RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE)

dokumen-dokumen yang mirip
Perancangan Simulator Pengendalian Posisi Turret Pada Mobil Pemadam Kebakaran

Makalah Seminar Tugas Akhir

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

Makalah Seminar Tugas Akhir

IMPLEMENTASI ROBOT THREE OMNI-DIRECTIONAL MENGGUNAKAN KONTROLER PID PADA ROBOT KONTES ROBOT ABU INDONESIA (KRAI)

KENDALI POSISI CANNON ARMY TANK MENGGUNAKAN EMBEDDED FUZZY LOGIC CONTROL

Sistem Pengaturan Kecepatan Motor DC pada Alat Ektraktor Madu Menggunakan Kontroler PID

CLOSED LOOP CONTROL MENGGUNAKAN ALGORITMA PID PADA LENGAN ROBOT DUA DERAJAT KEBEBASAN BERBASIS MIKROKONTROLER ATMEGA16

e (t) = sinyal kesalahan

MAKALAH SEMINAR TUGAS AKHIR PENGENDALIAN TINGGI MUKA CAIRAN PADA PLANT NONLINEAR MENGGUNAKAN METODE KONTROL FUZZY

IV. PERANCANGAN SISTEM

BAB IV PENGUJIAN ALAT DAN ANALISA

DAFTAR ISI. LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii. LEMBAR PENGESAHAN PENGUJI...

Pengaturan Kecepatan Motor DC Menggunakan Kendali Hybrid PID-Fuzzy

II. PERANCANGAN SISTEM

BAB 4 HASIL DAN PEMBAHASAN

BAB 2 LANDASAN TEORI

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID

IMPLEMENTASI KONTROL PID PADA PERGERAKAN LARAS MORTIR 81MM SESUAI DENGAN HASIL PERHITUNGAN KOREKSI TEMBAKAN

SISTEM PENGENDALIAN SUHU PADA TUNGKU BAKAR MENGGUNAKAN KONTROLER PID

PERANCANGAN PENGENDALI POSISI LINIER UNTUK MOTOR DC DENGAN MENGGUNAKAN PID

Implementasi Modul Kontrol Temperatur Nano-Material ThSrO Menggunakan Mikrokontroler Digital PIC18F452

TEKNIK KENDALI HIBRID PI FUZZY UNTUK PENGENDALIAN SUHU ZAT CAIR

Bab IV Pengujian dan Analisis

BAB III PERANCANGAN SISTEM

BAB III METODE PENELITIAN

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PENGENDALIAN SUDUT CERMIN DATAR PADA SOLATUBE MENGGUNAKAN KONTROLER PID BERBASIS MIKROKONTROLER

PERANCANGAN SISTEM KENDALI MERIAM MENGGUNAKAN DRIVER MOTOR BERBASIS MIKROKONTROLER ATMEGA8535

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Mei 2012 sampai

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

PENGENDALIAN KECEPATAN MOTOR DC MENGGUNAKAN SENSOR ENCODER DENGAN KENDALI PI

DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.

BAB III PERANCANGAN DAN PEMBUATAN ALAT

DAFTAR ISI HALAMAN PENGESAHAN... ABSTRAKSI... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah

III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro

AVR ATmega8. Kuliah SBM

Makalah Seminar Tugas Akhir BALANCING ROBOT BERODA DUA MENGGUNAKAN METODE KENDALI PROPORSIONAL INTEGRAL

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PENYATAAN... INTISARI... ABSTRACT... HALAMAN MOTTO... HALAMAN PERSEMBAHAN... PRAKATA...

Bab III Perancangan Sistem

NASKAH PUBLIKASI KARYA ILMIAH PEMASANGAN MOTOR DC PADA SEKUTER DENGAN PENGENDALI PULSE WIDTH MODULATION

DT-51 Application Note

PERANCANGAN SISTEM KESEIMBANGAN BALL AND BEAM DENGAN MENGGUNAKAN PENGENDALI PID BERBASIS ARDUINO UNO. Else Orlanda Merti Wijaya.

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR

PENGENDALIAN ROBOT MOBIL PENCARI TARGET DAN PENGHINDAR RINTANGAN DENGAN METODE KONTROL PD MENGGUNAKAN MIKROKONTROLER AVR ATMEGA

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu

BAB III PERANCANGAN. Pada bab ini akan dibahas mengenai beberapa hal dasar tentang bagaimana. simulasi mobil automatis dirancang, diantaranya adalah :

TKC306 - Robotika. Eko Didik Widianto. Sistem Komputer - Universitas Diponegoro

Perancangan Sistem Charger Otomatis pada Pembangkit Listrik Tenaga Surya

BAB III ANALISIS DAN PERANCANGAN SISTEM

Oleh : Abi Nawang Gustica Pembimbing : 1. Dr. Muhammad Rivai, ST., MT. 2. Ir. Tasripan, MT.

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL

KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER

BAB I PENDAHULUAN. suatu lingkungan tertentu. Mobile-robot tidak seperti manipulator robot yang

BAB III PERANCANGAN ALAT

BAB 3 PERANCANGAN SISTEM

PENGENDALIAN KECEPATAN MOTOR DC DENGAN KONTROL PID BERBASIS MIKROKONTROLER ATMEGA 8535

PERANCANGAN LENGAN ROBOT PENGAMBIL DAN PENYUSUN KOTAK OTOMATIS BERDASARKAN WARNA MENGGUNAKAN MIKROKONTROLLER ATMEGA 32

Sistem Pengaturan Kecepatan Motor DC pada Alat Pengaduk Adonan Dodol Menggunakan Kontroler PID

Aplikasi Kendali PID Menggunakan Skema Gain Scheduling Untuk Pengendalian Suhu Cairan pada Plant Electric Water Heater

ROBOT MOBILE PENJEJAK ARAH CAHAYA DENGAN KENDALI LOGIKA FUZZY

ROBOT PEMINDAH BENDA SECARA OTOMATIS : SUBAB LENGAN ROBOT TUGAS AKHIR

PENGENDALIAN VALVE UNTUK MENGATUR KETINGGIAN AIR DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN B-SPLINE

PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM

Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA MODUL SISTEM SILO

PERENCANAAN DAN PEMBUATAN ALAT PENAMPIL INFORMASI MENGGUNAKAN DOT MATRIX RGB

Kontrol Keseimbangan Robot Mobil Beroda Dua Dengan. Metode Logika Fuzzy

MAKALAH SEMINAR KERJA PRAKTEK

PERANCANGAN SISTEM KENDALI GERAKAN ROBOT BERODA TIGA UNTUK PEMBERSIH LANTAI

BAB III PERANCANGAN DAN PEMBUATAN ALAT

PERANCANGAN KONTROLER PI ANTI-WINDUP BERBASIS MIKROKONTROLER ATMEGA 32 PADA KONTROL KECEPATAN MOTOR DC

Perancangan Alat Fermentasi Kakao Otomatis Berbasis Mikrokontroler Arduino Uno

SISTEM KENDALI JARAK JAUH MINIATUR TANK TANPA AWAK

ROBOT PEMINDAH BENDA SECARA OTOMATIS : SUBBAB MOBILE ROBOT TUGAS AKHIR

BAB III PERANCANGAN ALAT

BAB II TINJAUAN PUSTAKA. Line follower robot pada dasarnya adalah suatu robot yang dirancang agar

BAB IV PENGUJIAN DAN ANALISIS

SISTEM MONITORING LEVEL AIR MENGGUNAKAN KENDALI PID

PENGENDALIAN SUHU DAN KELEMBABAN PROSES PEMATANGAN KEJU MENGGUNAKAN KONTROLER PID BERBASIS PLC. Publikasi Jurnal Skripsi

PENERAPAN ALGORITMA KENDALI PROPORTIONAL INTEGRAL DERIVATIVE PADA SISTEM REAL TIME UNTUK MEMPELAJARI TANGGAPAN TRANSIEN

Identifikasi Self Tuning PID Kontroler Metode Backward Rectangular Pada Motor DC

IMPLEMENTASI PENGATURAN POSISI CERMIN DATAR SEBAGAI HELIOSTAT MENGGUNAKAN KONTROLER PID

SIMULATOR RESPON SISTEM UNTUK MENENTUKAN KONSTANTA KONTROLER PID PADA MEKANISME PENGENDALIAN TEKANAN

SISTEM PENGENDALIAN SUHU PADA PROSES DISTILASI VAKUM BIOETANOL DENGAN MENGGUNAKAN ARDUINO

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PENGENDALIAN TEMPERATURE PADA PLANT SEDERHANA ELECTRIC FURNACE BERBASIS SENSOR THERMOCOUPLE DENGAN METODE KONTROL PID

MAKALAH. Sistem Kendali. Implementasi Sistim Navigasi Wall Following. Mengguakan Kontrol PID. Dengan Metode Tuning Pada Robot Beroda

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC

BAB IV ANALISA DAN PENGUJIAN SISTEM

APLIKASI KONTROL PID UNTUK PENGATURAN POSISI MOTOR DC PADA PISAU PEMOTONG ALAT PEMBAGI ADONAN ROTI ( DOUGH DIVIDER )

POLITEKNIK NEGERI SRIWIJAYA PALEMBANG

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

PENGONTROLAN DC CHOPPER UNTUK PEMBEBANAN BATERAI DENGAN METODE LOGIKA FUZZY MENGGUNAKAN MIKROKONTROLER ATMEGA 128 TUGAS AKHIR

BAB I PENDAHULUAN. menggerakan belt conveyor, pengangkat beban, ataupun sebagai mesin

Transkripsi:

Makalah Seminar Tugas Akhir RANCANG BANGUN SIMULATOR PENGENDALIAN POSISI CANNON PADA MODEL TANK MILITER DENGAN PENGENDALI PD (PROPOSIONAL DERIVATIVE) Heru Triwibowo [1], Iwan Setiawan [2], Budi Setiyono [2] Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jln. Prof. Sudharto, Tembalang, Semarang, Indonesia Abstrak Perkembangan teknologi memberikan dampak positif di berbagai bidang, salah satunya adalah bidang militer. Peralatan militer yang digunakan dari tahun ke tahun semakin canggih dan modern. Salah satu peralatan tersebut adalah tank militer. Pengendalian posisi diperlukan untuk mengendalikan posisi sudut cannon pada tank agar dapat sesuai dengan sasaran yang diinginkan. Kendali posisi sudut cannon menyerupai dengan kendali posisi pada manipulator lengan robot, hanya saja pada kendali posisi cannon hanya mempunyai 2 derajat kebebasan. Tugas Akhir ini bertujuan mengimplementasikan kendali proporsional derivative (PD) pada suatu pengendalian posisi cannon pada tank militer. Kendali PD digunakan untuk mengendalikan motor horisontal dan vertikal dari cannon agar pergerakan cannon dapat mengikuti pergerakan dari simulator/joystick. Perubahan posisi sudut yang terjadi diketahui dari sensor potensiometer. Dengan demikian posisi sudut akhir cannon selalu sama dengan posisi sudut pada simulator. Dari hasil pengujian didapatkan bahwa pengendali posisi cannon mempunyai respon yang lambat, tetapi posisi akhir cannon selalu sama dengan posisi akhir simulator. Pada pengujian pergerakan simulator yang cepat maka pergerakan cannon selalu tertinggal. dikarenakan kecepatan maksimal cannon lebih kecil dari pada kecepatan gerak simulator simulator. Parameter pengendali proporsional (Kp) sangat berpengaruh pada kecepatan gerakan cannon untuk mengikuti gerakan simulator, sedangkan parameter pengendali derivative kurang berpengaruh pada sistem. Kata kunci : Simulator, Cannon, Potensiometer, Proposional-Derivative(PD) Perkembangan teknologi memberikan dampak positif di berbagai bidang, salah satunya adalah bidang militer. Peralatan militer yang digunakan dari tahun ke tahun semakin canggih dan modern. Salah satu peralatan tersebut adalah tank militer. Pengendalian posisi diperlukan untuk mengendalikan posisi sudut cannon agar dapat sesuai dengan sasaran yang diinginkan. Kendali posisi sudut cannon menyerupai dengan kendali posisi pada manipulator lengan robot, hanya saja pada kendali posisi cannon hanya mempunyai 2 derajat kebebasan. Tujuan yang ingin dicapai pada tugas akhir ini adalah membangun sistem pengendalian posisi cannon pada model tank militer dengan pengendali PD (Proposional Derivative). Pada dasarnya kendali proporsional sudah cukup untuk mengendalikan posisi cannon. Penambahan pengendali derivative ini disebabkan karena sifat dari pengendali derivative yang dapat membantu memperbaiki respon dan memprediksi galat yang akan terjadi. Perancangan simulator ini menggunakan mikrokontroler ATMega8535 sebagai pusat pengendalian, potensiometer sebagai sensor posisi dan motor DC sebagai penggerak cannon. 1 Mahasiswa Jurusan Teknik Elektro UNDIP 2 Staf Pengajar Jurusan Teknik Elektro UNDIP DASAR TEORI Pengendali Proposional Derivative (PD) Pengendali PID adalah suatu sistem pengendali yang merupakan gabungan antara pengendali proporsional, integral, dan turunan (derivative). Dalam kawasan kontinyu, sinyal keluaran pengendali PID dapat dirumuskan sebagai berikut. u t K et K et p t i 0 t de. dt K d (1) dt Dalam kawasan diskret dirumuskan sebagai berikut: u k 1 k K. ek K. T. ei ek ek 1 p i K d i 0 T (2) Diagram blok pengendali PID dapat dilihat pada gambar 1. masukan E(s) K i K K s + p d - s Y(s) U(s) Gambar 1. Diagram blok pengendali PID

Tabel 1. Efek dari pengendali P, I, dan D K Rise time Over shoot Setling time Steady State Error perubahan Kp menurun meningkat menurun kecil Ki menurun meningkat meningkat menurun perubahan perubahan Kd menurun menurun kecil kecil Potensiometer Sebagai Sensor Posisi Potensiometer dapat digunakan sebagai sensor posisi dengan menfungsikan potensiometer sebagai pembagi tegangan. Prinsip kerja potensiometer sebagai pembagi tegangan ditunjukkan pada gambar 2. (a) Apabila posisi potensiometer berubah maka terjadi perubahan nilai resistansi R1 dan R2, sehingga tegangan keluaran pada terminal wiper akan berubah pula. Perubahan posisi potensiometer berbanding lurus dengan perubahan nilai resistansi, sedangkan perubahan nilai resistansi berbanding lurus dengan perubahan tegangan keluaran wiper, sehingga dapat dikatakan bahwa perubahan posisi potensiometer berbanding lurus dengan tegangan keluaran wiper. PERANCANGAN PERANGKAT KERAS DAN PERANGKAT LUNAK Perancangan Perangkat Keras (Hardware) Perancangan simulator pengendalian posisi cannon pada tank militer digunakan sebuah mikrokontroler ATMega8535 sebagai pusat pengendalian, masukan referensi berasal dari sensor potensiometer pada joystick, dan sarana keluaran berupa driver motor DC yang akan menggerakkan motor DC. Sedangkan umpan balik sistem berasal dari sensor posisi cannon yang berupa potensiometer. Diagram blok perangkat keras secara keseluruhan ditunjukkan gambar 3. (b) Gambar 2. Potensiometer sebagai pembagi tegangan Pada gambar 2 berlaku persamaan : Dimana, E : Sumber tegangan (Volt) V1 : Tegangan pada R1 (Volt) V2 : Tegangan pada R2 (Volt) R1 : Tahanan atas (Ohm) R2 : Tahanan bawah (Ohm) (3) (4) (5) Gambar 3. Diagram blok perancangan perangkat keras Mikrokontroller ATmega8535 Fitur fitur dari mikrokontroler AVR ATMega8535 yang digunakan pada perancangan tugas akhir ini meliputi porta (ADC) yaitu PA0-3 sebagai masukan dari sensor posisi yang berupa tegangan analog. Port D sebagai keluaran, yaitu PD.2 dan PD.3 sebagai sinyal kendali arah putaran motor X / direction motor (1A dan 2A), PD.4 dan PD.5 sebagai keluaran PWM yang digunakan untuk mengatur pemberian tegangan ke motor DC, PD.6 2

dan PD.7 sebagai sinyal kendali arah putaran motor Y/ direction motor (1B dan 2B). digunakan dua masukkan arah yang berbeda yaitu (logika 0 dan 1). Gambar 6. Rangkaian Driver motor L293D Perancangan perangkat Lunak (Software) Gambar 4. Alokasi port pada sistem minimum mikrokontroler ATmega8535 Perancangan Sensor Posisi Sensor posisi yang digunakan pada perancangan ini adalah potensiometer 10 kω. Sudut perputaran posisi joystick pada sumbu horisontal berada pada range 90 0 sampai 90 0 dan pada sumbu vertikal pada range 0 0 sampai 60 0. Agar dapat berfungsi sebagai sensor posisi maka potensiometer dirangkai sebagai pembagi tegangan. Konfigurasi potensiometer sebagai sensor posisi joystick ditunjukkan pada gambar 5. Pengendalian posisi cannon pada tugas akhir ini menggunakan kendali proporsional derivative (PD). Masukan dari kendali PD adalah error posisi cannon terhadap posisi pada simulator. Kemudian error akan diolah oleh pengendali PD sehingga menghasilkan sinyal kontrol yang diumpankan ke motor DC melalui driver motor. Putaran motor DC akan menggerakkan cannon, yang berarti akan mengubah posisi cannon sehingga posisi cannon mengikuti posisi pada simulator. Blok diagram pengendalian secara umum dapat dilihat pada gambar 7, sedangkan Diagram alir diperlihatkan pada gambar 8. Gambar 7. Blok Diagram Pengendalian posisi cannon Mulai A Inisialisasi Awal Nilai Kp, Kd Eror = 0, D_Eror = 0 Ref_X = 0, Ref_Y = 0 PB.7 = 0? Ya Tidak Gambar 5. Potensiometer sebagai sensor posisi Driver Motor L293D Keluaran sinyal PWM dari mikrokontroler berada pada PIND.4 dan PIND.5, karena pada pemrograman PWM menggunakan timer 1. Sinyal PWM akan mengatur tegangan masukan ke motor dengan mengatur lebar pulsanya. PIND.2 dan PIND.3 digunakan sebagai kombinasi untuk menentukan arah perputaran motor untuk motor dc ke-1 dan PIND.6 dan PIND.7 untuk menentukan arah motor dc yang lainnya. Untuk satu motor Baca sensor cannon Menghitung error Menghitung sinyal kontrol (PD) Menggerakkan motor DC Eror_X = 0? Eror_Y = 0? Ya A Tidak Baca referensi simulator Baca sensor cannon Ya PB.7 = 0? Menghitung error Menghitung sinyal kontrol (PD) Menggerakkan motor DC Selesai Tidak Gambar 8. Diagram alir program utama Ref_X = Ref_X(k-1), Ref_Y= Ref_Y(k-1) Baca sensor cannon 3

PENGUJIAN DAN ANALISIS Pengujian Sensor Potensiometer Pengujian terhadap sensor potensiometer dilakukan dengan mengukur perubahan sudut pada cannon dan mengamati hasil konversi data ADC ke besaran sudut pada komputer melalui komunikasi serial. Data hasil pengukuran yang dilakukan dapat dilihat pada Tabel 3. Tabel 2. Hasil Pengujian Sensor Potensiometer Pembacaan Sudut Potensiometer No ( 0 ) ( 0 ) Kesalahan pembacaan sudut ( 0 ) X Y X Y 1 0 0 0 0 0 2 30 29,52 29,82 0,48 0,28 3 60 60,80 60,52-0,80-0,52 4 90 90,82 90,57-0,82-0,57 5 120 120,82 120,82-0,82-0,82 6 150 151,32 151,15-1,32-1,15 7 180 181,23 181,52-1,23-1,52 Pada tabel 3 terlihat bahwa sudut yang terbaca potensiometer mendekati besarnya sudut yang sesungguhnya, dengan hal ini dapat disebabkan karena pembulatan angka pada perhitungan konversi data ADC ke besaran sudut. sedang maka motor dc berputar sedang, dan ketika diberi nilai kecil maka motor dc berputar lambat dan bahkan berhenti. Hal ini dikarenakan tegangan efektif (Vrms) keluaran driver berbanding lurus dengan nilai OCR1. Tabel 3 menunjukan bahwa tegangan efektif keluaran driver berbeda dengan nilai tegangan hasil perhitungan, hal ini dikarenakan oleh karakteristik keluaran driver motor L293D. Sinyal kotak keluaran dari motor dc tidak dapat sama sempurnanya dengan sinyal kotak keluaran PWM mikrokontroler (masukan driver motor dc). Perbedaan sinyal kotak hasil keluaran driver L293D dan keluaran PWM mikrokontroller diperlihatkan pada gambar 9 dan 10. Gambar 9 Sinyal keluaran PWM mikrokontroller dengan OCR1 = 100 Pengujian Driver Motor DC Driver motor L293D ini mendapat masukan dari PWM yang dihasilkan oleh timer 1 mikrokontroler. Keluaran sinyal PWM didapat pada PIND.4 dan PIND.5 dengan cara mengatur nilai dari register OCR1AL dan OCR1BL. V motor yang digunakan adalah 12 Volt (terukur 11.81 Volt). Tabel 3. Hasil Pengujian Driver L293D V Nilai keluaran V keluaran channel 1 channel 2 OCR1 (volt) (volt) V keluaran Hitung (volt) 25 1,82 1,82 1,16 50 2,72 2,72 2,32 75 3,96 3,96 3,47 100 5,09 5,09 4,63 125 5,86 5,86 5,79 150 7,43 7,43 6,95 175 8,55 8,55 8,11 200 10,2 10,2 9,26 225 10,9 10,9 10,42 255 11,7 11,7 11,81 Hasil pengujian menunjukkan bahwa ketika nilai OCR1AL dan OCR1BL diberi nilai besar maka motor dc berputar cepat, ketika diberi nilai 4 Gambar 10. Keluaran driver motor dc Sinyal PWM dengan OCR1 = 100 Pengujian ADC internal ATMega 8535 Pengujian ini dilakukan dengan mengukur tegangan keluaran sensor potensiometer (masukan ADC) dan mengamati data digital hasil konversi dari ADC pada komputer melalui komunikasi serial. Pada tugas akhir ini digunakan ADC dengan fidelitas 10 bit, clock ADC 31,250 khz, tegangan referensi yang digunakan adalah AVcc (4,99 volt). Pada pengujian ADC diperoleh hasil sebagaimana ditunjukkan pada tabel 4. Dari pengujian terlihat bahwa data hasil konversi ADC internal sebagian besar sama dengan hasil perhitungan. Beberapa perbedaan yang terjadi dikarenakan pada data hasil perhitungan terjadi pembulatan angka.

Tabel 4. Hasil pengujian ADC internal ATMega8538 No. Tegangan Data digital Data digital masukan keluaran hasil ADC ADC perhitungan (Volt) 1 0 0 0 2 0.5 101 103 3 1 205 205 4 1.5 307 308 5 2 410 410 6 2.5 513 513 7 3 616 616 8 3.5 719 718 9 4 821 820 10 4.5 923 923 11 4.99 1023 1023 Pengujian Timer 1 sebagai PWM Pengujian PWM dilakukan dengan memasukkan nilai PWM tertentu memperlihatkan pengaruh perubahan data pada register OCR1AL dan OCR1BL terhadap lebar duty cycle. Tabel 5. Hasil Pengujian duty cycle PWM Nilai OCR1 Duty cycle channel 1 (%) Duty cycle channel 2 (%) Duty cycle Perhitungan (%) 25 9,82 9,82 9,80 50 19,62 19,62 19,61 75 29,44 29,44 29,41 100 39,31 39,31 39,22 125 49,04 49,04 49,02 150 58,60 58,60 58,82 175 68,65 68,65 68,63 200 78,43 78,43 78,43 225 88,32 88,32 88,24 255 100 100 100 Pada tabel 5 di atas terlihat bahwa semakin besar nilai PWM yang diberikan maka semakin besar pula nilai duty cycle yang diperoleh. Besarnya nilai duty cycle OCR1AL dan OCR1BL yang terukur hampir sama dengan hasil perhitungan yang didapatkan. Pengujian Pengendali Proporsional Derivative Kendali PD digunakan untuk mengontrol perubahan posisi sudut cannon, agar mampu mengikuti nilai referensi dari simulator. Pengujian pada pengontrolan posisi sudut terdapat dua parameter kontrol yaitu konstanta proporsional (Kp) dan konstanta derivative (Kd). Pengujian dilakukan dengan memberikan sudut referensi 60 0 dengan variasi nilai Kp dan Kd. (a) Posisi horisontal (b) Posisi vertikal Gambar 11. Respon sistem untuk Kp = 1, Kd = 0 Pengaruh perubahan nilai Kp ditunjukkan pada tabel 6. Tabel 6. Pengaruh perubahan Kp terhadap respon sistem Kp Rise time (s) Setling time (s) horizontal vertikal horizontal vertikal 5 - - - - 10 2,75 2,25 - - 15 2,5 2,00-2,75 20 2,5 2,00 3,50 2,75 25 2,5 1,75 3,50 2,50 30 2,25 1,75 3,25 2,50 35 2,25 1,75 3,25 2,50 Sedangkan pengaruh perubahan nilai Kd ditunjukkan pada tabel 7. Tabel 7. Pengaruh perubahan Kd terhadap respon sistem Rise time (s) Setling time (s) Kp Kd Hori sontal Verti kal Hori sontal Verti kal 1 2,50 2,00 3,50 2,75 30 5 2,50 1,75 3,25 2,50 10 2,25 1,75 3,25 2,25 Berdasarkan pengujian yang telah dilakukan terlihat bahwa sistem dengan nilai Kp yang semakin besar akan memberikan respon keluaran yang lebih cepat, yang ditunjukkan dengan nilai rise time yang lebih kecil walaupun perbedaannya tidak terlalu signifikan. Sistem dengan nilai Kp sebesar 5 menghasilkan respon keluaran yang tidak pernah mencapai 90% dari nilai 5

referensi yang diinginkan sehingga nilai rise time tidak diketahui. Sistem dengan nilai Kp dibawah 15, respon keluaran sistem jauh dari nilai referensi yang diinginkan. Sedangkan untuk nilai Kp lebih besar sama dengan 20, keluaran sistem mulai mencapai pada titik referensi tetapi terjadi osilasi. Perubahan kontroler derivative berpengaruh pada sensitivitas sistem terhadap perubahan referensi. Semakin besar nilai Kd maka sistem lebih cepat merespon setiap perubahan nilai referensi dari simulator. Pengujian Kecepatan Maksimum Cannon Pada pengujian kecepatan maksimal cannon dapat dilakukan dengan memberikan sinyal kontrol maksimal. Karena mode PWM yang digunakan adalah mode PWM 8 bit, maka nilai sinyal kontrol maksimal yang dapat diberikan adalah 255 sehingga mikrokontroler akan memberikan pulsa dengan duty cycle 100%. Dari hasil pengujian kecepatan maksimum cannon, didapatkan bahwa kecepatan maksimal untuk posisi horisontal sebesar 0,31 rad/s, sedangkan posisi vertikal sebesar 0,45 rad/s. Oleh karena itu, cannon akan tetap dapat mengikuti pergerakan simulator dengan kecepatan kurang dari 0,31 rad/s untuk posisi horisontal dan 0,45 rad/s untuk posisi vertikal. Pengujian Aksi Cannon Terhadap Referensi dari Simulator (a) Posisi X (b) Posisi Y Gambar 12. Respon sistem dengan referensi berubah ubah Pada gambar 12 terlihat bahwa pada pergerakan simulator dengan kecepatan lebih dari 0,31 rad/s, maka gerakan cannon selalu tertinggal. Akan tetapi pada keadaan stabil posisi cannon sama dengan posisi simulator. Untuk pergerakan 6 simulator yang relatif lambat (kecepatan kurang dari 0,31 rad/s), posisi cannon selalu mengikuti posisi dari simulator. Untuk perubahan posisi simulator yang relatif kecil dan sesaat, maka cannon tidak mampu mengikuti perubahan simulator. Hal ini dikarenakan respon sistem yang lambat dan motor yang kurang sensitif, sehingga sebelum sistem memberikan respon atas perubahan posisi yang terjadi, posisi dari simulator sudah terjadi perubahan lagi. PENUTUP Kesimpulan Berdasarkan perancangan, pengujian dan analisa yang telah dilakukan, maka dapat disimpulkan beberapa hal sebagai berikut : 1. Pengujian dengan kontroler proporsional (Kp) mempercepat keluaran respon menuju nilai referensi. Semakin besar nilai Kp, maka respon keluaran sistem semakin cepat. Tetapi untuk Kp yang kecil (Kp 5) menghasilkan respon dengan error steady state cukup besar. Hal ini dikarenakan keadaan motor yang kurang sensitif ( motor dapat berputar dengan nilai PWM 100). 2. Penambahan kontroler derivative berpengaruh pada sensitivitas sistem terhadap perubahan referensi. Semakin besar nilai Kd maka sistem lebih cepat merespon setiap perubahan nilai referensi dari simulator. 3. Berdasarkan percobaan empiris nilai konstanta proporsional dan derivative yang baik untuk sistem ini adalah 30 dan 5. 4. Kecepatan sudut maksimum cannon sebesar 0,31 rad/s untuk posisi horisontal dan 0,45 rad/s untuk posisi vertikal, sehingga cannon dapat mengikuti pergerakan simulator dengan kecepatan sudut kurang dari 0,31 rad/s untuk posisi horisontal dan 0,45 rad/s untuk posisi vertikal. Saran Pengembangan sistem lebih lanjut dapat dilakukan, maka penulis memberikan saran-saran sebagai berikut : 1. Penambahan mekanisme penembakan cannon dan pengendalian posisi sudut elevasi akan dapat menyempurnakan sistem cannon ini. 2. Tunning parameter PD dapat dilakukan dengan beberapa metode tunning yang ada.

DAFTAR PUSTAKA BIODATA PENULIS [1] Candra, Isma, Perancangan Simulator pengendalian posisi Turret pada mobil pemadam kebakaran, Skripsi S-1,Teknik Elektro, Universitas Diponegoro, Semarang, 2007. [2] Handyarso, Accep, Rancang Bangun Robot Mobil Penjejak Dinding Berbasis Pengendali PD Menggunakan mikrokontroller AVR ATMega 8535, Skripsi S-1,Teknik Elektro, Universitas Diponegoro, Semarang, 2007. [3] Heryanto, M. Ary & Wisnu Adi P., Pemrograman Bahasa C untuk Mikrokontroler ATMEGA8535, Penerbit Andi, Yogyakarta, 2008. [4] Jacquot, Raymond G, Modern Digital Control System, New York, Marcel Dekker, 1981. [5] Ogata, Katsuhiko, Teknik Kontrol Automatik Jilid 1, Jakarta, Erlangga : 1994. [6] ---------,ATMega8535 Data Sheet, http://www.atmel.com. [7] ---------,L293D Data Sheet, http://www.ti.com. [8] ---------,Potensiometer, http://en.wikipedia.org. Heru Triwibowo, lahir di Sleman tahun 1987. Menempuh pendidikan dasar (SD), SMP, dan SMU di Klaten. Setelah lulus SMU dengan hasil yang cukup memuaskan, pada tahun 2004 melanjutkan ke jenjang perguruan tinggi di Universitas Diponegoro Semarang, tepatnya di Jurusan Elektro dengan konsentrasi Teknik Kontrol. Email : hru_mintorogo@yahoo.com Mengetahui dan mengesahkan, Dosen Pembimbing I Iwan Setiawan, ST, MT NIP. 132 283 183 Tanggal: Dosen Pembimbing II Budi Setiyono, ST, MT NIP. 132 283 84 Tanggal: 7