RANCANG BANGUN SISTEM RF UNTUK SUMBER ION GENERATOR NEUTRON SAMES J-25

dokumen-dokumen yang mirip
Rancang Bangun Sistem Radio Frequency sebagai Sumber Ion

RANCANGAN SISTEM CATU DAYA DC 2 kv/2 A UNTUK KATODA SUMBER ION SIKLOTRON 13 MeV BERBASIS TRANSFORMATOR

LAPORAN PRAKTIKUM SISTEM TELEKOMUNIKASI ANALOG PERCOBAAN OSILATOR. Disusun Oleh : Kelompok 2 DWI EDDY SANTOSA NIM

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1)

BAB II LANDASAN TEORI

Pengaruh Dimensi Kumparan Terhadap Efisiensi Energi Pada Sistem Pengiriman Daya Listrik Tampa Kabel

BAB III METODE PENELITIAN

BAB 3 METODOLOGI PENELITIAN

BAB III METODE PENELITIAN. blok diagram seperti yang terlihat pada Gambar 3.1. Sistem Blok Diagram Penelitian

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

BAB III ANALISA DAN PERANCANGAN RANGKAIAN

INSTRUMENTASI INDUSTRI (NEKA421)

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

PENGERTIAN THYRISTOR

BAB II TINJAUAN TEORITIS

TRAINER FEEDBACK THYRISTOR AND MOTOR CONTROL

POLITEKNIK NEGERI JAKARTA

TEORI DASAR. 2.1 Pengertian

PEMBUATAN PEMANCAR FM SEDERHANA UNTUK ALAT PERAGA

KOMPONEN-KOMPONEN ELEKTRONIKA

BAB 4 ANALISIS DAN BAHASAN

CIRCUIT DASAR DAN PERHITUNGAN

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

RANCANG BANGUN PENGUAT DAYA RF

RANCANGAN TRANSFORMATOR 625 VA TERISOLASI PADA TEGANGAN TINGGI 300 KV UNTUK CATU DAYA FILAMEN SUMBER ELEKTRON MBE LATEKS

BAB I FILTER I. 1. Judul Percobaan. Rangkaian Band Pass Filter. 2. Tujuan Percobaan

PERANCANGAN DAN REALISASI INVERTER MENGGUNAKAN MIKROKONTROLER ATMEGA168

RANCANG BANGUN PENGUAT DAYA RF GROUNDED GRID ¼- λ UNTUK SIKLOTRON PROTON 13 MeV

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA)

BAB 3 PERANCANGAN SISTEM

BAB IV HASIL DAN PEMBAHASAN

Rangkaian Pembangkit Gelombang dengan menggunakan IC XR-2206

BAB IV ANALISA DAN PERFORMA PERANGKAT Efisiensi dan Evaluasi Kerugian daya

VOLTAGE PROTECTOR. SUTONO, MOCHAMAD FAJAR WICAKSONO Program Studi Teknik Komputer, Fakultas Teknik dan Ilmu Komputer Universitas Komputer Indonesia

BAB III METODE PENELITIAN

BAB III KONSEP RANCANGAN

Contoh Soal soal Ujian Amatir Radio, Tahun 2000

ANALISIS FILTER INDUKTIF DAN KAPASITIF PADA CATU DAYA DC

Workshop Instrumentasi Industri Page 1

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

Gambar 3.1 Susunan perangkat keras sistem steel ball magnetic levitation

Pengukuran RESISTIVITAS batuan.

BAB IV PENGUJIAN DAN ANALISIS

DISTRIBUSI ENERGI ATOM BERDASARKAN TEMPERATUR PADA PERCOBAAN FRANK HERTZ

MODUL 05 FILTER PASIF PRAKTIKUM ELEKTRONIKA TA 2017/2018

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013.

BAB 1 PENDAHULUAN. pada gelombang listrik dari pada peralatan yang dimaksudkan ialah X-Ray (sinar-

PENYEARAH SATU FASA TERKENDALI

BAB II LANDASAN TEORI

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

BAB IV HASIL PERCOBAAN DAN ANALISIS

Gambar 2.1. Rangkaian Komutasi Alami.

BAB IV PENGUJIAN DAN ANALISA

ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK

PERTEMUAN KE 3 KOMPONEN ELEKTRONIKA. Create : Defi Pujianto, S,Kom

Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik

BAB III PERANCANGAN ALAT. tunjukkan pada blok diagram di bawah ini:

ABSTRAK ABSTRACTT The maintenance for ion source of

BAB III PERANCANGAN. Microcontroller Arduino Uno. Power Supply. Gambar 3.1 Blok Rangkaian Lampu LED Otomatis

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 12 (OSILATOR COLPITTS)

PENGARUH TEGANGAN DAN FREKUENSI TERHADAP INTENSITAS CAHAYA PADA LAMPU PENDAR ELEKTRONIK

BAB III PERANCANGAN DAN PEMBUATAN ALAT

Modul VIII Filter Aktif

BAB III PERANCANGAN ALAT

DIODA SEBAGAI PENYEARAH (E.1) I. TUJUAN Mempelajari sifat dan penggunaan dioda sebagai penyearah arus.

MODUL 07 PENGUAT DAYA

Pengkondisian Sinyal. Rudi Susanto

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK

Fisika EBTANAS Tahun 1993

I D. Gambar 1. Karakteristik Dioda

BAB II LANDASAN TEORI

Komponen aktif dan pasif elektronika

Q POWER ELECTRONIC LABORATORY EVERYTHING UNDER SWITCHED

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

AUDIO/VIDEO SELECTOR 5 CHANNEL DENGAN MIKROKONTROLER AT89C2051

III. METODE PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Instrumentasi jurusan Fisika

Penguat Oprasional FE UDINUS

BAB II LANDASAN TEORI

Prodi Fisika FMIPA, Universitas Sebelas Maret, Surakarta.

BAB IV PENGUJIAN DAN ANALISIS

DASAR PENGUKURAN LISTRIK

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

PENINGKATAN FLUKS GENERATOR NEUTRON SAMES J-25 PTAPB-BATAN

PENGUJIAN HARMONISA DAN UPAYA PENGURANGAN GANGGUAN HARMONISA PADA LAMPU HEMAT ENERGI

RANGKAIAN DIODA CLIPPER DAN CLAMPER

BAB III METODOLOGI PENELITIAN

Osilator dan Sumber Sinyal

MODUL 1 PRINSIP DASAR LISTRIK

BAB III DASAR PEMILIHAN KOMPONEN. 3.1 Pemilihan Komponen Komparator (pembanding) Rangkaian komparator pada umumnya menggunakan sebuah komponen

BAB III PERANCANGAN SISTEM

MODUL 06 PENGUAT DAYA PRAKTIKUM ELEKTRONIKA TA 2017/2018

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

RANCANGAN SISTEM CATU DAYA SUMBER ELEKTON BERBASIS KATODA PLASMA

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

drimbajoe.wordpress.com

Praktikum Rangkaian Elektronika MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA

Transkripsi:

Taufik, dkk. ISSN 016-318 7 RANCANG BANGUN SISTEM RF UNTUK SUMBER ION GENERATOR NEUTRON SAMES J-5 Taufik, Slamet Santosa Pusat Teknologi Akselerator dan Proses Bahan BATAN ABSTRAK RANCANG BANGUN SISTEM RF UNTUK SUMBER ION GENERATOR NEUTRON SAMES J-5. Telah dilakukan rancang bangun sistem RF untuk sumber ion Generator Neutron (GN) SAMES J-5 yang dinominasikan sebagai sumber neutron pada sistem SAMOP. Sebagai sumber neutron pada sistem SAMOP, yield neutron GN tersebut perlu ditingkatkan. Salah satu caranya adalah dengan memperbesar arus berkas deuterium. Untuk sumber ion tipe RF, arus berkas ion dipengaruhi oleh daya dan frekuensi osilator dari sistem RF, sistem pemfokus dan tegangan ekstraktor. Perancangan sistem RF meliputi penentuan daya dan frekuensi yang diinginkan yaitu dengan memilih komponen aktif yang digunakan dan penentuan tangki osilator LC. Pemilihan komponen aktif sistem RF disesuaikan dengan daya yang diinginkan, sedangkan frekuensi osilator dihitung berdasarkan konfigurasi dari komponen induktor dan kapasitor yang digunakan. Dari hasil rancang bangun sistem RF, didapatkan daya osilator sebesar 100 watt pada frekuensi 80 MHz. Hasil ini sudah dapat mengionisasi gas neon, namun hasil ini masih perlu disempurnakan. ABSTRACT THE DESIGN AND CONSTRUCTION OF RF SYSTEM FOR NEUTRON GENERATOR SAMES J-5 ION SOURCE. The design and construction of RF system for Neutron Generator SAMES J-5 ion source, which is nominated as neutron source on SAMOP system, have been done. As a neutron source of SAMOP system, neutron yield of the Neutron Generator has to be increased. One of the methods is by increasing its deuteron beam current. For RF type ion source, the beam current is influenced by oscillator power and its frequency, focusing system and extractor voltage. The design of RF system consists of determination of the desired output power and frequency by means of choosing active component that to be used and resolving oscillator LC tank. The choice of active component was adapted by the desire of output power while oscillator frequency was calculated based on configuration of inductor and capacitor being used. From the design and construction results of RF system, output power is obtained as 100 watt at oscillator frequency of 80 MHz. This result has earned to ionize neon gas, however it requires to be completed. PENDAHULUAN P emanfaatan Generator Neutron (GN) telah berkembang di berbagai bidang, diantaranya adalah untuk analisa unsur (AANC), pengolahan citra, dan sebagai detektor muatan di bandara. Saat ini di PTAPB-BATAN sedang dilaksanakan penelitian tentang reaktor subkritik dengan bahan bakar Uranil Nitrat yang ditembaki neutron menggunakan sumber neutron GN untuk menghasilkan isotop Mo-99 (SAMOP). Untuk keperluan sistem SAMOP ini diperlukan sumber neutron konstan sebesar 10 9 ns yang dioperasikan terus menerus selama 5 hari. Kuat sumber neutron yang dihasilkan oleh GN SAMES J-5 saat ini ratarata adalah 10 8 ns, sehingga perlu dinaikkan agar memenuhi permintaan pada sistem SAMOP. Kuat sumber neutron dari GN dipengaruhi oleh banyak faktor, diantaranya adalah arus berkas ion deutorium, sistem tegangan pemercepat dan kandungan tritium/deuterium pada sistem target. Untuk meningkatkan kuat sumber neutron yang dihasilkan GN, akan dilakukan dengan menambah arus berkas deutorium dengan cara menaikkan daya dan frekuensi dari sistem RF pada sumber ion. Saat ini PTAPB - BATAN memiliki GN tipe SAMES J- 5 yang menggunakan sumber ion tipe RF, dengan ionisasi yang bertambah dengan bertambahnya daya dan frekuensi RF yang dihasilkan oleh osilator. Dengan meningkatkan daya dan frekuensi osilator RF dari GN dan mengkonfigurasi tegangan ekstraktor dan tegangan pemfokus, maka arus berkas deutorium akan dapat ditingkatkan. Tujuan penelitian ini adalah untuk merancang bangun sistem RF untuk GN SAMES J-5 yang dinominasikan sebagai sumber neutron pada sistem SAMOP, dengan daya yang lebih besar dari sistem RF yang terpasang, dengan cara mengganti

8 ISSN 016-318 Taufik, dkk. komponen aktif yang memiliki daya keluaran lebih besar dari komponen aktif yang digunakan sebelumnya dan mencari konfigurasi tangki LC yang efisien. Pada penelitian ini akan digunakan komponen aktif berupa tabung trioda tipe GS-35B, yang diharapkan dapat menghasilkan daya RF di atas 100 watt dengan frekuensi sekitar 100 MHz. LANDASAN TEORI Generator Neutron Generator neutron adalah merupakan akselerator ion yang digunakan untuk menghasilkan neutron melalui reaksi fusi D-T dan atau D-D. Neutron dihasilkan sebagai hasil reaksi inti ion deuterium yang dipercepat dengan target deuterium/ tritium. Neutron yang dihasilkan dari reaksi ini tergolong dalam neutron cepat dengan energi tunggal 14,1 MeV. Adapun reaksi yang terbentuk adalah sebagai berikut : D + T D + D n + n + He He 4 3 + E + E Ion deuterium yang dipercepat dihasilkan dari ionisasi gas deuterium pada sumber ion. Ada beberapa metode ionisasi gas deuterium, salah satunya adalah dengan menggunakan gelombang RF. Pada metode ionisasi tipe RF gas deuterium diganggu dengan gelombang RF sehingga terbentuk plasma, kemudian ion deuterium ditarik oleh tegangan ekstraktor ke dalam tabung pemercepat dan dipercepat sehingga bertumbukkan dengan target. Tegangan pemercepat efektip ditentukan berdasar tampang lintang reaksi inti seperti pada Gambar 1. Osilator RF Osilator merupakan suatu rangkaian elektronik yang dapat membangkitkan sinyal keluaran tanpa sinyal masukan. Suatu rangkaian osilator terdiri dari suatu penguat dengan umpan balik positif dan rangkaian filter. Transistor, op-amp dan tabung trioda merupakan komponen aktif yang sering digunakan sebagai penguat. Pada awal osilator diberi daya, akan terbentuk sinyal noise dengan frekuensi yang berbeda-beda. Sinyal noise ini akan diperkuat dan akan difilter, sehingga hanya sinyal dengan frekuensi yang diinginkan diumpan balikkan ke input penguat. Jika penguatan total dari rangkaian osilator dijaga tetap satu maka sinyal yang terbentuk akan di umpanbalikkan terusmenerus sehingga sinyal keluaran tetap terbentuk. [1] Ada beberapa tipe osilator yang bisa digunakan salah satunya osilator LC yang digunakan untuk menghasilkan sinyal sinusoida dengan frekuensi sampai 500 MHz. Osilator LC dapat dibedakan berdasarkan konfigurasi tangki osilator LC seperti pada Gambar. Gambar 1. Tampang lintang reaksi D-T dan fraksi neutron hasil fusi pada mesin generator neutron.

Taufik, dkk. ISSN 016-318 9 Gambar. Beberapa jenis rangkaian osilator LC. (a) Osilator Hartley, (b) Osilator Colpitt, (c) Osilator Clapp, (d) Osilator kristal kuarts. Tabung trioda Salah satu komponen aktif yang digunakan sebagai penguat adalah tabung triode. Tabung trioda merupakan tabung hampa yang terdiri dari filament dan tiga buah elektroda yang disebut katoda, grid dan plate (anoda). Dalam tabung triode, filamen digunakan sebagai sumber electron. Grid berfungsi sebagai pengatur arus elektron yang mengalir dari katoda menuju anoda dengan cara memberikan pengaturan tegangan pada trioda. Oleh karena itu grid selalu terletak diantara katoda dan anoda seperti pada Gambar 3. Gambar 3. Penampang trioda. Karena tabung triode merupakan komponen aktif, maka tabung triode harus diberi tegangan bias untuk menentukan titik kerja dari penguat tersebut. Untuk memperoleh efisiensi yang tinggi titik kerja suatu triode harus berada pada kelas C. [1] Efisiensi kelas C akan efektif apabila penguat bekerja pada pita sempit yang dapat diperoleh jika menggunakan tangki LC. TATAKERJA DAN PERCOBAAN Disain Osilator Osilator ini didesain untuk meningkatkan arus berkas deuterium pada GN sehingga diharapkan mampu menghasilkan kuat sumber neutron yang lebih besar. Osilator yang digunakan dalam Generator Neutron yang ada di PTAPB menggunakan tabung QQE 06/40 yang mampu menghasilkan frekuensi 00 MHz dengan daya 100 watt dan di-couple kapasitif. Untuk meningkatkan berkas ion dirancang sebuah osilator RF dengan frekuensi 100 MHz dan dengan daya 00 watt yang di-couple induktif. Tabung trioda yang digunakan dalam osilator ini adalah tipe GS-35B yang memiliki daya keluaran sampai 1 kwatt dengan kurva karakteristik seperti pada Gambar 4.

30 ISSN 016-318 Taufik, dkk. Gambar 4. Kurva Karakterisitik Trioda GS-35B. Karena tabung trioda merupakan komponen aktif, maka dibutuhkan sumber tegangan DC untuk mem-bias tabung trioda. Untuk mem-bias tabung trioda, dipasang sebuah resistor R k antara katoda dan suplay tegangan katoda seperti pada Gambar 5. R k diperoleh dengan menggunakan persamaan 1. dibatasi sebesar 1,6 kv. Untuk menentukan nilai R k, diambil nilai V g = 30 V. Hal ini diambil berdasarkan karakteristik trioda pada V g = 30 V dan V p 1,6 kv arus anoda yang mengalir sudah dibawah cut off dan dianggap besarnya 0,05 A. Dengan menggunakan Persamaan 1, R k dapat ditentukan sebesar : Vg R k = (1) I p R k Vg 30 V = = = 600 Ω I 0,05 A p dengan: V g = Tegangan grid I p = Arus plate Karena adanya arus anoda yang melewati R k, daya dari R k yang akan digunakan harus diperhitungkan. Jika V g berubah menjadi 10 V, maka I p = 0.0167 A dan berada pada V p = 1,1 kv. Sedangkan jika V g berubah menjadi 0 V, maka I p = 0.033 A dan berada pada V p = 1,8 kv. Oleh karena itu dengan memasang R k = 600 Ω dan V p = 1,6 kv maka berdasarkan kurva karakteristik trioda GS- 35B V g berkisar 10 V 0 V. Sedangkan untuk daya minimum dari R k yang dibutuhkan diasumsikan I p = 0,033 A pada saat V g = 0 V. Dengan menggunakan Persamaan maka diperoleh daya R k minimal sebesar 0,6534 watt. P = I R () Gambar 5. Self bias Trioda. Supaya tabung bekerja dalam kelas C, trioda harus di-bias agar titik q berada di bawah cut off. Dalam rancangan ini tegangan anoda maksimal dengan : P = disipasi daya resistor I = arus yang melewati resistor R = nilai resistor Kapasitor C k pada Gambar berfungsi sebagai By Pass sinyal AC agar tegangan bias tidak berubah saat diberi sinyal AC. Besarnya C k dapat ditentukan dengan menggunakan Persamaan 3. Jika

Taufik, dkk. ISSN 016-318 31 X c diambil lebih kecil 0 kali dari R k, maka X c = 30 Ω dan C = 53 pf dengan kemampuan tegangan > kv. 1 C = (3) π f Selain trioda, dalam membuat osilator desain tangki LC harus sesuai dengan frekuensi yang diinginkan yaitu 100 MHz. Induktor yang akan digunakan adalah dengan menggunakan kawat CuAg dengan diameter kawat 0,4 cm, diameter kumparan 3,5 cm, jumlah lilitan N = 10 lilitan dan panjang kumparan l = 5 cm. Dengan menggunakan Persamaan 4 harga L =,418 µh. X c µ N o π r L = (4) l Dengan diketahui besarnya L, besar C yang harus dipasang dapat ditentukan dengan menggunakan Persamaan 5 yaitu sebesar 1,05 pf. Agar frekuensi osilator dapat dirubah kapasitor menggunakan jenis varco dengan kemapuan > kv. 1 = (5) (π f ) L C Filamen dalam tabung GS-35B membutuhkan tegangan 1,6 Volt, arus maksimal 3,5 A. Kabel yang digunakan untuk mensuplay filamen menggunakan kabel dengan diameter minimal 1,3 mm. Untuk menjaga agar frekuensi tinggi tidak masuk ke filamen maka filamen diberi choke L 3 dengan spesifikasi diameter kumparan 18 mm, 40 lilitan dan menggunakan kawat Cu berdiameter 1,3 mm. Untuk menjaga agar suply tegangan DC tidak dilewati arus AC, suplay tegangan untuk mem-bias trioda ditambahkan choke L seperti pada Gambar 6. L terbuat dari kawat Cu dengan diameter 0,8 mm, diameter kumparan 18 mm dan 36 lilitan. Pembuatan Osilator RF Percobaan pertama dilakukan dengan membuat rangkaian osilator seperti pada Gambar 6. Tegangan bias yang diberikan pada osilator tersebut adalah sebesar 1,5 kv dengan arus yang terukur sebesar 0,1 A. Sehingga bias yang diberikan memiliki daya (P) sebesar V * I atau sebesar 180 watt. Percobaan kedua dilakukan dengan mengubah tangki osilator LC dengan sistem Hartley seperti pada Gambar 7. HASIL DAN PEMBAHASAN Daya osilator pada percobaan pertama diukur dengan SWR meter dan diperoleh daya watt. Pada daya osilator ini sudah dapat mengionisasi gas pada neon, akan tetapi hasil ionisasinya masih sangat kecil. Hasil percobaan kedua seperti Gambar 7 dihasilkan daya yang jauh lebih besar yaitu 90 watt. Pengukuran daya disajikan pada Tabel 1. Gambar 6. Disain rangkaian Osilator.

3 ISSN 016-318 Taufik, dkk. Tabel 1. Pengukuran daya bias. Tegangan (kv) Kuat Arus (A) Daya masukan (watt) Daya keluaran (watt) Efisiensi (%) Frekuensi (MHz) 1,5 0,1 180 60 ± 5 33,3 80 0,16 30 90 ± 5 8,1 80 Gambar 7. Rangkain percobaan. Daya keluaran diukur dengan menggunakan SWR meter dan penambahan daya dari osilator ini dapat dibuktikan dengan dapat menyalakan dua buah lampu neon dengan nyala yang semakin besar. frekuensi RF diukur menggunakan frekuensi meter. Dari hasil di atas efisiensi dari tangki LC sangat mempengaruhi efisisensi daya osilator yang dihasilkan. KESIMPULAN Dari hasil desain dan pembuatan osilator RF untuk sumber ion pada generator neutron dapat diambil beberapa kesimpulan, antara lain: 1. Sinyal yang dihasilkan dari osilator RF memiliki daya keluaran sebesar 90 watt dengan frekuensi 80 MHz.. Dengan daya 90 watt, sinyal keluaran yang dihasilkan sudah mampu mengionisasi gas neon, sehingga dimungkinkan dapat mengionisasi gas deuterium pada generator neutron. 3. Daya yang dihasilkan masih belum mampu melebihi daya osilator pada generator neutron yang ada di PTAPB, sehingga masih perlu dikembangkan kembali. Pengembangan dapat dilakukan dengan menaikkan efisiensi dengan mengubah nilai variabel kapasitor dari rangkaian penguat dan atau menambah satu buah lagi komponen aktif sehingga akan terpasang paralel dengan dua buah tabung trioda, dengan demikian dayanya akan diperoleh kelipatan dari daya percobaan. DAFTAR PUSTAKA 1. MALVINO, P. A., Prinsip-Prinsip Elektronika, Erlangga, Jakarta, 1985.. IAEA-TECDOC-913., Manual for Troubleshooting and upgrading of Neutron Generators, Austria, November 1966.

Taufik, dkk. ISSN 016-318 33 3. BROPHY, J.J., Basic Electronic for Scientist, McGrawhill Publishing Company, New York, 1990. 4. SUTRISNO, Elektronika 1(Teori dan Penerapannya), ITB, Bandung, 1986. TANYA JAWAB Gatot Wurdiyanto Bagaimana saudara akan mengembangkan sistem RF yang dirancang bangun untuk menaikkan dayanya. Slamet Santosa Sistem RF yang dirancang bangun dayanya memang masih perlu dinaikkan untuk mendapatkan arus deuterium yang optimum. Hal itu akan kami lakukan dengan cara memodifikasi rangkaian LC tank dan membuat paralel tabung triodanya. Rokhmadi Kenapa ya kan sudah mampu mengionisasi, jelaskan. Slamet Santosa Derajat ionisasinya sudah dicapai namun dayanya masih perlu dinaikkan hingga antara 100 s/d 150 watt agar arus deuteriumnya dapat diperoleh diatas 1 ma.