Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

dokumen-dokumen yang mirip
ANALISA POSTUR KERJA TERHADAP AKTIVITAS MANUAL MATERIAL HANDLING MENGGUNAKAN METODE OWAS

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK

BAB V ANALISIS DAN INTERPRETASI HASIL

ANALISIS POSTUR KERJA MANUAL MATERIAL HANDLING DENGAN METODE OVAKO WORKING ANALISIS SYSTEM (OWAS) PADA HOME INDUSTRI MAWAR

BAB I PENDAHULUAN. Peranan manusia sebagai sumber tenaga kerja masih dominan dalam

Analisis Postur Kerja dengan Rapid Entire Body Assesment (REBA) di Industri Pengolahan Tempe

BAB 2 LANDASAN TEORI

BIOMEKANIKA. Ergonomi Teknik Industri Universitas Brawijaya

ANALISIS ERGONOMI PADA PRAKTIK MEMELIHARA RODA DAN BAN MENGGUNAKAN METODE REBA

Analisis Risiko Manual Handling pada Pekerja PT. XYZ

BAB I PENDAHULUAN. manual (Manual Material Handling/MMH). Kelebihan MMH bila

BAB V ANALISA HASIL. 5.1 Hasil Perhitungan Seluruh Tahapan Menggunakan Metode REBA, REBA, OWAS & QEC

BAB 1 PENDAHULUAN. Gangguan pada sistem otot rangka/musculoskeletal disorders (MSDs)

BAB I PENDAHULUAN. Pelayanan keperawatan merupakan bagian integral dari sistem pelayanan

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB I PENDAHULUAN. sekitar 270 juta kasus kecelakaan kerja pertahun di seluruh dunia (Ferusgel,

RANCANGAN SISTEM PENANGANAN MATERIAL UNTUK MEMINIMASI RISIKO GANGGUAN SISTEM TULANG DAN OTOT

BAB I PENDAHULUAN. 1-1 Universitas Kristen Maranatha

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

SURAT PERSETUJUAN MENJADI RESPONDEN

kekuatan fisik manusia kekuatan atau daya fisik

Analisis Postur Kerja Menggunakan Metode Ovako Work Posture Analysis System (OWAS) (Studi Kasus: PT Sanggar Sarana Baja Transporter)

BAB I PENDAHULUAN. dengan program pengembangan dan pendayagunaan SDM tersebut, pemerintah juga memberikan jaminan kesejahteraan, kesehatan dan

ANALISIS POSTUR KERJA PERAJIN SAPU RAYUNG DENGAN METODE QUICK EXPOSURE CHECK (QEC)

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB I PENDAHULUAN. Pencapaian keselamatan dan kesehatan kerja tidak lepas dari peran

MUSCULOSKELETAL DISORDERS. dr.fauziah Elytha,MSc

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Analisis Postur Kerja dengan Metode REBA untuk Mengurangi Resiko Cedera pada Operator Mesin Binding di PT. Solo Murni Boyolali

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah. Peranan manusia sebagai sumber tenaga kerja pada industri

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB I PENDAHULUAN. 1-1 Universitas Kristen Maranatha

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN 1.1 Latar Belakang

ANALISA RESIKO MANUAL MATERIAL HANDLING PADA PEKERJA PENGGILINGAN PADI DI UD. CITRA TANI

Seminar Nasional IENACO 2016 ISSN: DESAIN ALAT BANTU PADA AKTIVITAS PENUANGAN MATERIAL KEDALAM MESIN PENCAMPUR DI PT ABC DENGAN METODE REBA

BAB I PENDAHULUAN I.1 Latar Belakang

ISBN:

POSTURE & MOVEMENT PERTEMUAN 2 DECY SITUNGKIR, SKM, MKKK KESEHATAN MASYARAKAT

PERBAIKAN ALAT BANTU PENGECORAN UNTUK MENGURANGI RESIKO CIDERA AKIBAT KERJA (Studi kasus di Industri Pengecoran Logam ABC Klaten)

IMPLEMENTASI KONSEP ERGONOMI PADA PEMBUATAN ALAT TENUN TRADISIONAL MENGGUNAKAN PRINSIP PERANCANGAN YANG DAPAT DISESUAIKAN

BAB 4 PENGUMPULAN DAN ANALISA DATA

Analisis Postur Kerja Terkait Musculoskeletal Disorders (MSDS) pada Pengasuh Anak

BAB 4 ANALISIS DAN BAHASAN

BAB I PENDAHULUAN. dengan pekerjaan manual handling. Suatu hal yang sangat beralasan,

BAB I PENDAHULUAN. 1-1 Universitas Kristen Maranatha

RANCANG ULANG WHEELBARROW YANG ERGONOMIS DAN EKONOMIS

I. PENDAHULUAN. Kata Kunci Biomekanika, Loading, Low Back Pain, L5/S1 Disc Compression, Manual Material Handling

PERBAIKAN POSTUR KERJA PADA PROSES PENGIKIRAN WAJAN DI SP ALUMINIUM YOGYAKARTA

BAB I PENDAHULUAN. kesehatan. Bekerja sebagai tenaga kesehatan merupakan suatu profesi yang

BAB I PENDAHULUAN. Unit kerja menengah CV. Raya Sport merupakan usaha yang. memproduksi pakaian (konveksi). Pada kegiatan proses produksi ditemukan

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN. mengalami kecelakaan, penyakit dan keluhan-keluhan kesehatan yang disebabkan

Mempelajari Proses Produksi Dan Postur Kerja Operator Pada Pemindahan Karung Pupuk Urea Bersubsidi Di PT Pupuk Kujang

BAB 1 : PENDAHULUAN. pembangunan bangsa Indonesia dewasa ini lebih dikonsentrasikan pada

Disamping gaya kontak ada juga gaya yang bekerja diantara 2 benda tetapi kedua benda tidak saling bersentuhan secara langsung. Gaya ini bekerja melewa

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

BAB 9. 2D BIOMECHANICS

ANALISIS POSTUR KERJA PADA TENAGA KERJA DENGAN METODE REBA AREA WORKSHOP PT X JAKARTA TIMUR

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

ABSTRAK. Universitas Kristen Maranatha

BAB I PENDAHULUAN. PT. Sinar Sosro merupakan salah satu perusahaan industri yang

BAB I PENDAHULUAN. PT. Indofood Sukses Makmur. Tbk Bogasari Flour Mills adalah produsen

TUGAS AKHIR ANALISA AKTIVITAS KERJA FISIK DENGAN METODE STRAIN INDEX (SI)

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. pesat. Khususnya bagi industri pembuatan canopy, tralis, pintu besi lipat,

Gambar 3.1 Metodologi Penelitian

DINAMIKA (HKM GRK NEWTON) Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ANALISIS PERBAIKAN POSTUR KERJA DENGAN PENDEKATAN ERGONOMI PADA HOME INDUSTRY JKS SNACK & CATERING DI SERANG-BANTEN

Bab I Pendahuluan. I.1 Latar Belakang

BAB 5 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. kegiatan manual material handling. Manual material handling didefinisikan

BAB I PENDAHULUAN. Menurut ILO (2013) Diperkirakan 2.34 juta orang meninggal setiap tahunnya

BAB I PENDAHULUAN. lingkungan tersebut. Risiko-risiko tersebut dapat menimbulkan berbagai penyakit. Penyakit akibat kerja (PAK) adalah penyakit

Penentuan Faktor Resiko Musculetal Disorder (MSDs) Bagi Pekerja Pengglasir Keramik

kekuatan fisik manusia kekuatan atau daya fisik

Metode dan Pengukuran Kerja

BAB I PENDAHULUAN. dalam menghasilkan barang dan jasa yang bermutu tinggi. Namun, menurut Notoadmodjo

TUGAS AKHIR PENILAIAN POSTUR KERJA PADA PEKERJA PENGGULUNGAN TEH DI PT. RUMPUN SARI KEMUNING I DENGAN MENGGUNAKAN METODE RULA (RAPID UPPER LIMB


BAB III METODOLOGI PENELITIAN

BIOMEKANIKA PERTEMUAN #14 TKT TAUFIQUR RACHMAN ERGONOMI DAN PERANCANGAN SISTEM KERJA

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN. 1 Universitas Indonesia. Gambaran risiko..., Tati Ariani, FKM UI, 2009

PDF Compressor Pro. Kata Pengantar

BAB V HASIL DAN ANALISA

ANALISIS RISIKO POSTUR KERJA DI CV. A CLASS SURAKARTA

BAB I PENDAHULUAN. bagian yang memberikan sumbangan terbesar dalam industri tekstil pada

ANALISIS POSTUR KERJA DAN KELUHAN PEKERJA PADA AKTIVITAS PEMOTONGAN BAHAN BAKU PEMBUATAN KERIPIK

III. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Manusia sebagai salah satu bagian dari elemen sistem kerja yang dominan

BAB I PENDAHULUAN. 1.1 Latar Belakang

I. PENDAHULUAN. Keluhan low back pain (LBP) dapat terjadi pada setiap orang, dalam kehidupan

PENGEMBANGAN PRODUK BERBASIS ANTHROPOMETRI

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB I PENDAHULUAN. produksi, terutama perusahaan yang bersifat padat karya. Produktivitas tenaga kerja

BAB I PENDAHULUAN. A. Latar Belakang. Kopi merupakan salah satu komoditi perkebunan yang memiliki

BAB II LANDASAN TEORI

Transkripsi:

Petunjuk Sitasi: Hardiningtyas, D., Putri, Y. W., & Efranto, R. Y. (2017). Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong. Prosiding SNTI dan SATELIT 2017 (pp. B305-311). Malang: Jurusan Teknik Industri Universitas Brawijaya. Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong Dewi Hardiningtyas (1), Yana Windy Sesha Putri (2), Remba Yanuar Efranto (3) (1), (2), (3) Jurusan Teknik Industri, Fakultas Teknik Universitas Brawijaya Jl. MT. Haryono No. 167, Malang, Indonesia 65145 (1) dewi.tyas@ub.ac.id, (2) syanawindy@gmail.com, (3) remba@ub.ac.id ABSTRAK Pekerjaan pemindahan bahan secara manual seringkali dilakukan di tempat kerja, yang meliputi menarik, mendorong, membawa, ataupun memindahkan. Setiap kegiatan manual tersebut berpotensi menyebabkan gangguan tulang dan otot (musculoskeletal disorder) apabila dilakukan pada postur yang berlebihan. Tujuan dari penelitian ini adalah untuk mengidentifikasi nilai gaya dan momen pada postur mendorong benda kerja beam benang dengan berat berkisar antara 200-450 kg. Gait cycle digunakan untuk mengidentifikasi secara lebih detail besarnya gaya dan momen pada setiap fase berjalan. Setiap fase tersebut sebelumnya telah digambarkan menggunakan free-body diagram untuk mennetukan titik pusat massa pada setiap segmen tubuh. Hasil penelitian ini menunjukkan bawah segmen punggung mengalami gaya terbesar (2015,7 N) yang disebabkan karena aktivitas mendorong dan reaksi terhadap berat benda kerja. Nilai momen terbesar juga dialami segmen punggung pada fase midstance sebesar 1710,5 N dan nilai momen terkecil pada segmen lengan bawah fase heel off sebesar 53,8 N. Perubahan postur dengan memperkecil sudut terutama pada segmen punggung diprediksikan dapat memperkecil nilai gaya dan momen pada postur mendorong beam benang, serta mengurangi potensi risiko cidera tulang belakang. Kata kunci biomekanika, fase berjalan, gait cycle, postur kerja, mendorong I. PENDAHULUAN Aktivitas perpindahan benda kerja secara manual masih seringkali ditemukan di berbagai unit produksi. Aktivitas tersebut meliputi postur mengangkat, mendorong, menarik, maupun membawa. Perkembangan penelitian biomekanika pada fase berjalan normal telah banyak diketahui, namun masih sedikit yang fokus pada aktivitas mendorong. Menurut Roffey, dkk (2010) aktivitas mendorong masih belum terbukti secara mutlak dapat menyebabkan cidera tulang belakang (low back pain / LBP) yang merupakan salah satu penyakit pada musculoskeletal disorders (MSDs) hingga pada rentang benda kerja 25-30 kg. Namun di beberapa unit produksi tekstil, masih terdapat aktivitas mendorong benda kerja seperti beam benang dengan massa 200-450 kg dari satu titik ke titik lainnya. Beam diletakkan diatas alat bantu dorong berupa pallet beroda untuk mengurangi gaya gesek antara beam dengan lantai. Walaupun aktivitas mendorong menjadi lebih ringan, namun perlu diidentifikasi lebih lanjut besarnya gaya tekan terhadap setiap segmen tersebut dan evaluasi apakah postur ini tergolong postur yang membahayakan atau tidak. Beban kerja fisik yang melewati batas kemampuan dapat mengakibatkan terjadinya risiko pada gangguan sistem otot-rangka (Iridiastadi & Yassierli, 2014). Postur yang salah seperti mendorong dan membungkuk menyebabkan risiko terjadinya MSDs dan kelelahan dini. MSDs adalah cidera pada otot, saraf, tendon, ligamen, sendi, tulang rawan, atau cakram tulang belakang (Kuswana, 2014). Sejumlah dampak buruk lainnya akibat dari beban yang berlebih berpengaruh pada kualitas dan performansi kerja. Dampak ini dapat berupa penurunan konsentrasi saat bekerja, peningkatan kesalahan dalam pengambilan keputusan serta peningkatan potensi kecelakaan kerja. Maka dari itu sistem manajerial yang berhubungan dengan manusia membutuhkan perhatian lebih, khususnya pada manusia dan alat kerjanya untuk meminimalisir terjadinya kecelakaan kerja. Postur mendorong yang diamati adalah seorang operator yang bertugas memindahkan gulungan benang seberat 200-450 kg atau yang dikenal dengan istilah beam selama jam kerja. B-305

Hardiningtyas, Putri, dan Efranto Beam dipindahkan oleh operator dengan cara mendorong sejauh 6-10 m dari bagian sizing ke gudang. Dalam sehari, setiap operator dapat memindahkan 8-9 beam. Postur dasar aktivitas ini adalah dengan posisi leher serta kepala menghadap ke bawah dan juga posisi punggung yang membungkuk berlebihan. Tentunya hal tersebut berpotensi mengandung risiko LBP. Untuk mengidentifikasi postur mendorong beam pada salah satu unit produksi tekstil, terlebih dahulu dilakukan penggambaran postur sesuai dengan fase berjalan (walking gait cycle). Berjalan merupakan gerakan tubuh untuk berpindah dari satu tempat ke tempat yang lain (Perry, 2010). Pada dasarnya, gait cycle terdiri dari 2 periode, yaitu periode berdiri (stance) dimana kaki mengenai landasan dan periode mengayun (swing) dimana kaki tidak mengenai landasan. Periode berdiri dimulai pada saat tumit menyentuh tanah (heel strike), kemudian dilanjutkan dengan kaki menapak penuh ke tanah (foot flat). Mid stance adalah posisi dimulainya foot flat dan berakhir pada saat heel strike. Fase heel off terjadi pada saat salah satu kaki mulai meninggalkan tanah dan kaki yang lain mengenai landasan. Fase toe off ketika heel strike oleh kaki kiri dan kaki kanan meninggalkan landasan untuk mengayun. Periode mengayun (swing) merupakan periode ketika kaki tidak berada di landasan atau posisi berayun. Pada penelitian ini hanya akan diamati pada periode berdiri saja, Gambar 1. Fase Berjalan (Sumber : Levangie & Norkin, 2011) Pengembangan model matematis analisis gaya postur kerja telah banyak digunakan di berbagai penelitian. Pada proses scarfing, pendekatan biomekanika dikombinasikan dengan OWAS (Ovako Working Postural Analysis System) dan Mannequin Pro untuk merancang alat bantu yang lebih meringankan pekerjaan (Dirawidya, Tama, & Efranto, 2015). Perancangan alat bantu berjalan long leg braces bagi penyandang cacat kaki tunggal juga lebih tepat jika mempertimbangkan aspek perasaan pengguna (kansei) serta gaya yang bekerja pada kaki (Cendy, Sugiono, & Hardiningtyas, 2015). Kajian biomekanika pada aktivitas berjalan amputee juga dapat diterapkan ketika menaiki dan menuruni bidang miring dengan menggukana prosthetic endoskeleton sistem energy storing knee mekanisme 2 bar (Aminasti, 2010). Sehingga pada penelitian bertujuan untuk mengembangkan model matematis analisis biomekanika aktivitas mendorong beam terhadap gait cycle, mengidentifikasi besarnya gaya dan momen ketika aktivitas tersebut, serta mengevaluasi risiko gaya berlebih pada setiap segmen tubuh. II. METODE Penelitian ini dilakukan dengan mengamati langsung di unit produksi pada aktivitas mendorong beam karena tidak memungkinkan untuk memindahkan benda kerja ke ruang laboratorium. Pengambilan data antropometri tinggi dan berat badan operator digunakan sebagai data primer dalam perhitungan panjang dan berat setiap segmen tubuh. Dari 24 orang operator yang ada di unit produksi ini, memiliki deviasi tinggi badan yang tidak terlalu jauh, sehingga dipilih persentil rata-rata yaitu tinggi badan 170 cm dan berat badan 64 kg. Panjang dan berat setiap segmen tubuh merujuk pada proporsi panjang dan berat segmen yang telah dikemukan oleh Adrian & Cooper (1989). Berat dan massa segmen diperoleh dari hasil perkalian proporsi terhadap berat badan (Tabel 1). Pusat massa segmen diperoleh dari dengan hasil perkalin persentase jarak titik pusat massa terhadap tinggi tubuh (Tabel 2). B-306

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong Tabel 1. Massa dan Berat Segmen Tubuh Segmen Proporsi Massa (kg) Berat (N) Kepala, leher & Punggung 51,4 33,1 324,4 Lengan atas (kanan) 3,0 1,9 18,9 Lengan bawah (kanan) 1,6 1,0 10,1 Tangan (kanan) 0,5 0,3 3,2 Paha (kanan) 12,9 8,3 81,4 Betis (kanan) 4,8 3,1 30,3 Kaki (kanan) 1,5 1,0 9,5 Lengan atas (kiri) 3,0 1,9 18,9 Lengan bawah (kiri) 1,6 1,0 10,1 Tangan (kiri) 0,2 0,1 1,1 Paha (kiri) 12,8 8,2 80,8 Betis (kiri) 4,7 3,0 30,0 Kaki (kiri) 1,5 1,0 9,5 Segmen Tabel 2. Jarak Pusat Massa Segmen Tubuh Pusat Massa (% ketinggian di Atas Lantai) Pusat Massa dari Atas Lantai Kepala 93,5 % 1,59 m Batang tubuh dan leher 71,1 % 1,21 m Lengan atas 71,7 % 1,22 m Lengan bawah 55,3 % 0,94 m Paha 42,5 % 0,72 m Betis 18,2 % 0,30 m Perhitungan biomekanika dilakukan dengan mengambil gambar postur mendorong beam pada kelima fase berjalan, yaitu heel strike, foot flat, midstance, heel off dan toe off. Setiap dokumentasi (gambar dan video) tersebut digambarkan ulang dengan free-body diagram untuk menyederhanakan identifikasi titik-titik gaya pada setiap segmen. Pada penelitian ini, gaya segmen pada pusat massa segmen dianggap mewakili berat rangka dan otot yang membentuk segmen tersebut. Setelah diketahui model free-body diagram setiap fase, maka dapat ditemukan sudut yang terbentuk antar segmen tubuh sebagai data untuk perhitungan gaya dan momen. Gaya dapat didefinisikan sebagai suatu pengaruh pada sebuah benda yang menyebabkan benda menjadi berubah kecepatannya. Gaya dalam pergerakan didefinisikan sebagai penyebab berpindahnya suatu benda atau objek dikarenakan suatu tindakan. Kontraksi otot dalam tubuh manusia merupakan gaya internal yang utama dalam menghasilkan suatu pergerakan pada segmen tubuh yang diberikan beban (Adrian & Cooper, 1989). F x = 0 (1) F y = 0 (2) dengan, F x = Resultan gaya yang bekerja di sumbu x (N) F y = Resultan gaya yang bekerja di sumbu y (N) Resultan gaya sama dengan nol menunjukkan bahwa benda berada pada posisi yang diam atau benda yang bergerak dengan kecepatan konstan (Tipler, 1991). Beban yang terima oleh tubuh nantinya akan didistribusikan ke anggota tiap tubuh yang lain karena tubuh merupakan satu kesatuan. Sehingga gaya dalam tubuh manusia menggambarkan tekanan yang dirasakan oleh tubuh manusia, semakin besar nilai gaya maka semakin besar pula tekanan akibat beban yang diberikan, sehingga nanti akan terjadi suatu gerakan. Gaya gesek adalah gaya yang membentuk sudut tangensial antara 2 permukaan benda yang bersentuhan. Gaya gesek merupakan pasangan dari gaya normal yang nantinya menghasilkan total B-307

Hardiningtyas, Putri, dan Efranto gaya yang bekerja pada dua benda yang saling bersentuhan. Gaya gesek memiliki dua koefisien gesekan yaitu koefisien gesekan statis μ s dan koefisien gesekan kinetik μ k. Koefisien gesekan statis digunakan untuk benda diam, dimana gaya tersebut berlawanan arah dengan arah gaya yang berusaha menggerakkan benda. Sedangkan koefisien gesekan kinetik digunakan untuk benda yang bergerak, dimana gaya tersebut arahnya berlawanan dengan arah gerak benda (Satriawan, 2012). F s = μ s * F N (3) dengan, F s = gaya gesek statis (N) μ s = koefisien gaya gesek statis F N = gaya normal (N) Momen gaya atau yang biasa disebut torsi merupakan gaya yang menyebabkan suatu benda mengalami pergerakan rotasi. Momen didapatkan dari hasil kali gaya dengan jarak (Kuswana, 2014). Momen dalam tubuh manusia dapat didefinisikan sebagai sebab terjadinya suatu pergerakan pada segmen tubuh akibat dari gaya yang dikeluarkan oleh tubuh. Selain mempertimbangkan gaya dan jarak. Jika jarak yang dibentuk oleh segmen tubuh semakin besar makan risiko cidera juga semakin besar. Sehingga, momen dalam tubuh manusia dapat diartikan sebagai tingkat cidera dalam tubuh ketika melakukan suatu pergerakan. M = F * d * sin ɵ (4) M = 0 (5) dengan, M = momen (Nm) F = gaya (N) d = jarak (m) Hasil formulasi matematis dan perhitungannya kemudian dibandingkan pada setiap segmen tubuh dan setiap fase berjalan. Dari nilai-nilai tersebut, dapat diketahui apakah postur mendorong beam benang tergolong aktivitas yang berisiko atau tidak, serta segmen tubuh yang manakah yang paling tinggi risiko cideranya. III. HASIL PENELITIAN Pendekatan biomekanika diterapkan pada penelitian ini untuk menganalisis gait cycle fase berjalan pada aktivitas mendorong beam benang. Kelima fase tersebut digambarkan dan ditentukan titik-titik gaya yang bekerja pada segmen baik di sumbu x maupun y, serta sudut yang terbentuk antar segmen. Gambar 2 merupakan free-body diagram untuk kelima fase berjalan pada aktivitas mendorong beam. Penggunaan free-body diagram akan menyederhanakan bentuk tubuh manusia dan memudahkan dalam mengidentifikasi gaya yang bekerja pada tubuh. Gambar 2. Fase Berjalan Aktivitas Mendorong Beam B-308

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong Perhitungan gaya pada beam bertujuan untuk mengetahui berat beam yang di dorong oleh operator ketika terdapat alat bantu dorong. Dengan adanya alat bantu tersebut, berat beam yang dirasakan operator akan lebih kecil dari berat sebenarnya. Gambar 3 merupakan penguraian gaya pada beam. Nilai μ s yang digunakan yaitu sebesar 0,45 yang merupakan sifat kedua permukaan benda yang bersentuhan yaitu antara baja dengan baja. Dari perhitungan diperoleh nilai gaya dorong yang dikeluarkan oleh operator yaitu sebesar 1984,5 N. Gambar 3. Gaya Dorong yang Bekerja pada Beam dan Alat Bantu F x = 0 F dorong F s = 0 F dorong = F s = μ s * F N = μ s * W beam = 0,45 * 450 kg * 9,8 m/s = 1984,5 N Selanjutnya perhitungan gaya dan momen dilakukan pada setiap segmen tubuh dengan mempertimbangkan sudut yang terbentuk pada fase berjalan yang telah digambarkan sebelumnya. Gambar 4 merupakan contoh identifikasi setiap gaya yang bekerja pada segmen tubuh lengan bahwa fase pertama yaitu heel strike. Titik A merupakan tangan, dan titik B merupakan siku. Pada sumbu x terdapat gaya dorong (F dorong ) yang bekerja pada tangan, sehingga menyebabkan reaksi pada siku berupa F x1. Segmen lengan bawah mempunyai berat yang ditunjukkan dengan gaya berat (W) sehingga menyebabkan reaksi pada siku berupa F y1. Gaya yang bekerja pada siku (F B ) merupakan resultan gaya F x1 dan F y1. Perhitungan tersebut dilanjutkan hingga diperoleh nilai gaya yang bekerja pada setiap segmen tubuh dan setiap fase seperti pada tabel 3. Perhitungan momen menggunakan persamaan (4) dan (5) dengan pengaruh sudut dan jarak yang terbentuk. Rekapitulasi perhitungan momen ditunjukkan pada tabel 4. ƩF x = 0 ƩF y = 0 F x1 F dorong = 0 F y1 W = 0 F x1 = F dorong F y1 = W = 1984,5 N / 2 = m x g = 992,25 N = 10,09 N Gambar 4. Free-body diagram segmen lengan bawah fase heel strike F B = = = 992,3 N Ʃ M = 0 M 1 = (W x O x sin (33,5)) + (F dorong x P x sin (33,5)) = 148,52 Nm B-309

Hardiningtyas, Putri, dan Efranto Dari tabel 3 dapat diketahui bahwa nilai gaya pada segmen di semua fase cenderung sama dikarenakan besarnya gaya hanya dipengaruhi oleh gaya reaksi yang dirasakan oleh tubuh operator sebagai akibat dari aktivitas mendorong dan juga dipengaruhi berat dari segmen tersebut. Nilai gaya pada semua segmen memiliki nilai yang cukup besar, hal tersebut dipengaruhi oleh berat dari beam yang didorong oleh operator yaitu sebesar 450kg, dimana berat tersebut melebihi batas beban dorong yang dianjurkan oleh Health and Safety Executive (2012) yaitu sebesar 20 kg untuk laki-laki. Namun untuk berat beam tidak dapat dikurangi dikarenakan dalam satu beam berisi satu jenis benang dengan spesifikasi yang telah ditentukan di awal.. Tabel 3. Nilai Gaya (N) pada Setiap Segmen dan Fase Berjalan Segmen Heel strike Foot flat Mid stance Heel off Toe off Lengan bawah 992,30 992,30 992,30 992,30 992,30 Lengan atas 992,67 992,67 992,67 992,67 992,67 Punggung 2015,73 2015,73 2015,73 2015,73 2015,73 Paha kanan 1083,35 1083,35 1083,35 1083,35 1083,35 Betis kanan 1095,86 1095,86 1095,86 1095,86 1095,86 Paha kiri 1083,10 1083,10 1083,10 1083,10 1083,10 Betis kiri 1095,32 1095,32 1095,32 1095,32 1095,32 Nilai gaya paling besar terdapat pada segmen punggung yaitu sebesar 2015,7 N, hal tersebut dikarenakan punggung menjadi penopang utama dari beban pendorongan yang melebihi dari batas pendorongan. Aktivitas mendorong termasuk ke dalam aktivitas manual material handling yang melibatkan berbagai kelompok otot terutama otot penyangga tulang belakang yang memiliki fungsi untuk memelihara postur tubuh, menjaga keseimbangan tubuh dan koordinasi keseimbangan yang baik, masa kerja yang lama juga berpengaruh pada nyeri punggung bawah akibat dari akumulasi beban pada tulang belakang, semakin besar beban yang diterima maka tekanan pada tulang belakang menjadi semakin besar.selain itu juga dikarenakan segmen punggung menerima gaya dari segmen lengan atas kanan dan segmen lengan atas kiri yang di distribusikan ke satu punggung, karena tubuh merupakan satu kesatuan yang saling berpengaruh antar segmen sebelum dan sesudahnya. Sedangkan untuk nilai gaya pada segmen paha terbagi dua dikarenakan jumlah gaya yang diterima oleh punggung diterima oleh dua paha yaitu paha kanan dan paha kiri. Nilai gaya kedua terbesar yaitu pada segmen betis sebesar 1095,8, hal tersebut dikarenakan betis menopang bagian tubuh secara keseluruhan dan juga menjadi tumpuan ketika berjalan sehingga segmen betis menerima gaya dari segmen lengan atas, lengan bawah, punggung dan paha, akibatnya tekanan yang dirasakan untuk menahan beban juga semakin besar pula. Tabel 4. Nilai Momen (Nm) pada Setiap Segmen dan Fase Berjalan Segmen Heel strike Foot flat Mid stance Heel off Toe off Lengan bawah 148,52 268,57 214,85 53,40 75,50 Lengan atas 308,95 502,67 534,37 269,13 327,93 Punggung 894,73 1163,90 1756,34 1637,75 1670,40 Paha kanan 375,81 500,33 1262,66 1219,52 1230,55 Betis kanan 766,30 927,26 1442,58 1551,86 1453,79 Paha kiri 718,52 714,00 1165,69 837,75 1036,33 Betis kiri 1042,82 1137,76 1549,60 1208,29 1421,54 Dari tabel 4 dapat dilihat bahwa nilai momen pada semua segmen di semua fase cenderung memiliki pola yang sama berturut-turut dari nilai kecil ke besar yaitu segmen lengan bawah, segmen lengan atas, segmen paha, segmen betis dan segmen punggung. Besarnya nilai momen tersebut dipengaruhi oleh jarak perpindahan sudut pada segmen dan juga dipengaruhi oleh nilai momen di segmen yang sebelumnya. Nilai momen total terbesar terdapat pada fase mid stance yaitu sebesar 7926,10 Nm. Hal tersebut menunjukkan bahwa fase mid stance memiliki risiko cidera yang paling besar diantara semua fase berjalan. B-310

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong Nilai momen segmen punggung rata-rata memiliki nilai yang besar diantara semua fase, terutama pada fase mid stance sebesar 1756,34 Nm, karena pengaruh dari nilai momen lengan atas yang cukup besar yaitu sebesar 534.37 Nm. Nilai momen segmen punggung kedua terbesar yaitu pada fase toe off yaitu sebesar 1670,4 Nm. Hal tersebut dikarenakan ketika mendorong tubuh operator terlalu membungkuk sehingga membentuk sudut perpindahan segmen yang cukup besar. Semakin operator membungkuk maka risiko terjadinya cidera punggung belakang juga semakin besar pula. Selain itu, nilai momen terbesar juga terdapat pada segmen betis, hal tersebut dikarenakan betis menahan beban dari anggota tubuh keseluruhan dan menjadi tumpuan ketika operator berjalan. Hal tersebut selaras dengan pernyataan operator bahwa ketika operator mendorong, bagian tubuh yang sering terjadi keluhan yaitu pada segmen punggung dan betis. IV. PENUTUP Berdasarkan analisis postur tubuh operator dengan menggunakan fase berjalan gait cycle, fase berjalan dibagi menjadi lima fase yaitu heel strike, foot flat, mid stance, heel off dan toe off. Dari kelima fase tersebut memiliki nilai gaya yang cenderung sama dikarenakan besarnya gaya hanya dipengaruhi oleh gaya reaksi yang dirasakan oleh tubuh operator sebagai akibat dari aktivitas mendorong dan juga dipengaruhi berat dari segmen tersebut. Nilai gaya terbesar rata-rata terdapat pada segmen punggung di semua fase yaitu sebesar 2015,73 N, dan nilai gaya terkecil terdapat pada segmen lengan bawah yaitu sebesar 992,30 N. Sedangkan untuk nilai momen memiliki nilai yang berbeda-beda, hal tersebut dikarenakan nilai momen dipengaruhi oleh sudut perpindahan segmen yang dimana setiap segmen membentuk sudut berbeda-beda. Untuk nilai momen terbesar terdapat pada segmen punggung di fase mid stance yaitu sebesar 1710,53 Nm, dan nilai momen terkecil terdapat pada segmen lengan bawah di fase heel off yaitu sebesar 53,89 Nm. DAFTAR PUSTAKA Adrian, M., & Cooper, J. (1989). The Biomechanics of Human Movement. Indianapolis: McGraw-Hills Co. Aminasti, I. K. (2010). Kajian Gait Dynamic pada Bidang Miring Bagi Pengguna Prosthetic Endoskeletal Sistem Energy Storing Knee Mekanisme 2 Bar. Surakarta: Skripsi Jurusan Teknik Industri UNS. Cendy, B., Sugiono, & Hardiningtyas, D. (2015). Analisis Perancangan Produk Long Leg Braces dengan Pendekatan Kansei Words dan Biomekanika. Jurnal Rekayasa dan Manajemen Sistem Industri, 3(2). Dirawidya, A., Tama, I., & Efranto, R. (2015). Perancangan Postur Kerja dan Alat Bantu pada Proses Scarfing dengan Analisis Biomekanika. Jurnal Rekayasa dan Manajemen Sistem Industri, 3(7). Health and Safety Executive. (2012). Manual Handling at Work : A Brief Guide. HSE. Iridiastadi, H., & Yassierli. (2014). Ergonomi: Suatu Pengantar. Bandung: PT. Remaja Rosdakarya Offset. Kuswana, W. S. (2014). Ergonomi dan K3 (Kesehatan Keselamatan Kerja). Bandung: PT. Remaja Rosdakarya. Levangie, P., & Norkin, C. (2011). Joint Structure and Function: A Comprehensive Analysis (5th ed.). F.A. Davis Company. Perry, J. (2010). Gait Analysis: Normal and Pathological Function (2nd ed.). New Jersey: SLACK Incorporated. Roffey, D., Wai, E., Bishop, P., Kwon, B., & Dagenais, S. (2010). Causal Assessment of Occupational Pushing or Pulling and Low Back Pain: Results of A Systematic Review. The Spine Journal, 10, 544-553. Satriawan, M. (2012). Fisika Dasar. Yogyakarta: UGM. Tipler, P. (1991). Fisika untuk Sains dan Teknik (3 ed.). Jakarta: Erlangga. B-311