dilakukan menggunakan baut untuk menghubungkan elemen satu dengan yang lain. Dari hasil percobaan, system DPCF ini berperilaku monolit lebih baik, khususnya untuk moment Resisting Space Frame karena memberikan drift gedung 4% tanpa kehilangan kekuatan pada saat terjadi post yield cycles. III. PERENC. STRUKTUR SEKUNDER 3. DATA BANGUNAN Nama bangunan : Stadion Utama Palaran Lokasi bangunan : Kec. Palaran-Samarinda Zona gempa : Zona 2 Mutu beton (f c) : 25 Mpa Mutu baja ( fy ) : 390 Mpa 3.2 PERENCANAAN AWAL 3.2.. BALOK h h 5 20 6 b Dimensi awal balok : Memanjang : 7.85 m 40 cm x 70 cm 9.00 m 40 cm x 70 cm 0.00 m 40 cm x 70 cm 0.5 m 40 cm x 70 cm.60 m 60 cm x 00 cm 2.62 m 60 cm x 00 cm 4.0 m 60 cm x 00 cm 5.00 m 60 cm x 00 cm Melintang : 8.00 m 40 cm x 70 cm Anak : 7.375 m 30 cm x 47 cm 8.00 m 30 cm x 55 cm 3.2.2. KOLOM Portal A : 60 cm x 60 cm Portal B : 60 cm x 60 cm Portal C : 60 cm x 60 cm Portal D : 90 cm x 90 cm Portal E : 90 cm x 90 cm Portal F : 90 cm x 90 cm Portal G : 90 cm x 90 cm 3.2.3. PELAT αm 0,2 maka tebal pelat minimum tanpa penebalan, 20 mm. 0,2 < αm 2 maka tebal pelat minimum harus memenuhi : fy ln08 500 h 36 5 m 0.2, tidak boleh < 20 mm 5

αm > 2 maka tebal pelat minimum harus memenuhi, tidak boleh < 90 mm ln08 h 36 9 Tebal pelat lantai 3.3 PELAT PRACETAK Penulangan Pelat Tribun D Ukuran Tulangan Pakai pelat(m2) Arah X Arah Y 4 7.5 Ø2 300 Ø2 300 4 7. Ø2 300 Ø2 300 4 6.3 Ø2 300 Ø2 300 4 5.8 Ø2 300 Ø2 300 4 5. Ø2 300 Ø2 300 4 5 Ø2 300 Ø2 300 Penulangan Pelat Tribun G Ukuran Tulangan Pakai pelat(m2) Arah X Arah Y 4 5 Ø2 300 Ø2 300 4 cm dan pelat tribun 2 cm. 3.4 TANGGA PRACETAK Data Perencanaan f c = 25 MPa fy = 390 MPa Tebal plat tangga = 20 cm Tebal plat bordes = 20 cm Tinggi antar lantai = 450 cm Tinggi injakan ( t ) = 25 cm Lebar injakan ( i ) = 28 cm Jumlah anak tangga = 8 buah tidak termasuk bordes Panjang plat tangga ( horizontal ) = 224 cm Lebar bordes = 06 cm Sudut kemiringan tangga = 42 3.5 BALOK ANAK PRACETAK Pembebanan (Ekivalen) - Segitiga - Dua Segitiga - Trapesium fy 500 qek x q x Lx 3 qek x q x Lx 4 2 Lx qek x q x Lx - 2 3 Ly Tabel 7.5. Penulangan Balok Anak Tribun D L(m) Lx Ly Tul.Tarik Tul.tekan s 7.375 4 7.5 6 D8 3 D8 8 90 6.525 4 7. 5 D8 3 D8 8 00 6.075 4 6.3 5 D8 3 D8 8 00 5.3 4 5.8 3 D8 2 D8 8 00 5 4 5. 3 D8 2 D8 8 40 4.775 4 5 3 D8 2 D8 8 40 Tabel 7.6. Penulangan Balok Anak Tribun G L(m) Lx Ly Tul.Tarik TulTekan s 8 4 5 6 D8 4 D8 8 90 5 4 5 3 D8 2 D8 8 40 IV. PERENC. STRUKTUR PRIMER 4.. ANALISA STRUKTUR UTAMA Stadion dimodelkan sebagai Momen Resisting Frame System (MRFS), yaitu dimana beban gravitasi dan beban lateral dipikul sepenuhnya oleh frame. Struktur gedung ditetapkan sebagai struktur gedung tidak beraturan, sehingga analisa gempa mengunakan analisa beban dinamis. 4.2. BALOK INDUK PRACETAK Tabel 7.7. Penulangan Balok Induk Memanjang Tribun D L(m) Lx Ly Tabel 7.8. Penulangan Balok Induk Melintang Tribun D L(m) Lx Ly 4.3. PERHITUNGAN KOLOM Menggunakan 3 metode, yaitu : Diagram Interaksi Untuk kolom dimensi 90cmx90cm adalah 2 D32 Analisa Manual Pu (kn) 6000 4000 2000 0000 8000 6000 4000 Diagram Interaksi Kolom 0. 3500.698 507.399348. 7079.4265 2593. 40440. 5606. 8352 2000 0 050.67852. 0 0 500 000 500 2000 2500 3000 Mu (kn.m) Tul.Tarik Tul.Tekan s Tul.Tarik Tul.Tekan s 8 4 7.5 5 D32 3 D32 2 50 5 D32 3 D32 2 00 8 4 7. 5 D32 3 D32 2 50 5 D32 3 D32 2 00 8 4 6.3 5 D32 3 D32 2 50 5 D32 3 D32 2 00 8 4 5.8 5 D32 3 D32 2 50 5 D32 3 D32 2 00 8 4 5. 5 D32 3 D32 2 50 5 D32 3 D32 2 60 Penulangan Balok Induk Melintang Balok G Lantai L(m) Tul.Tarik Tul.Tekan s Tul.Tarik Tul.Tekan s 5 4 7.5 7 D32 4 D32 4 220 7 D32 4 D32 4 200 4. 4 7. 8 D32 4 D32 4 70 8 D32 4 D32 4 50 2.62 4 6.3 6 D32 3 D32 4 200 6 D32 3 D32 4 50.6 4 5.8 5 D32 3 D32 4 220 5 D32 3 D32 4 50 0.5 4 5. 5 D32 3 D32 2 40 5 D32 3 D32 4 00 0 4 5 5 D32 3 D32 2 50 5 D32 3 D32 4 00 9 4 4.5 5 D29 3 D29 2 70 5 D29 3 D29 2 50 7.85 4 3.9 4 D29 2 D29 2 290 4 D29 2 D29 2 250 Penulangan Balok Induk Memanjang Balok G Lantai L(m) Tul.Tarik Tul.Tekan s TulTarik Tul.Tekan s 0 5 D32 3 D32 4 70 6 D32 3 D32 4 50 2 0 5 D32 3 D32 4 70 6 D32 3 D32 4 50 3 0 5 D32 3 D32 4 70 6 D32 3 D32 4 50 4 0 5 D32 3 D32 4 70 6 D32 3 D32 4 50 5 0 5 D32 3 D32 4 60 8 D32 4 D32 4 00 Tul.Tarik Tul.Tekan s Tul.Tarik Tul.Tekan s 2 8 4 D32 2 D32 4 90 5 D32 3 D32 4 50 3 8 4 D32 2 D32 4 200 4 D32 2 D32 4 50 4 8 5 D32 3 D32 4 70 5 D32 3 D32 4 50 6

Program bantu PCACOL Sambungan basah mengandalkan panjang penyaluran dari tulangan masing-masing elemen pracetak. 5.. SAMBUNGAN BALOK INDUK-KOLOM Tabel 4.5. Penulangan Kolom Tribun D Lt Pr Dimensi h(cm) Tulangan s pakai A 600 600 300 8 D32 4 50 B 600 600 750 8 D32 4 220 C 600 600 750 8 D32 4 220 D 900 900 750 2 D32 4 350 E 900 900 750 2 D32 4 370 F 900 900 750 2 D32 4 370 G 900 900 750 2 D32 4 300 2 C 600 600 450 8 D32 4 220 D 900 900 450 2 D32 4 250 E 900 900 450 2 D32 4 250 F 900 900 450 2 D32 4 200 3 C 600 600 450 8 D32 4 220 D 900 900 450 2 D32 4 250 E 900 900 450 2 D32 4 250 F 900 900 450 2 D32 4 300 4 D 900 900 450 2 D32 4 250 E 900 900 450 2 D32 4 50 F 900 900 450 2 D32 4 200 5 D 900 900 300 2 D32 4 370 Tabel 4.6. : Penulangan Kolom Tribun G Lt Pr Dimensi h(cm) Tulangan s pakai A 600 600 300 6 D32 4 70 B 600 600 750 8 D32 4 220 C 600 600 750 8 D32 4 220 D 600 600 750 8 D32 4 220 E 600 600 750 8 D32 4 220 2 C 600 600 450 8 D32 4 220 D 600 600 450 8 D32 4 220 E 600 600 450 8 D32 4 200 3 C 600 600 450 8 D32 4 30 D 600 600 450 8 D32 4 30 E 600 600 450 8 D32 4 80 4 D 600 600 450 2 D32 4 30 5 D 600 600 300 2 D32 4 50 4.4. SAMBUNGAN BALOK-KOLOM Sebagai contoh diambil hubungan balok-kolom (HBK) dengan tulangan paling banyak yaitu kolom F balok 7 di lantai 2. Karena HBK diambil dari balok yang memiliki tulangan paling banyak dan penulangan transversal dipasang secara seragam pada tiap lantai, maka dipastikan bahwa HBK yang lain akan memenuhi Mu = 99980229 Nmm persyaratan. Mu(+) = 59839945 Nmm T2 = 9625 N Vh = 44589. N Vh = 3846986.5 N Mu = 9988374 Nmm 7 D 32 4 D 32 V. SAMBUNGAN PRACETAK T = 2335393.3 N Mu(-) = 60543720 Nmm Panjang penyaluran : Tul. tekan 600 mm Tul. tarik 650 mm 5.2. SAMBUNGAN BALOK ANAK-BALOK INDUK Panjang penyaluran : Tul. tekan 600 mm Tul. tarik 650 mm 5.3. SAMBUNGAN PELAT-BALOK BALOK PRACETAK tulangan tumpuan Tulangan atas PELAT PRACETAK Sambungan Pelat dengan Balok Panjang penyaluran : Tul. tekan Tul. tarik OVERTOPPING 240 mm 590 mm VI. PELAKSANAAN. Pemasangan bekisting untuk pembuatan kolom. 2. Pemasangan balok induk pracetak. 3. Pemasangan balok anak pracetak. 4. Pemasangan tangga pracetak. 5. Pemasangan pelat pracetak. 6. Pemasangan tulangan atas. 7. Pengecoran topping. 8. Untuk pekerjaan lantai selanjutnya sesuai tahapan di atas. VII. KESIMPULAN. Jumlah tipe elemen yang dimensinya berbeda sedapat mungkin diminimalkan untuk lebih mengoptimumkan bentuk cetakan. 2. Sambungan antara elemen pada struktur, seperti sambungan balok dan kolom serta balok induk dan balok anak diusahakan supaya memenuhi kriteria jenis sambungan agar dapat bekerja sesuai dengan yang direncanakan. 3. Pelaksanaan metode pracetak menjadi suatu hal yang sangat mungkin dilakukan di Indonesia, hanya saja diperlukan ketelitian dan keahlian dalam penggarapannya. 7