PENGARUH PENAMBAHAN BUTON GRANULAR ASPHALT PADA CAMPURAN BETON ASPAL TERHADAP MODULUS RESILIEN DAN GRADASI

dokumen-dokumen yang mirip
KARAKTERISTIK CAMPURAN PANAS ASPHALT CONCRETE WEARING COURSE MENGGUNAKAN PENGIKAT SEMARBUT TIPE II

Spesifikasi lapis tipis aspal pasir (Latasir)

I Made Agus Ariawan 1 ABSTRAK 1. PENDAHULUAN. 2. METODE Asphalt Concrete - Binder Course (AC BC)

KARAKTERISTIK CAMPURAN ASPHALT CONCRETE BINDER COURSE

BAB III LANDASAN TEORI

PEMANFAATAN LIMBAH ABU SERBUK KAYU SEBAGAI MATERIAL PENGISI CAMPURAN LATASTON TIPE B

BAB V HASIL DAN PEMBAHASAN

3.1 Lataston atau Hot Rolled Sheet

PENGARUH JUMLAH TUMBUKAN PEMADATAN BENDA UJI TERHADAP BESARAN MARSHALL CAMPURAN BERASPAL PANAS BERGRADASI MENERUS JENIS ASPHALT CONCRETE (AC)

BAB V HASIL DAN PEMBAHASAN

KAJIAN SUHU OPTIMUM PADA PROSES PEMADATAN UNTUK CAMPURAN BERASPAL DENGAN MENGGUNAKAN MODIFIKASI BITUMEN LIMBAH PLASTIK

BAB III LANDASAN TEORI

BAB IV HASIL DAN PEMBAHASAN. Tabel 4.1. Hasil Pemeriksaan Agregat dari AMP Sinar Karya Cahaya (Laboratorium Transportasi FT-UNG, 2013)

BAB III LANDASAN TEORI

BAB IV HASIL DAN ANALISA DATA. penetrasi, uji titik nyala, berat jenis, daktilitas dan titik lembek. Tabel 4.1 Hasil uji berat jenis Aspal pen 60/70

BAB V HASIL DAN PEMBAHASAN. A. Hasil Pengujian Agregat

PENGARUH GRADASI AGREGAT TERHADAP NILAI KARAKTERISTIK ASPAL BETON (AC-BC) Sumiati 1 ), Sukarman 2 )

Studi Penggunaan Aspal Modifikasi Dengan Getah Pinus Pada Campuran Beton Aspal

PENGGUNAAN PASIR BESI SEBAGAI AGREGAT HALUS PADA BETON ASPAL LAPISAN AUS

BAB V HASIL DAN PEMBAHASAN. A. Hasil Pengujian Agregat. Hasil pengujian agregat ditunjukkan dalam Tabel 5.1.

PENGARUH PENGGUNAAN ABU TERBANG BATUBARA SEBAGAI BAHAN PENGISI TERHADAP MODULUS RESILIEN BETON ASPAL LAPIS AUS

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB IV HASIL DAN PEMBAHASAN

(Data Hasil Pengujian Agregat Dan Aspal)

TINGKAT KEMUDAHAN MEMENUHI SPESIFIKASI PADA BERBAGAI JENIS CAMPURAN PANAS ASPAL AGREGAT.

Pengaruh Penggunaan Abu Sekam Padi sebagai Bahan Pengisi pada Campuran Hot Rolled Asphalt terhadap Sifat Uji Marshall

STUDI PENGGUNAAN PASIR SERUYAN KABUPATEN SERUYAN PROVINSI KALIMANTAN TENGAH SEBAGAI CAMPURAN ASPAL BETON AC WC

VARIASI AGREGAT LONJONG PADA AGREGAT KASAR TERHADAP KARAKTERISTIK LAPISAN ASPAL BETON (LASTON) I Made Agus Ariawan 1 1

PENGARUH PENGGUNAAN POLIMER ELVALOY TERHADAP NILAI INDEX KEKUATAN SISA PADA CAMPURAN MATERIAL PERKERASAN DAUR ULANG

BAB III LANDASAN TEORI

STUDI PARAMETER MARSHALL CAMPURAN LASTON BERGRADASI AC-WC MENGGUNAKAN PASIR SUNGAI CIKAPUNDUNG Disusun oleh: Th. Jimmy Christian NRP:

BAB III LANDASAN TEORI

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA 2016

NASKAH SEMINAR INTISARI

PENGARUH GRADASI AGREGAT TERHADAP KEDALAMAN ALUR RODA PADA CAMPURAN BETON ASPAL PANAS

BAB II TINJAUAN PUSTAKA

PENGGUNAAN SPEN KATALIS PADA CAMPURAN ASPHALT CONCRTE-WEARING COURSE ABSTRAK

BAB IV. HASIL dan ANALISA Pemeriksaan Berat Jenis dan Penyerapan Agregat Kasar

VARIASI AGREGAT LONJONG SEBAGAI AGREGAT KASAR TERHADAP KARAKTERISTIK LAPISAN ASPAL BETON (LASTON) ABSTRAK

ANALISIS KARAKTERISTIK LAPISAN CAMPURAN BETON ASPAL DITINJAU DARI ASPEK PROPERTIES MARSHALL. Tugas Akhir

ANALISA KARAKTERISTIK CAMPURAN ASPAL EMULSI DINGIN DAN PERBANDINGAN STABILITAS ASPAL EMULSI DINGIN DENGAN LASTON

KARAKTERISTIK MARSHALL ASPHALT CONCRETE-BINDER COURSE (AC-BC) DENGAN MENGGUNAKAN LIMBAH BETON SEBAGAI PENGGANTI SEBAGIAN AGREGAT KASAR

BAB IV HASIL ANALISA DAN DATA Uji Berat Jenis dan Penyerapan Agregat Kasar

III. METODOLOGI PENELITIAN. Jurusan Teknik Sipil Universitas Lampung. Adapun bahan yang digunakan dalam penelitian ini :

BAB I PENDAHULUAN A. Latar Belakang

Kamidjo Rahardjo Dosen Teknik Sipil FTSP ITN Malang ABSTRAKSI

PEMANFAATAN ABU VULKANIK GUNUNG KELUD PADA CAMPURAN ASPAL BETON

BATU KAPUR BATURAJA SEBAGAI FILLER PADA LAPIS ASPHALT CONCRETE-BINDER COURSE (AC-BC) CAMPURAN PANAS. Hamdi Arfan Hasan Sudarmadji

BAB I PENDAHULUAN A. Latar Belakang

TINJAUAN KARAKTERISTIK MARSHALL DAN KUAT TARIK TIDAK LANGSUNG CAMPURAN PANAS ASPAL BETON MENGGUNAKAN SEMARBUT ASPAL TIPE I SEBAGAI BINDER

PENGGUNAAN ASPAL BUTON TIPE RETONA BLEND 55 SEBAGAI BAHAN SUSUN CAMPURAN HRS-B

BAB III METODOLOGI. Gambar 3.1.a. Bagan Alir Penelitian

ANALISIS KARAKTERISTIK CAMPURAN ASPHALT CONCRETE- BINDER COURSE (AC-BC) DENGAN MENGGUNAKAN ASPAL RETONA BLEND 55 TUGAS AKHIR

METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Inti Jalan Raya Fakultas Teknik

HASIL DAN PEMBAHASAN

PENGARUH TEMPERATUR TERHADAP MODULUS ELASTISITAS DAN ANGKA POISSON BETON ASPAL LAPIS AUS DENGAN BAHAN PENGISI KAPUR

BAB III LANDASAN TEORI. bergradasi baik yang dicampur dengan penetration grade aspal. Kekuatan yang

Jurnal Sipil Statik Vol.1 No.2, Januari 2013 ( )

ANALISIS STABILITAS CAMPURAN BERASPAL PANAS MENGGUNAKAN SPESIFIKASI AC-WC

PENGARUH PENGGUNAAN LIMBAH PLASTIK POLIPROPILENA SEBAGAI PENGGANTI AGREGAT PADA CAMPURAN LASTON TERHADAP KARAKTERISTIK MARSHALL (105M)

Prosiding Seminar Nasional Manajemen Teknologi XIX Program Studi MMT-ITS, Surabaya 2 November 2013

3. pasir pantai (Pantai Teluk Penyu Cilacap Jawa Tengah), di Laboratorium Jalan Raya Teknik Sipil dan Perencanaan Universitas Islam

BAB III METODELOGI PENELITIAN. (AASHTO,1998) dan Spesifikasi Umum Bidang Jalan dan Jembatan tahun 2010.

Jurnal Sipil Statik Vol.3 No.12 Desember 2015 ( ) ISSN:

METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN. Jurusan Teknik Sipil Universitas Lampung. Adapun bahan yang digunakan dalam penelitian ini :

BAB IV METODE PENELITIAN. A. Bagan Alir Penelitian. Mulai. Studi Pustaka. Persiapan Alat dan Bahan. Pengujian Bahan

BAB III METODOLOGI PENELITIAN

KARAKTERISTIK MARSHALL DAN INDEKS KEKUATAN SISA (IKS) PADA CAMPURAN BUTONITE MASTIC ASPHALT (BMA)

PENGARUH PENAMBAHAN SERBUK BAN KARET PADA CAMPURAN LASTON UNTUK PERKERASAN JALAN RAYA

VARIASI AGREGAT PIPIH TERHADAP KARAKTERISTIK ASPAL BETON (AC-BC) Sumiati Arfan Hasan ABSTRAK

PENGARUH PEMADATAN DENGAN GYRATORY TESTING MACHINE (GTM) TERHADAP KINERJA LABORATORIUM DARI CAMPURAN ASBUTON BERGRADASI SUPERPAVE TESIS

ANALISIS ITS (INDIRECT TENSILE STRENGTH) CAMPURAN AC (ASPHALT CONCRETE) YANG DIPADATKAN DENGAN APRS (ALAT PEMADAT ROLLER SLAB) Naskah Publikasi

METODOLOGI PENELITIAN

BAB 1 PENDAHULUAN 1.1 Latar Belakang

PENGARUH PENAMBAHAN SABUT KELAPA TERHADAP STABILITAS CAMPURAN ASPAL EMULSI DINGIN

BAB 1 PENDAHULUAN 1.1 Latar Belakang

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERSETUJUAN HALAMAN MOTTO DAN PERSEMBAHAN ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR TABEL

BAB I PENDAHULUAN 1.1. Latar belakang Masalah

PERBANDINGAN FILLER PASIR LAUT DENGAN ABU BATU PADA CAMPURAN PANAS ASPHALT TRADE BINDER UNTUK PERKERASAN LENTUR DENGAN LALU LINTAS TINGGI

Spesifikasi stone matrix asphalt (SMA)

Muhammad Rizal Permadi, Retno Handayani Prastyaningrum, Bagus Hario Setiadji *), Supriyono *)

EFEK PEMAKAIAN PASIR LAUT SEBAGAI AGREGAT HALUS PADA CAMPURAN ASPAL PANAS (AC-BC) DENGAN PENGUJIAN MARSHALL

III. METODOLOGI PENELITIAN

Pemeriksaan BERAT JENIS DAN PENYERAPAN AGREGAT KASAR. Penanggung Jawab. Iman Basuki

PENGARUH LIMBAH BAJA ( STEEL SLAG ) SEBAGAI PENGGANTI AGREGAT KASAR NO. ½ DAN NO.8 PADA CAMPURAN HRS-WC TERHADAP KARAKTERISTIK MARSHALL 1

STUDI PENGGUNAAN ASBUTON BUTIR PADA CAMPURAN BETON ASPAL BINDER COURSE (AC-BC)

Jurnal Sipil Statik Vol.3 No.4 April 2015 ( ) ISSN:

Gambar 4.1. Bagan Alir Penelitian

PENGARUH SUHU PEMADATAN TERHADAP KINERJA MARSHALL PADA CAMPURAN CPHMA MENGGUNAKAN LGA DAN ASPAL MINYAK PENETRASI 60/70 NASKAH PUBLIKASI

PEMANFAATAN ASBUTON LAWELE GRANULAR SEBAGAI SUBSTITUSI ASPAL MINYAK UNTUK PEMBANGUNAN DAN PEMELIHARAAN JALAN BERASPAL. Jakarta, 2 September 2010

FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG ABSTRAK

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Inti Jalan

BAB III LANDASAN TEORI. dari campuran aspal keras dan agregat yang bergradasi menerus (well graded)

ek SIPIL MESIN ARSITEKTUR ELEKTRO

Contoh perencanaan asbuton campuran panas. Sample of Design Mix with Asbuton

PERBANDINGAN KARAKTERISTIK AGREGAT KASAR PULAU JAWA DENGAN AGREGAT LUAR PULAU JAWA DITINJAU DARI KEKUATAN CAMPURAN PERKERASAN LENTUR

PENGEMBANGAN CAMPURAN BERGRADASI SPLIT MASTIC ASPHALT (SMA) MENGGUNAKAN BAHAN RECLAIMED ASPHALT PAVEMENT (RAP) DAN LIMBAH ARANG BATUBARA

PENGARUH VARIASI RATIO FILLER-BITUMEN CONTENT PADA CAMPURAN BERASPAL PANAS JENIS LAPIS TIPIS ASPAL BETON-LAPIS PONDASI GRADASI SENJANG

PERENCANAAN CAMPURAN HRS-WC MENGGUNAKAN AGREGAT DAUR ULANG DARI SAMPEL PENGUJIAN KUAT TEKAN BETON

Transkripsi:

PENGARUH PENAMBAHAN BUTON GRANULAR ASPHALT PADA CAMPURAN BETON ASPAL TERHADAP MODULUS RESILIEN DAN GRADASI Heddy R. Agah Departemen Teknik Sipil Universitas Indonesia Kampus UI Depok 16424 agah@eng.ui.ac.id Sigit P. Hadiwardoyo Departemen Teknik Sipil Universitas Indonesia Kampus UI Depok 16424 sigit@eng.ui.ac.id Abstract Buton Asphalt is a natural asphalt which has advantages because it contains minerals and asphalt, even though its asphalt content does not completely meet the specification as a binder of asphalt concrete. Various studies of the Buton Asphalt usage have been carried out. This paper presented the results of a study on asphalt concrete mixtures using materials of Buton Granular Aggregate (BGA), treating the BGA as aggregates, with the BGA content of 5% and 7%. Mixtures and specimens were analyzed to investigate the effects of BGA on the performance of asphalt concrete. The results showed that the indirect tensile strength for the mixture with BGA of 5% is higher than that obtained in the those with BGA content of 7%. Keywords: natural asphalt, asphalt concrete, Buton Granular Asphalt, indirect tensile strength. Abstrak Aspal Buton merupakan aspal alam yang memiliki kelebihan karena sudah mengandung mineral dan aspal, meskipun kandungan aspal tersebut tidak sepenuhnya memenuhi syarat sebagai bahan pengikat beton aspal. Berbagai penelitian sebagai upaya optimasi penggunaan Aspal Buton telah banyak dilakukan. Pada makalah ini disajikan hasil penelitian campuran beton aspal yang menggunakan bahan Buton Granular Aggregate (BGA) sebagai bahan tambah, dengan memperlakukan BGA sebagai agregat dengan kandungan 5% dan 7%. Campuran dan benda uji dianalisis untuk mempelajari pengaruh BGA terhadap kinerja beton aspal. Hasil penelitian menunjukkan bahwa Indirect tensile strength untuk campuran dengan kandungan BGA 5% lebih tinggi daripada yang didapat pada benda uji dengan kandungan BGA 7 %. Kata-kata Kunci: aspal alam, beton aspal, Buton Granular Asphalt, indirect tensile strength. PENDAHULUAN Kebutuhan aspal di Indonesia terus meningkat namun kebutuhan tersebut tidak terpenuhi karena keterbatasan kapasitas penghasil aspal. Selain bahan aspal yang berbasis minyak bumi, terdapat aspal asli atau aspal alam, seperti yang dapat ditambang di Pulau Buton, Indonesia. Jenis aspal alam yang berasal dari Pulau Buton ini dibagi menjadi dua macam, yaitu aspal keras yang ditemukan di daerah Kabungka dan aspal lembek yang Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112 103

dapat ditambang di daerah Lawele. Aspal alam yang berasal dari Pulau Buton ini mempunyai kadar aspal yang bervariasi, dari 10% sampai dengan 40%, dengan rata rata sekitar 21,8%. Jumlah deposit aspal alam ini diperkirakan sebesar 350 juta ton. Berbagai penelitian dan pemanfaatan Aspal Buton ini telah dilaksanakan, baik sebagai aditif maupun sebagai material dasar campuran beton aspal. Aspal Buton Butir merupakan hasil pengolahan Aspal Buton padat yang dipecah dengan alat pemecah (crusher) yang sesuai sehingga memiliki ukuran butir tertentu. Hingga tahun 1987 Aspal Buton Butir konvensional, yaitu berupa agregat Aspal Buton dengan ukuran butir maksimum 12,5 mm dan dikirim dalam bentuk curah, pernah digunakan di Indonesia (Affandi, 2008). Persyaratan untuk Aspal Buton Butir disajikan pada Tabel 1, yang dikelompokkan berdasarkan kelas penetrasi dan kandungan aspalnya. Tabel 1 Persyaratan Asbuton Butir Tipe Tipe Tipe Tipe Sifat-sifat Aspal Buton Metode Pengujian 5/20 15/20 15/25 20/25 Kadar bitumen Aspal Buton; % SNI 03-3640-1994 18 22 18 22 23 27 23 27 Ukuran butir Lolos Ayakan No 4 (4,75 mm); % SNI 03-1968-1990 100 100 100 100 Lolos Ayakan No.8 (2,36 mm); % SNI 03-1968-1990 100 100 100 Min. 95 Lolos Ayakan No.16 (1,18 mm); SNI 03-1968-1990 Min. 95 Min. 95 Min. 95 Min. 75 % Kadar air, % SNI 06-2490-1991 Maks. 2 Maks. 2 Maks. 2 Maks. 2 Penetrasi aspal asbuton pada 25ºC, 100 gr, 5 detik; 0,1 mm SNI 06-2490-1991 10 10 18 10 18 19 22 Keterangan: 1. Asbuton butir Tipe 5/20 : Kelas penetrasi 5 (0,1 mm) dan kelas kadar bitumen 20%. 2. Asbuton butir Tipe 15/20 : Kelas penetrasi 15 (0,1 mm) dan kelas kadar bitumen 20%. 3. Asbuton butir Tipe 15/25 : Kelas penetrasi 15 (0,1 mm) dan kelas kadar bitumen 25%. 4. Asbuton butir Tipe 20/25 : Kelas penetrasi 20 (0,1 mm) dan kelas kadar bitumen 25%. Pemanfaatan Aspal Buton telah diperluas dengan berbagai optimasi melalui modifikasi bahan dasar sehingga dapat dimanfaatkan, baik sebagai aditif dalam bentuk granular maupun sebagai aspal modifikasi (Samadhi et al, 2011). Perkembangan karakteristik Aspal Buton dapat dilihat pada Tabel 2. Bahan ini memiliki sifat agregat yang mengaglomerasi selama masa penyimpanan. Proses aglomerasi ini diperburuk oleh kondisi alam di Indonesia yang lembab, yang selain menyebabkan terjadinya aglomerasi cenderung menjadikan bahan ini lebih lengket. Sifat teknis Aspal Buton berdasarkan lokasi penambangannya disajikan pada Tabel 3. Aspal Buton ini mempunyai variasi kandungan aspal antara (20-30) % berat, dengan nilai penetrasi yang bervariasi. Aspal yang berasal dari lokasi penambangan Lawele mempunyai nilai penetrasi jauh lebih tinggi dibandingkan aspal yang berasal dari lokasi penambangan Kabungka. 104 Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112

Tahun Tabel 2 Perkembangan Pemanfaatan Karakteristik Dasar Aspal Buton Kadar Ukuran Butir Kadar Tipe Produk Bitumen Kemasan Maks Air (%) (%) Metode campuran 1929 Asbuton Konvensional ½ (12,7 mm) 18 22 10 15 Curah Dingin 1993 Asbuton Halus ¼ (6,35 mm) < 6 2 ± 2 Karung Plastik @40 kg Dingin 1993- Karung Plastik Asbuton Mikro Plus No. 8 (2,36 mm) 25 ± ½ < 2 1996 kedap air @40 kg Panas 1995 BMA (Butonite Mastic Bahan dasar Mineral < 600 µm 50 < 2 Asphalt) Asbuton mikro Panas Retona (ekstraksi aspal 1997 buton) + Aspal Minyak (20% + 80%) - 90 < 2 Blok/curah Panas 2002 BGA (Buton Granular Karung plastik 2 Mineral < 1,16 mm 20 25 < 2 Asphalt) lapis @40 kg Panas Tabel 3 Properti Aspal Alam Hasil Ektraksi dari Lokasi Kabungka dan Lawele Properti Unit Kabungka Lawele Kadar aspal % berat 20 30.8 Penetrasi ((25 0 C,100 g, 5 detik) 0,1mm 4 36 Titik Lembek 0 C 101 59 Titik Nyala 0 C - 198 Daktilitas (25 0 C, 5 cm/min) cm <140 >140 Specific Gravity 1.046 1.037 Penetrasi (LOH) (25 0 C,100 g, 5 detik) % berat 94 Titik lembek (LOH) 0 C 62 Kehilangan pada pemanasan (163 0 C, 5jam) % berat 0.31 Kelarutan trichloroethylene % berat 99.6 METODE PENGUJIAN Pengujian dilakukan di laboratorium dengan menggunakan bahan pengikat aspal Pen 60/70. Bahan BGA digunakan dengan menetapkan dan menambahkannya sebagai bagian gradasi agregat. Pendekatan ini dilakukan dengan mempertimbangkan bahwa BGA berbentuk agregat. Benda uji campuran beton aspal dibuat dengan 3 tipe, yaitu 1 campuran murni tanpa bahan tambahan dan 2 campuran yang menggunakan tambahan BGA sebanyak masing-masing 5 % dan 7 % yang dihitung berdasarkan persentase berat. Benda uji dibuat untuk masing masing tipe campuran dengan menggunakan bahan pengikat dengan rentang (4,5-6,5) % dengan interval 0,5 %. Pengujian dilakukan melalui dua tahapan, yaitu: (i) menguji kinerja dengan menggunakan metode Marshall dan (ii) menentukan modulus resilien dengan alat UMATTA. Uji modulus resilien dilakukan dengan skenario kombinasi 3 variasi pulsa beban (pulse) dan waktu pembebanan (rise time) serta 2 variasi temperatur. Variasi kombinasi pulsa dan rise time adalah: (1) 80-3000, (2) 40-1000, dan (3) 42-3000 Pengaruh Penambahan Buton Granular Agregat (Heddy R. Agah dan Sigit P. Hadiwardoyo) 105

sedangkan variasi temperatur adalah: (1) tanpa pemanasan (temperatur udara) dan (2) dipanaskan pada 40 0 C selama 24 jam sebelum diuji. HASIL DAN ANALISIS Aspal yang digunakan adalah aspal jenis AC 60/70. Hasil pemeriksaan standar terhadap aspal disajikan ada Tabel 4. Seluruh jenis pemeriksaan menunjukkan bahwa aspal yang digunakan memenuhi persyaratan. Tabel 4 Hasil Pemeriksaan Aspal Penetrasi 60/70 Jenis Pemeriksaan Satuan Spesifikasi Hasil Min Maks Pemeriksaan Penetrasi aspal 25 o, 100 gram, 5 detik 0,1 mm 60 79 62,8 Titik Lembek aspal 5 o C ºC 48 58 49 Titik Nyala aspal ºC 232-320 Kehilangan Berat aspal % Berat - 0,4 0,19 Kelarutan dalam CCl 4 % Berat 99-99,5 Daktilitas cm 100-100 Penetrasi setelah kehilangan berat % Semula 75-89,17 Penetrasi setelah kehilangan berat 0,1 mm 54 56 Berat jenis gram/cc 1-1,031 Bahan berbasis aspal Buton yang digunakan, yang merupakan jenis Buton Granular Aggregate (BGA) tipe 20/25, diuji gradasi agregat dan kadar kandungan aspalnya. Ekstraksi BGA dilakukan dengan menggunakan cairan TCE (trichloroethylene) dan alat ekstraktor reflux guna mengetahui kandungan aspal. Analisis gradasi dilakukan untuk mengetahui susunan agregat sebelum dan sesudah proses ekstraksi. Hasil analisis saringan disajikan pada Tabel 5. Saringan No. Tabel 5 Analisis Saringan BGA Sebelum dan Sesudah Ekstraksi Sebelum ekstrasi Setelah ekstraksi Berat Lolos Berat Tertahan Tertahan Tertahan Kumulatif Tertahan % % (gram) % (gram) Lolos Kumulatif % 4 118 11,8 88,19 0 0,00 100,00 8 194 19,42 68,77 1 0,10 99,90 30 258 25,83 42,94 5 0,50 99,40 50 275 27,53 15,42 51 5,06 94,34 100 123 12,31 3,10 97 9,71 84,63 200 29 2,90 0,20 82 8,16 76,48 Pan 2 0,20 0,00 159 15,87 60,61 999 394 106 Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112

Hasil uji saringan BGA (pada Tabel 5) menunjukkan bahwa setelah diekstraksi sebanyak 76,48% kumulatif agregat halus lolos saringan No. 200. Perubahan komposisi tersebut sangat nyata bila dibandingkan dengan gradasi BGA dalam bentuk aslinya. Kinerja Marshall Campuran Beton Aspal Pada Tabel 6 disajikan hasil uji terhadap 3 tipe campuran untuk benda-benda uji dengan kandungan aspal mulai 4,5 % hingga 6,5 % dengan interval 0,5 %. Penetapan kadar aspal optimum tidak dilakukan berdasarkan nilai optimum campuran beton aspal asli, tetapi untuk setiap komposisi kandungan BGA ditentukan masing-masing kadar aspal optimumnya. Tabel 6 Kinerja Campuran Beton Aspal BGA Kadar aspal (%) 4,5% 5% 5,5% 6% 6,5% VIM (%) 0 9,5* 7,6* 5,8 4,9 5,2* VMA (%) 19,2 18,6 17,9 18,2 19,4 Stabilitas (kg) 904,4 1061,9 911,3 911,2 827,9 Flow (mm) 2,8 2,9 3,3 3,4 3,6 MQ (kg/mm) 329,7 376,7* 280,8 271,5 230,5 VIM (%) 5 9,4* 7,5* 6,* 5,1 3,8 VMA (%) 20,5 19,9 19,7 19,9 19,8 Stabilitas (kg) 1058,7 1114,0 1132,7 1116,5 1136,2 Flow (mm) 3,3 3,50 3,5 3,53 3,9 MQ (kg/mm) 325,0 323,5 322,2 315,5 291,7* VIM (%) 7 8,6* 6,8* 5,7* 4,9 4,7 VMA (%) 20,5 20,0 19,6 20,6 21,4 Stabilitas (kg) 1089,7 1299,1 1115,4 1211,6 1043,0 Flow (mm) 3,6 4,0 3,8 4,5 4,1 MQ (kg/mm) 305,8 325,8 307,6 239,1* 254,3* *tidak memenuhi spesifikasi Berdasarkan pendekatan tersebut diperoleh kadar aspal optimum untuk campuran tanpa BGA dan campuran dengan 5% BGA adalah masing-masing sebesar 6%. Campuran dengan 7 % BGA tidak memenuhi seluruh persyaratan untuk memperoleh nilai optimum. Agregat Pada tahap perancangan campuran, unsur BGA diperhitungkan terhadap komposisi gradasi agregat secara keseluruhan sehingga dengan penambahan 5% dan 7% didapat susunan gradasi sesuai dengan spesifikasi Laston tipe IV. Tetapi karena sifat bahan dasar BGA yang memiliki kandungan mineral dan aspal, maka terdapat kecenderungan terjadinya pemisahan antara mineral dan bahan aspalnya pada saat pencampuran atau saat pelaksanaan di lapangan. Hasil ekstraksi terhadap benda uji menunjukkan bahwa terjadi perubahan komposisi agregat dibandingkan dengan komposisi agregat awal. Perubahan ini terjadi akibat degradasi agregat dengan ukuran ½ inch, 3 inch, dan ukuran saringan No. 4, yang berakibat terjadinya penambahan agregat dengan ukuran yang lebih halus pada Pengaruh Penambahan Buton Granular Agregat (Heddy R. Agah dan Sigit P. Hadiwardoyo) 107

saringan No. 50, No. 100, dan No. 200. Perubahan komposisi agregat akibat degradasi agregat tersebut terjadi pada dua jenis campuran yang diuji, yang berarti bahwa perubahan tersebut sangat dipengaruhi oleh sifat dan komposisi BGA. Agregat BGA awal yang digunakan sebagai masukan untuk rancangan gradasi sesungguhnya terdiri atas skeleton mineral yang terbungkus oleh lapis aspal kering di setiap agregatnya. Proses ekstraksi dilaksanakan setelah dilakukan uji tekan Marshall. Perubahan komposisi gradasi tersebut disajikan pada Tabel 7 dan Gambar 1. Gambar 1 Agregat Campuran Beton Aspal dengan BGA sebanyak 5% dan 7% Nomor Saringan Tabel 7 Perubahan Setelah Ekstraksi untuk BGA 5% dan BGA 7%. Campuran dengan BGA 5% Campuran dengan BGA7% Spec. Awal akhir Perubahan (%) Awal akhir Perubahan (%) ¾ 100-100 99.80 100 0,20 99,8 100 0,18 ½ 80-100 94,85 92,29-2,70 95,1 87,3-8,19 3/8 70-90 78,23 77,74-0,63 77,6 77,46-0,19 No.4 50-70 63,23 60,93-3,62 59,9 59,18-1,11 No.8 35-50 49,79 51,84 4,12 46,8 49,8 6,32 No.30 18-29 28,80 27,14-5,76 27,0 26,12-3,42 No.50 13-23 16,15 19,24 19,16 15,3 18,5 21,08 No.100 8-10 8,50 14,55 71,20 8,1 13,9 71,05 No.200 4-10 4,13 9,04 119,07 4,0 8,2 107,00 Indirect Tensile Test Uji ini digunakan untuk memperhitungkan karakteristik tarik beton aspal yang selanjutnya dapat menjadi masukan dalam melakukan kajian terhadap jenis retak lapis 108 Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112

perkerasan (Tayfura et al, 2007). Modulus resilient banyak digunakan untuk kepentingan perkerasan lentur dan pendekatannya bergantung pada perilaku material perkerasan yang diamati setelah beberapa jumlah kritis pembebanan siklik (N), ketika bahan mencapai kondisi resilient sehingga dapat dianggap bersifat elastis (Desai, 2009). Uji dilakukan dengan kombinasi antara pulsa beban dan waktu pembebanan (rise-time) untuk dapat menggambarkan modulus resilien pada kondisi pembebanan dengan lalulintas dan kecepatan tertentu. Pada percobaan ini ditetapkan nilai 1000 ms dan 3000 ms untuk moda periode pulsa yang masing-masing mewakili lalulintas tinggi dan lalulintas rendah serta nilai 40 ms, 42 ms, dan 80 ms yang masing-masing mewakili kecepatan tinggi dan kecepatan rendah. Uji tersebut dilaksanakan setelah benda uji dipanaskan 40 0 C selama 24 jam. Khusus untuk kombinasi 42 ms 3000 ms pengujian dilakukan pada dua jenis temperatur, yaitu temperatur udara dan 40 0 C. Dari kedua jenis perlakuan tersebut didapat kenaikan nilai modulus resilient benda uji yang tidak dipanaskan dan yang dipanaskan sebelum diuji. Hasil uji ini disajikan pada Tabel 7. Pengaruh pemanasan pada 40 0 C selama 24 jam mengakibatkan terjadi perubahan dengan masing masing meningkat sebesar 9.96% dan 15.16% masing masing untuk campuran tipe B5 dan B7. (Tabel 8 dan 9). Dari dua tipe campuran dengan tambahan BGA, diperoleh kesimpulan kombinasi antara rise-time dan pulsa yang rendah memberikan nilai modulus resilient lebih tinggi dibandingkan dengan kombinasi sebaliknya. Pada lalulintas tinggi dan kecepatan tinggi modulus resilient meningkat. Tipe Force (N) Tabel 8 Hasil Uji Indirect Tensile Strength Total Tensile RiseTime Load Time Recovery Stress 10%-90% (ms) Strain (kpa) (ms) Delay at 90 % (ms) Modulus Resilien (MPa) B5 (40-1000) 2398 41,28 209,1 43,8 126,4 4,4 5329,8 B5 (80-3000) 3217,3 71,984 280,2 81,2 188,2 9,4 4099,4 B7 (40-1000) 2437,7 31,474 219,1 43,8 126,8 5,4 7331,8 B7 (80-3000) 3062,2 51,420 275,2 81,4 185,8 10 5635,6 Tabel 9 Nilai Modulus Resilien Jenis Campuran Berdasar Rise Time dan Pulse Mode Jenis Campuran Rise Time dan Pulse Mode (40-1000) H (80-3000) H (42-3000) H (42-3000) H B5 5329,8 4099,4 4306,7 4736 B7 7331,8 5635,6 5623,9 6477,2 Perubahan regangan dan beban selama masa uji disajikan pada Gambar 2a dan 2b. Regangan yang terjadi pada masa pemberian pulsa beban dibaca dengan frekuensi pembacaan setiap 4 ms. Regangan yang terjadi pada campuran tipe B5 menghasilkan nilai Pengaruh Penambahan Buton Granular Agregat (Heddy R. Agah dan Sigit P. Hadiwardoyo) 109

yang lebih tinggi dibandingkan dengan campuran tipe B7. Nilai regangan untuk benda uji yang dipanaskan sebelum diuji memberi angka lebih tinggi. Berdasarkan hasil pembacaan regangan dari rangkaian 5 pulsa nilai regangan untuk campuran tipe B5 diperoleh sebesar 69,94 dan 90,54 untuk variasi rise time 42 dan 80, sedangkan untuk campuran tipe B7 diperoleh sebesar 59,37 dan 55,9 untuk rise time yang sama (Gambar 3). Hasil uji UMATTA dengan memperbandingkan antara parameter total recovery strain dengan force dengan 5 pulsa pembebanan dapat dilihat pada Gambar 4a dan Gambar 4b, masing masing untuk campuran dengan kandungan BGA 5% dan 7%. Titik puncak hubungan ini terjadi pada kondisi gabungan rise time dan pulsa 40-3000 dan titik terkecil ditemukan pada kondisi pembebanan dengan rise time 80-1000 untuk benda uji dengan BGA 5%. Untuk benda uji dengan kandungan BGA 7%, titik puncak tertinggi pada hubungan stress dan strain terjadi pada pembebanan (40-3000) dan (42-3000) untuk masing masing nilai terendah dan tertinggi. Kedua campuran dengan angka tersebut adalah benda uji yang telah melalui pemanasan awal. (a) (b) (a) (b) Gambar 2 Perubahan Beban (N) dan Strain Berdasarkan Waktu Pembebanan Untuk Campuran dengan BGA 5% (a) dan BGA 7% (b) 110 Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112

(a) (b) Gambar 4 Hubungan antara Pembebanan dan Strain untuk BGA 5% (a) dan BGA 7% (b) KESIMPULAN Aspal Buton sebagai material jenis aspal alam dapat dipergunakan untuk bahan konstruksi perkerasan beton aspal. Berdasarkan komposisi kandungan mineral dan aspal penyelimut mineral, cenderung akan terjadi degradasi atau pelepasan bahan pengikat aspal dari mineralnya. Dengan kondisi ini penambahan BGA perlu dipertimbangkan pada saat melakukan analisis gradasi perancangan campuran pada tahap awal. Pemeriksaan komposisi BGA pada tahap awal dengan melakukan ekstrasi dapat memperkirakan kontribusi agregat campuran. Perbandingan antara benda-benda uji yang dipanaskan sebelum uji pada temperatur 40 0 C menunjukkan pengaruh sifat dasar aspal akibat perubahan konsistensi dan sifat viscoelastic. Indirect tensile strength untuk campuran dengan kandungan BGA 5% lebih tinggi daripada yang didapat pada benda uji dengan kandungan BGA 7 %. Campuran dengan BGA 5 % ini lebih baik daripada campuran dengan BGA 7% karena pengaruh butir-butir agregat halus. Pengaruh Penambahan Buton Granular Agregat (Heddy R. Agah dan Sigit P. Hadiwardoyo) 111

DAFTAR PUSTAKA Affandi, F. 2009. Sifat Campuran Beraspal Panas dengan Asbuton Butir. Jurnal Jalan dan Jembatan, 26 (2): 93-106. Airey, G. D., Hunter, A. E., and Collop, A. C. 2008. The Effect of Asphalt Mixture Gradation and Compaction Energy on Aggregate Degradation. Journal of Construction and Materials, 27: 972-980. Amalia, M. 2012. Analisis Penggunaan Bahan Aditif Jenis Polimer terhadap Kinerja Campuran Aspal Panas dengan Tambahan Variasi BGA (Buton Granular Asphalt). Skripsi tidak diterbitkan. Departemen Teknik Sipil. Depok: Universitas Indonesia. Badan Penelitian dan Pengembangan. 2009. Aspal Buton. Jakarta. Kementerian Pekerjaan Umum. Badan Penelitian dan Pengembangan. 2007. Tata Cara Pelaksanaan Lapis Beton Aspal (LASTON) Untuk Jalan Raya. RSNI 03-1737-1989. Departemen Pekerjaan Umum. Jakarta. Badan Standardisasi Nasional. 2002. Tata Cara Perencanaan Struktur Beton Untuk Bangunan Gedung. Rancangan Standar Nasional Indonesia. Jakarta. Departemen Pekerjaan Umum. 1987. Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan Metode Analisa Komponen. Jakarta. Desai, C. S. 2009. Unified Disturbed State Constitutive Modeling of Asphalt Concrete, in Modeling of Asphalt Concrete. New York, NY: McGraw-Hill. Martha, A. 2012. Analisis Kinerja Campuran Panas dengan Menggunakan Variasi Komposisi BGA (Buton Granular Asphalt) dan Penambahan Aditif Jenis Polimer. Skripsi tidak diterbitkan. Departemen Teknik Sipil. Depok: Universitas Indonesia. Sarana Karya, PT. 2001, Buton Granular Asphalt, Aspal Alam Mutu Tinggi untuk Kinerja Jalan yang lebih baik. Jakarta. Samadhi, T. W., Putrawan, I. D. G. A., Prabowo, B. E., dan Dwitawidi, A. 2011. Statistical Evaluation on Non-agglomeration Coating for Granulated Natural Asphalt. Journal Engineering Science, 43 (1): 41-56. Tayfura, S., Ozenb, H., and Aksoyc, A. 2007. Investigation of Rutting Performance of Asphalt Mixtures Containing Polymer Modifier. Journal of Construction and Building Materials, 21 (2). 112 Jurnal Transportasi Vol. 12 No. 2 Agustus 2012: 103-112