θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif.

dokumen-dokumen yang mirip
PEMBUATAN KOMPOSIT MAGNET OKSIDA BESI- KARBON AKTIF SEBAGAI ADSORBEN Cs DAN Sr ANIS ARIYANI

BAB I PENDAHULUAN Latar Belakang

HASIL DAN PEMBAHASAN. nm. Setelah itu, dihitung nilai efisiensi adsorpsi dan kapasitas adsorpsinya.

BAB I PENDAHULUAN 1.1 Latar Belakang

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

HASIL DAN PEMBAHASAN

LAMPIRAN 1 DATA HASIL PERCOBAAN

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

BAB I PENDAHULUAN Latar Belakang

LAMPIRAN 1 DATA HASIL PERCOBAAN

BAB IV HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit

AKTIVASI ABU LAYANG BATUBARA DAN APLIKASINYA SEBAGAI ADSORBEN TIMBAL DALAM PENGOLAHAN LIMBAH ELEKTROPLATING

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGARUH UKURAN PARTIKEL Fe 3 O 4 DARI PASIR BESI SEBAGAI BAHAN PENYERAP RADAR PADA FREKUENSI X DAN Ku BAND

BAB I PENDAHULUAN. Dalam bab ini diuraikan mengenai latar belakang masalah, tujuan dari penelitian dan manfaat yang diharapkan. I.

HASIL DAN PEMBAHASAN Preparasi Contoh

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei sampai Juli 2015 di Laboratorium

HASIL DAN PEMBAHASAN. Gambar 2 Skema Pembuatan elektrode pasta karbon.

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

LAMPIRAN 1 DATA HASIL PERCOBAAN

Penulis sangat menyadari bahwa masih terdapat banyak kekurangan dalam penyusunan tesis ini, oleh karena itu penulis mengharapkan kritik dan saran

Bab IV Hasil dan Pembahasan

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB IV HASIL DAN PEMBAHASAN

Deskripsi. SINTESIS SENYAWA Mg/Al HYDROTALCITE-LIKE DARI BRINE WATER UNTUK ADSORPSI LIMBAH CAIR

HASIL DAN PEMBAHASAN. Adsorpsi Zat Warna

IDENTIFIKASI Fase KOMPOSIT OKSIDA BESI - ZEOLIT ALAM

SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI

BAB V HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. Dalam bab ini diuraikan mengenai latar belakang masalah, tujuan dari penelitian dan manfaat yang diharapkan.

IV. HASIL DAN PEMBAHASAN. sol-gel, dan mempelajari aktivitas katalitik Fe 3 O 4 untuk reaksi konversi gas

BAB I PENDAHULUAN. dalam bidang perindustrian. Penggunaan logam krombiasanya terdapat pada industri

IV. HASIL PENELITIAN DAN PEMBAHASAN

BAHAN DAN METODE Alat dan Bahan Metode Penelitian Pembuatan zeolit dari abu terbang batu bara (Musyoka et a l 2009).

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN PERNYATAAN PRAKATA DAFTAR GAMBAR DAFTAR TABEL

BAB III METODOLOGI PENELITIAN

PENGARUH TEMPERATUR TERHADAP UKURAN PARTIKEL FE3O4 DENGAN TEMPLATE PEG-2000 MENGGUNAKAN METODE KOPRESIPITASI

PEMBUATAN, PENCIRIAN, DAN UJI APLIKASI NANOKOMPOSIT BERBASIS MONTMORILONIT DAN BESI OKSIDA DIAN HAMSAH

Oleh : Yanis Febri Lufiana NRP :

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari - Juni 2015 di Balai Besar

Gambar 3.1 Diagram Alir Penelitian Secara Keseluruhan

PELINDIAN PASIR BESI MENGGUNAKAN METODE ELEKTROLISIS

LAMPIRAN 1 DATA HASIL PERCOBAAN

BAB IV HASIL DAN PEMBAHASAN. dihasilkan sebanyak 5 gram. Perbandingan ini dipilih karena peneliti ingin

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab IV. Hasil dan Pembahasan

ENKAPSULASI NANOPARTIKEL MAGNESIUM FERRITE (MgFe2O4) PADA ADSORPSI LOGAM Cu(II), Fe(II) DAN Ni(II) DALAM LIMBAH CAIR

polutan. Pada dasarnya terdapat empat kelas bahan nano yang telah dievaluasi sebagai bahan fungsional untuk pemurnian air yaitu nanopartikel

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

BAB III METODE PENELITIAN

BAB IV HASIL PENELITIAN DAN ANALISIS DATA

HASIL DAN PEMBAHASAN. a b c. Pada proses pembentukan magnetit, urea terurai menjadi N-organik (HNCO), NH + 4,

Gambar V.3 (a). Spektra FTIR dan (b). Difraktogram XRD material hasil sintesis (dengan variasi perbandingan molar Fe 3+ /Fe 2+ pada T = 60ºC dan

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISTILAH DAFTAR SINGKATAN DAN LAMBANG BAB I

BAB IV HASIL dan PEMBAHASAN

METODE. Penentuan kapasitas adsorpsi dan isoterm adsorpsi zat warna

HASIL DAN PEMBAHASAN. Skema interaksi proton dengan struktur kaolin (Dudkin et al. 2004).

IV. HASIL DAN PEMBAHASAN Hasil analisis tanah lokasi penelitian disajikan pada Lampiran 1. Berbagai sifat kimia tanah yang dijumpai di lokasi

BABrV HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN. Preparasi Adsorben

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

IV. HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN y = x R 2 = Absorban

BAB III METODE PENELITIAN

KAPASITAS ADSORPSI KOMPOSIT BESI OKSIDA KITOSAN TERHADAP Ion Logam Cd(II) DALAM MEDIUM CAIR

BAB III METODE PENELITIAN. Matematika dan Ilmu Pengetahuan Alam Universitas Udayana. Untuk sampel

HASIL DAN PEMBAHASAN. standar, dilanjutkan pengukuran kadar Pb dalam contoh sebelum dan setelah koagulasi (SNI ).

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

I. PENDAHULUAN. serius, ini karena penggunaan logam berat yang semakin meningkat seiring

PENGARUH ph, DAN WAKTU ELEKTRODEPOSISI TERHADAP EFISIENSI ELEKTRODEPOSISI ION PERAK(I) DALAM LIMBAH CAIR ELEKTROPLATING DENGAN AGEN PEREDUKSI ASETON

4 Hasil dan Pembahasan

IV. HASIL DAN PEMBAHASAN. Tabel 7. Hasil Analisis Karakterisasi Arang Aktif

BAB 3 METODE PENELITIAN. Neraca Digital AS 220/C/2 Radwag Furnace Control Indicator Universal

Bab III Metodologi Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB II TINJAUAN PUSTAKA

Bab II Tinjauan Pustaka

BAB 3 METODOLOGI PENELITIAN

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB IV HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

BAB III METODOLOGI PENELITIAN

Hariadi Aziz E.K

METODE PENELITIAN. Efek medan magnet pada air sadah. Konsep sistem AMT yang efektif

BAB II TINJAUAN PUSTAKA

SOAL KIMIA 1 KELAS : XI IPA

LOGO. Stoikiometri. Tim Dosen Pengampu MK. Kimia Dasar

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

DAFTAR ISI. HALAMAN PENGESAHAN... i. LEMBAR PERSEMBAHAN... ii. KATA PENGANTAR... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... ix. DAFTAR LAMPIRAN...

LAPORAN PRAKTIKUM KIMIA FISIKA

Transkripsi:

Intensitas 5 selama 24 jam. Setelah itu, filtrat dipisahkan dari sampel C, D, dan E dengan cara mendekatkan batang magnet permanen pada permukaan Erlenmeyer. Konsentrasi filtrat ditentukan menggunakan Spektroskopi Serapan Atom (AAS). Ragam ph larutan dilakukan dengan cara menimbang sampel A, C, D, dan E masingmasing sebesar 5 g lalu dimasukkan ke dalam Erlenmeyer. Sebanyak 50 ml larutan Cs + dan Sr 2+ 50 ppm ditambahkan lalu diatur ph 2-10. Setelah itu, penjerapan dilakukan dengan waktu kontak selama 24 jam lalu filtrat dipisahkan dari sampel C, D, dan E dengan cara mendekatkan batang magnet permanen pada permukaan Erlenmeyer. Konsentrasi filtrat ditentukan menggunakan Spektroskopi Serapan Atom (AAS). Ragam konsentrasi awal Cs + dan Sr 2+ dilakukan dengan menimbang masing-masing 5 g sampel A, C, D, dan E. Sebanyak 50 ml larutan Cs + dan Sr 2+ dengan variasi konsentrasi 10, 25, 50, 100, dan 200 ppm dimasukkan ke dalam Erlenmeyer dan penjerapan dilakukan dengan waktu kontak selama 24 jam. Setelah itu, filtrat dipisahkan dari sampel C, D, dan E dengan cara mendekatkan batang magnet permanen pada permukaan Erlenmeyer. Konsentrasi filtrat ditentukan menggunakan Spektroskopi Serapan Atom (AAS). HASIL DAN PEMBAHASAN Pembuatan Oksida Besi dan Komposit Magnet Oksida besi dibuat menggunakan metode kopresipitasi pada suhu 70 o C, yaitu melalui pencampuran Fe 3+ dan Fe 2+ dengan penambahan larutan basa (NaOH) sehingga terbentuk Fe(OH) 2 dan Fe(OH) 3. Pemanasan pada suhu 70 o C menyebabkan proses pelepasan air atau hidrasi pada hidroksida besi sehingga terbentuk oksida besinya. Jumlah Fe 3+ dan Fe 2+ yang dicampurkan didasarkan pada nisbah mol 2:1. Nisbah mol Fe 3+ dan Fe 2+ (2:1) merupakan stoikiometri yang dibutuhkan untuk membentuk oksida besi dari fase magnetit atau Fe 3 O 4. Pembuatan komposit oksida besi pada karbon aktif diawali dengan penjerapan ionion Fe 2+ dan Fe 3+ oleh karbon aktif. Ion-ion tersebut membentuk endapan hidroksida besi atau Fe(OH) 2 dan Fe(OH) 3 lalu membentuk oksida besi karena proses hidrasi pada pemanasan di suhu 70 o C sehingga terbentuk oksida besi yang terkomposit pada struktur karbon aktif. Fe 2+ + 2Fe 3+ + 8OH - Fe(OH) 2 + 2Fe(OH) 3 FeO.Fe 2 O 3 atau Fe 3 O 4 + 4H 2 O Pencirian Pencirian dengan XRD bertujuan menentukan fase oksida besi yang terbentuk pada sampel. Gambar 2 memperlihatkan pola difraksi sampel A, B, C, D, dan E. Pola XRD tersebut dapat dijelaskan dengan melihat puncak-puncak khas yang dihasilkan dari setiap sampel. Kemudian, puncak-puncak tersebut dibandingkan dengan puncak khas basis data program PCDFWIN versi 1.30 International Centre for Diffraction Data tahun 1997. 1600 1400 1200 1000 800 600 400 200 0 0 20 40 60 80 100 2 θ Gambar 2 Pola XRD pada sampel A, B, C, `D, dan E. (karbon aktif) memiliki kesamaan puncak dengan basis data nomor arsip 02-0456 (Tabel 2). Nomor arsip tersebut merupakan puncak khas untuk pola A B C D E

6 difraksi karbon (grafit) pada program PCDFWIN versi 1.30 (Lampiran 4). Tabel 2 Puncak XRD karbon aktif Puncak (2θ) Karbon (graphite) 26.506 PCPDFWIN 43.472 Nomor 02-0456 44.599 26.678 43.20 44.502 Oksida besi hasil sintesis pada penelitian ini (sampel B) memiliki kesamaan puncak dengan basis data nomor arsip 11-0614 (Lampiran 5) yang merupakan oksida besi dari fase magnetit atau Fe 3 O 4 (Tabel 3). Tabel 3 Puncak XRD oksida besi Puncak (2θ) 18.277 30.105 Magnetit (Fe 3 O 4 ) 35.451 PCPDFWIN 43.123 Nomor 11-0614 53.478 57.012 62.585 74.603 18.468 30.278 35.541 B 43.24 53.62 57.26 62.839 74.480 Kesamaan puncak ini menunjukkan bahwa sampel B merupakan magnetit. Selain itu, berdasarkan Oliviera et al. (2002), jarak bidang pendifraksi atau d = 2.50, 2.91, dan 1.60 Å menunjukkan keberadaan magnetit. Hal ini sesuai dengan jarak bidang pendifraksi yang didapat pada sampel B yaitu d = 2.52, 2.94, dan 1.60 Å. Gambar 2 juga menunjukkan kesamaan pola XRD sampel C, D, dan E dengan pola XRD sampel B. Hal ini menunjukkan terdapat magnetit pada sampel C, D, dan E. Kesamaan pola difraksi ketiga sampel tersebut dengan sampel B dapat diperjelas dengan melihat puncak-puncak khas yang dihasilkan dari setiap sampel (Lampiran 6). Keberadaan magnetit pada sampel C, D, dan E dibuktikan pula dengan melihat kesamaan puncak sampel-sampel tersebut dengan basis data nomor arsip 11-0614. Dengan demikian, dapat dikatakan di dalam struktur karbon aktif telah terkomposit partikel magnetit. Namun, terjadi pelemahan pola difraksi sampel C, D, dan E seiring dengan berkurangnya fraksi oksida besi pada sampel (Gambar 2). Hal ini dikarenakan oksida besi yang terbentuk ditutupi keberadaannya oleh karbon aktif yang jumlahnya semakin meningkat. Selain itu, melemahnya pola XRD sampel C, D, dan E juga dapat disebabkan oleh terbentuknya fase oksida besi selain magnetit, yaitu hematit. C, D, dan E memiliki kesamaan puncak dengan basis data nomor arsip 13-0534 (Lampiran 7) yang menunjukkan fase oksida besi hematit atau α- Fe 2 O 3 (Tabel 4). Menurut Oliveira et al. (2002), jarak bidang pendifraksi d = 2.70 Å menunjukkan keberadaan hematit. Hal ini sesuai dengan bidang pendifraksi yang dimiliki oleh sampel C, D, dan E masingmasing d = 2.66, 2.68, dan 2.69 Å. Tabel 4 Puncak XRD pada sampel C, D, E, dan hematit Hematit (α-fe 2 O 3 ) PCPDFWIN Nomor 13-0534 Puncak (2θ) 33.279 C 33.616 D 33.40 E 33.238 Melemahnya pola difraksi sampel C, D, dan E juga dibuktikan dengan hasil pencirian menggunakan VSM. VSM digunakan untuk mengukur nilai magnetisasi dan sifat magnet sampel. yang akan diukur diberikan medan magnet sebesar 1 Tesla dengan kecepatan tertentu. Jika sampel bersifat magnet, maka sampel akan mengalami magnetisasi sehingga menghasilkan momen magnet. Momen magnet yang dihasilkan akan menentukan sifat magnet dan nilai magnetisasi sampel. Hasil pencirian sampel B, C, D, dan E menggunakan VSM dapat dilihat pada Gambar 3. Nilai magnetisasi paling besar dimiliki oleh sampel B yaitu 76.59 emu/g. Nilai magnetisasi yang besar pada sampel B sesuai dengan hasil pencirian dengan XRD sampel tersebut tersusun atas magnetit, fase oksida besi yang memiliki sifat magnet tertinggi (Sulungbudi et al. 2006). Magnetit termasuk bahan ferimagnetik, yang spin elektronnya tidak berpasangan memberikan medan magnet total yang besar.

Momen Magnet (emu/g) 7 100 80 60 40 20 0-1 -0.5 0 0.5 1-20 -40-60 B C D E Selain itu, lebih kecilnya nilai magnetisasi hasil VSM dari nilai yang seharusnya juga dikarenakan oleh adanya ion Fe 2+ dan Fe 3+ di dalam struktur karbon aktif yang masih berbentuk ion. Hal ini disebabkan oleh terhalangnya ion Fe 2+ dan Fe 3+ oleh oksida besi yang lebih dahulu terbentuk di dalam struktur pori berlapis karbon aktif. Pencirian menggunakan SEM bertujuan mengetahui perbedaan mikrostruktur permukaan oksida besi (sampel B), karbon aktif (sampel A), dan karbon aktif yang telah terkomposit oksida besi (sampel D). Keadaan struktur permukaan ketiga sampel tersebut dapat dilihat pada Gambar 4 6. Gambar 4 menunjukkan keadaan permukaan sampel B yang memperlihatkan bahwa sampel B terdiri dari partikel-partikel kecil oksida besi. -80-100 Medan magnet (Tesla) Gambar 3 Hasil pencirian sampel B, C, D, ```````````````dan E menggunakan VSM. C, D, dan E berturut-turut memiliki nilai magnetisasi sebesar 26.5, 18.9, dan 11 emu/g. Nilai ini lebih kecil dari perhitungan yang didasarkan pada nilai magnetisasi sampel B per jumlah oksida besi pada setiap komposisi sampel C, D, dan E atau nilai yang seharusnya (Tabel 5). Hal ini disebabkan oleh terbentuknya fase oksida besi yang lain, yaitu hematit. Hematit merupakan fase oksida besi yang tidak memiliki sifat magnet sehingga jumlah Fe 2+ atau Fe 3+ yang merupakan prekusor pembentukan magnetit berkurang. Menurut Kahani et al. (2007), nilai magnetisasi sangat dipengaruhi oleh jumlah magnetit di dalam suatu sampel sehingga berkurangnya magnetit yang terbentuk akan berpengaruh pula pada nilai magnetisasinya. Tabel 5 Nilai magnetisasi sampel A, C, D, `````````````dan E Hasil VSM (emu/g) Hasil seharusnya (emu/g) A 76.59 - C 26.5 38.30 D 18.9 25.53 E 11 19.15 Gambar 4 Foto SEM sampel B. Gambar 5 Foto SEM sampel A. Gambar 6 Foto SEM sampel D.

Luas permukaan (m²/g) ````` 8 Gambar 5 dan 6 juga menunjukkan secara jelas perbedaan struktur permukaan sampel A dengan D. Pori-pori sampel A terlihat lebih besar bila dibandingkan dengan sampel D. Selain itu, permukaan sampel D tampak lebih padat dibandingkan dengan sampel A. Hal ini dikarenakan sebagian permukaan karbon aktif pada sampel D dikelilingi dan ditutupi oleh partikel-partikel kecil oksida besi. Luas permukaan sampel A, B, C, D, dan E yang diukur menggunakan alat BET dapat dilihat pada Gambar 7. 1200 1057.00 Hasil pencirian dengan menggunakan XRD, VSM, dan SEM menunjukkan bahwa proses pengompositan partikel oksida besi (magnetit) pada karbon aktif menghasilkan suatu material baru yang dapat berperan sebagai penjerap dan juga bersifat magnet, yaitu komposit oksida besi-karbon aktif atau OB-KA. Sifat magnet yang dimiliki sampel ini akan memudahkan proses pemisahan karbon aktif dari medium berair. Hal ini dikarenakan komposit OB:KA dapat dikendalikan pergerakannya melalui tarikan oleh batang magnet permanen (Fisli et al. 2007) (Gambar 8). 1000 800 600 638.40 712.57 400 200 74.04 219.59 0 A B C D E Gambar 7 Luas permukaan sampel A, B, C, `dan D Luas permukaan sampel A lebih besar daripada sampel C, D, dan E. Hal ini menunjukkan bahwa pengompositan partikel oksida besi ke dalam struktur karbon aktif akan menutupi permukaan karbon aktif dan karena itu, menurunkan luas permukaan (Tabel 6). E memiliki luas permukaan yang lebih besar daripada sampel C dan D. Hal ini menunjukkan bahwa semakin sedikit jumlah oksida besi yang terkomposit, maka luas permukaan sampel akan semakin besar. Tabel 6 Penurunan luas permukaan sampel A, ```````````C, D, dan E Penurunan Luas luas permukaan (m 2 permukaan /g) (%) A 1057.00 - C 219.59 79.23 D 638.40 39.60 E 712.57 32.59 Gambar 8, B, C, D, dan E yang `didekatkan dengan magnet `permanen. Uji Penjerapan Ragam Jumlah Adsorben Gambar 9 menunjukkan pengaruh jumlah adsorben terhadap penjerapan Cs +. Kapasitas penjerapan terbesar terjadi pada jumlah sampel A, C, D, dan E sebesar 125 g, yaitu berturut-turut 42.19, 18.35, 18.31, dan 15.23 mg/g (Lampiran 8). Pengaruh jumlah adsorben terhadap kapasitas penjerapan Sr 2+ dapat dilihat pada Gambar 10. Kapasitas penjerapan sampel A, C, D, dan E berturutturut sebesar 22.84, 22.44, 17.99, dan 20.34 mg/g (Lampiran 9). Kapasitas penjerapan terbesar ini juga terjadi pada jumlah sampel A, C, D, dan E sebesar 125 g.

Kapasitas penjerapan (mg/g) Kapasitas penjerapan (mg/g) Kapasitas penjerapan (mg/g)`` 9 4 4 3 3 2 0 25 5 75 0.1 0.125 Jumlah adsorben (g) D C E Gambar 9 Pengaruh jumlah adsorben ````````````````````terhadap kapasitas ````````````````````penjerapan `Cs +. 2 menurun karena jumlah adsorben yang semakin banyak. Ragam Kondisi ph Larutan Komposit magnet oksida besi-karbon aktif yang digunakan pada uji penjerapan ragam ph larutan adalah OB:KA 1:2 (sampel D) dengan karbon aktif (sampel A) sebagai pembanding. Penggunaan sampel D dikarenakan sampel ini memiliki luas permukaan dan nilai magnetisasi yang besar bila dibandingkan dengan dua sampel lainnya. Pengaruh ph terhadap kapasitas penjerapan sampel A dan D dengan Cs + sebagai adsorbat dapat dilihat pada Gambar 11. Kapasitas penjerapan sampel A dan D terhadap Cs + semakin meningkat seiring peningkatan ph (Lampiran 10). Kapasitas penjerapan paling besar terjadi pada saat ph=5 dengan kapasitas penjerapan sebesar 6.55 mg/g. Namun, kapasitas penjerapan sampel A menurun pada ph=6. Penjerapan kembali meningkat pada ph 7-10, karena pada ph tersebut terbentuk endapan CsOH sehingga kapasitas penjerapan meningkat. Sementara itu, kapasitas penjerapan sampel D paling besar saat ph=7, yaitu sebesar 5.40 mg/g. Terjadi penurunan kapasitas penjerapan saat ph=8, namun meningkat kembali pada ph 9-10. Hal ini dikarenakan pada ph 9-10 terbentuk endapan CsOH sehingga kapasitas penjerapan meningkat. 00 25 50 75 0.100 0.125 Jumlah adsorben (g) 12.0 D C E 8.0 6.0 Gambar 10 Pengaruh jumlah adsorben ````````````````terhadap kapasitas ``````````````````` `penjerapan Sr 2+. Hasil uji penjerapan dengan ragam jumlah adsorben terhadap Cs + dan Sr 2+ menggambarkan bahwa kapasitas penjerapan menurun ketika jumlah adsorben ditingkatkan. Pada jumlah adsorben tertentu, adsorbat dan adsorben mengalami keadaan jenuh: tidak ada lagi adsorbat yang dapat terjerap pada adsorben. Dalam kondisi ini, peningkatan jumlah adsorben tidak akan berdampak pada peningkatan jumlah adsorbat yang terjerap (peningkatan kapasitas penjerapan). Sebaliknya, kapasitas penjerapan akan 4.0 2.0 2.0 4.0 6.0 8.0 12.0 ph D Gambar 11 Pengaruh ph terhadap kapasitas `penjerapan Cs +. Gambar 12 memperlihatkan pengaruh ph terhadap penjerapan sampel A dan D dengan adsorbat Sr 2+. Kapasitas penjerapan sampel A

Kapasitas penjerapan (mg/g) Kapasitas penjerapan (mg/g) Kapasitas penjerapan (mg/g) 10 dan D juga mengalami peningkatan seiring dengan meningkatnya ph (Lampiran 11). dan D memiliki kapasitas penjerapan paling besar pada ph=6, yaitu berturut-turut sebesar 11.28 dan 8.90 mg/g. Namun, kapasitas penjerapan sampel A menurun pada ph 7-8 dan meningkat kembali pada ph 9-10. Sedangkan, sampel D mengalami penurunan kapasitas penjerapan pada ph=7 dan meningkat kembali pada ph 8-10. Peningkatan kapasitas penjerapan sampel A dan D pada ph basa dikarenakan telah terbentuknya endapan Sr(OH) 2. 2 18.0 16.0 14.0 12.0 8.0 6.0 4.0 2.0 2.0 4.0 6.0 8.0 12.0 ph D Gambar 12 Pengaruh ph terhadap kapasitas ```````` penjerapan Sr 2+. Kapasitas penjerapan sampel A dan D terhadap Cs + dan Sr 2+ meningkat seiring dengan peningkatan ph. Hal ini dikarenakan pada ph asam terjadi kompetisi antara H + dengan Cs + dan Sr 2+ untuk terjerap pada sampel (Qaiser et al. 2007) sehingga jumlah Cs + dan Sr 2+ yang terjerap sedikit. Seiring dengan peningkatan ph, jumlah H + akan semakin sedikit sehingga kapasitas penjerapan akan meningkat. Ragam Konsentrasi Awal Cs + dan Sr 2+ Pengaruh ragam konsentrasi awal Cs + dan Sr 2+ terhadap besarnya kapasitas penjerapan dapat dilihat pada Gambar 13 dan 14. Gambar tersebut memperlihatkan peningkatan kapasitas penjerapan seiring dengan meningkatnya konsentrasi awal Cs + dan Sr 2+. Kapasitas penjerapan sampel A, C, D, dan E terbesar terjadi pada konsentrasi awal Cs + dan Sr 2+ sebesar 200 ppm, yaitu berturut-turut 23.95, 9.34, 12.06, dan 7.84 mg/g (untuk Cs + ) serta 22.51, 23.94, 23.34, dan 16.26 mg/g (untuk Sr 2+ ) (Lampiran 12 dan 13). Hal ini sesuai dengan pernyataan Qaiser et al. 2007 bahwa kapasitas penjerapan akan meningkat seiring dengan peningkatan konsentrasi awal ion logam. Kondisi ini terjadi karena semakin besar konsentrasi awal Cs + dan Sr 2+ yang diberikan, akan semakin banyak pula Cs + dan Sr 2+ yang terjerap pada sampel. Hal ini terjadi bila keberadaan tapak aktif sampel masih memungkinkan untuk menjerap Cs + dan Sr 2+ yang konsentrasi atau jumlahnya semakin meningkat. 3 2 0 50 100 150 200 250 Konsentrasi awal (ppm) D C E Gambar 13 Pengaruh konsentrasi awal Cs + `````````````````terhadap kapasitas penjerapan `````````````````Cs +. 3 2 0 50 100 150 200 250 Konsentrasi awal (ppm) D C E Gambar 14 Pengaruh konsentrasi awal Sr 2+ ````````````terhadap kapasitas penjerapan ```````````````` Sr 2+.