Identifikasi Perubahan Muka Air Tanah Berdasarkan Data Gradien Vertikal Gaya Berat Antar Waktu

dokumen-dokumen yang mirip
Analisis Perubahan Densitas Bawah Permukaan Berdasarkan Data Gaya Berat Mikro Antar Waktu, Studi Kasus Di Semarang

PREDIKSI DISTRBUSI INTRUSI AIR LAUT MENGGUNAKAN METODE GAYA BERAT MIKRO ANTAR WAKTU STUDI KASUS DI SEMARANG UTARA

LAPORAN AKHIR PENELITIAN HIBAH KOMPTENSI APLIKASI METODE GAYABERAT MIKRO ANTAR WAKTU UNTUK PEMANTAUAN INTRUSI AIR LAUT DI KAWASAN SEMARANG UTARA

Unnes Physics Journal

Gambar 4.2. Lokasi titik pengukuran gayaberat.

Unnes Physics Journal

ANALISIS KETELITIAN PENGUKURAN GAYABERAT MENGGUNAKAN METODE GRID TERATUR DAN GRID ACAK

Telford, W. M., Geldart, L.P., Sheriff, R.E., 1990, Applied Geophysics, Second edition, Cambridge University Press, Cambridge. Whitelaw, J. L.

Unnes Physics Journal

BAB III TEORI DASAR. 3.1 Metode Gayaberat

ANALISIS PENURUNAN MUKA AIR TANAH DI SEKARAN DAN SEKITARNYA BERDASARKAN DATA ANOMALI GAYA BERAT MIKRO ANTAR WAKTU PERIODE 2013

Identifikasi Struktur Lapisan Bawah Permukaan Daerah Potensial Mineral dengan Menggunakan Metode Gravitasi di Lapangan A, Pongkor, Jawa Barat

Gambar 4.7. Diagram alir dari proses inversi.

ANALISA ANOMALI 4D MICROGRAVITY DAERAH PANASBUMI ULUBELU LAMPUNG PERIODE Muh Sarkowi

EKSPLORASI GAYA BERAT, oleh Muh Sarkowi Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ; Fax:

SURVEI GAYA BERAT DAN AUDIO MAGNETOTELURIK (AMT) DAERAH PANAS BUMI PERMIS, KABUPATEN BANGKA SELATAN PROVINSI BANGKA BELITUNG

BAB 2 TEORI DASAR. Gambar 2.1. Sketsa gaya tarik dua benda berjarak R.

PENENTUAN TAHANAN JENIS BATUAN ANDESIT MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER (STUDI KASUS DESA POLOSIRI)

Gambar 4.1. Peta penyebaran pengukuran gaya berat daerah panas bumi tambu

BAB 5 ANALISIS DAN INTERPRETASI. 5.1 Analisis Data Anomali 4D Akibat Pengaruh Fluida

V. INTERPRETASI DAN ANALISIS

2 1 2 D. Berdasarkan penelitian di daerah

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN BERDASARKAN DATA GAYABERAT DI DAERAH KOTO TANGAH, KOTA PADANG, SUMATERA BARAT

Jurnal ILMU DASAR, Vol.15 No.1, Januari 2015: Filter Berbasis Model Satu Dimensi untuk Pemisahan Anomali Gayaberat Mikro Antar Waktu

Rustan Efendi 1, Hartito Panggoe 1, Sandra 1 1 Program Studi Fisika Jurusan Fisika FMIPA, Universitas Tadulako, Palu, Indonesia

Jurnal Sains dan Teknologi Lingkungan Volume 2, Nomor 2, Juni 2010, Halaman ISSN:

PERHITUNGAN DEFISIT AIR TANAH DAERAH SEMARANG BERDASARKAN INVERSI ANOMALI 4D MICROGRAVITY

PROFIL RESISTIVITAS 2D PADA GUA BAWAH TANAH DENGAN METODE GEOLISTRIK KONFIGURASI WENNER-SCHLUMBERGER (STUDI KASUS GUA DAGO PAKAR, BANDUNG)

MAKALAH GRAVITASI DAN GEOMAGNET INTERPRETASI ANOMALI MEDAN GRAVITASI OLEH PROGRAM STUDI FISIKA JURUSAN MIPA FAKULTAS SAINS DAN TEKNIK

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Maksud dan Tujuan

Pengantar Praktikum Metode Gravitasi dan Magnetik

PRISMA FISIKA, Vol. III, No. 2 (2015), Hal ISSN :

APLIKASI METODE GEOLISTRIK KONFIGURASI POLE-POLE UNTUK MENENTUKAN SEBARAN DAN KEDALAMAN BATUAN SEDIMEN DI DESA WONOSARI KECAMATAN NGALIYAN SEMARANG

ZONASI PENURUNAN MUKA AIR TANAH DI WILAYAH PESISIR BERDASARKAN TEKNIK GEOFISIKA GAYABERAT MIKRO 4D (STUDI KASUS: DAERAH INDUSTRI KALIGAWE - SEMARANG)

e-issn : Jurnal Pemikiran Penelitian Pendidikan dan Sains Didaktika

ISSN No Jurnal Sangkareang Mataram 63 INVERSI DATA GAYA BERAT 3D BERBASIS ALGORITMA FAST FORIER TRANSFORM DI DAERAH BANTEN INDONESIA

MENENTUKAN LITOLOGI DAN AKUIFER MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI WENNER DAN SCHLUMBERGER DI PERUMAHAN WADYA GRAHA I PEKANBARU

BAB IV PENGOLAHAN DAN ANALISA ANOMALI BOUGUER

IDENTIFIKASI PENYEBARAN LIMBAH CAIR DENGAN MENGGUNAKAN METODE TAHANAN JENIS 3D (MODEL LABORATORIUM)

Pemodelan Gravity Kecamatan Dlingo Kabupaten Bantul Provinsi D.I. Yogyakarta. Dian Novita Sari, M.Sc. Abstrak

INVERSI DATA GAYA BERAT 3D BERBASIS ALGORITMA FAST FORIER TRANSFORM DI DAERAH BANTEN INDONESIA

BAB III PENGUKURAN DAN PENGOLAHAN DATA. Penelitian dilakukan menggunakan gravimeter seri LaCoste & Romberg No.

STUDI IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN DAN KEBERADAAN HIDROKARBON BERDASARKAN DATA ANOMALI GAYA BERAT PADA DAERAH CEKUNGAN KALIMANTAN TENGAH

STUDI IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN DAN KEBERADAAN HIDROKARBON BERDASARKAN DATA ANOMALI GAYA BERAT PADA DAERAH CEKUNGAN KALIMANTAN TENGAH

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding

BAB 4 PENGOLAHAN DAN INTERPRETASI DATA GEOFISIKA

SURVAI SEBARAN AIR TANAH DENGAN METODE GEOLISTRIK TAHANAN JENIS KONFIGURASI WENNER DI DESA BANJAR SARI, KEC. ENGGANO, KAB.

APLIKASI METODE GEOLISTRIK RESISTIVITAS KONFIGURASI SCHLUMBERGER UNTUK IDENTIFIKASI AKUIFER DI KECAMATAN PLUPUH, KABUPATEN SRAGEN

MEMBANGUN FILTER BERDASARKAN MODEL AMBLESAN DAN DINAMIKA MUKA AIR TANAH UNTUK MEMISAHKAN SUMBER ANOMALI GAYA BERAT MIKRO ANTAR WAKTU

IV. METODOLOGI PENELITIAN

PENELITIAN INTRUSI AIR LAUT DI KAWASAN SEMARANG UTARA DENGAN METODE GAYA BERAT MIKRO ANTAR WAKTU

STUDI BIDANG GELINCIR SEBAGAI LANGKAH AWAL MITIGASI BENCANA LONGSOR

Pemodelan Sintetik Gaya Berat Mikro Selang Waktu Lubang Bor. Menggunakan BHGM AP2009 Sebagai Studi Kelayakan Untuk Keperluan

BAB I PENDAHULUAN I.1

PRISMA FISIKA, Vol. IV, No. 01 (2016), Hal ISSN :

Unnes Physics Journal

Pemisahan Anomali Regional-Residual pada Metode Gravitasi Menggunakan Metode Moving Average, Polynomial dan Inversion

BAB 5 : KESIMPULAN DAN SARAN Kesimpulan Saran.. 66 DAFTAR PUSTAKA Lampiran-lampiran... 69

ANALISIS KEBERADAAN BIJIH BESI MENGGUNAKAN METODE GEOLISTRIK 2D DI LOKASI X KABUPATEN LAMANDAU KALIMANTAN TENGAH

PENENTUAN RESISTIVITAS BATUBARA MENGGUNAKAN METODE ELECTRICAL RESISTIVITY TOMOGRAPHY DAN VERTICAL ELECTRICAL SOUNDING

SURVEI GEOFISIKA TERPADU AUDIO MAGNETOTELIK DAN GAYA BERAT DAERAH PANAS BUMI KALOY KABUPATEN ACEH TAMIANG, PROVINSI ACEH

PENDUGAAN AIR TANAH DENGAN METODE GEOLISTRIK TAHANAN JENIS DI DESA TELLUMPANUA KEC.TANETE RILAU KAB. BARRU SULAWESI-SELATAN

PENDUGAAN ZONA MINERALISASI GALENA (PbS) DI DAERAH MEKAR JAYA, SUKABUMI MENGGUNAKAN METODE INDUKSI POLARISASI (IP)

PENYELIDIKAN BIJIH BESI DENGAN METODE GEOMAGNET DAN GEOLISTRIK

BAB III TEORI DASAR (3.1-1) dimana F : Gaya antara dua partikel bermassa m 1 dan m 2. r : jarak antara dua partikel

PEMANFAATAN METODE GEOLISTRIK RESISTIVITAS UNTUK MENGETAHUI STRUKTUR GEOLOGI SUMBER AIR PANAS DI DAERAH SONGGORITI KOTA BATU

BAB I PENDAHULUAN. Tuban adalah sebuah kabupaten di Jawa Timur, Indonesia. Penduduknya

Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko

PENENTUAN POLA SEBARAN INTRUSI AIR LAUT DI PESISIR PANTAI BATAKAN KALIMANTAN SELATAN DENGAN METODE GEOLISTRIK

IDENTIFIKASI LETAK DAN JENIS SESAR BERDASARKAN METODE GAYABERAT SECOND VERTICAL GRADIENT STUDI KASUS SESAR LEMBANG, KOTA BANDUNG, JAWA BARAT

PEMODELAN SINTETIK GRADIEN GAYABERAT UNTUK IDENTIFIKASI SESAR

Jurnal MIPA 36 (1): (2013) Jurnal MIPA.

Pengaruh Kadar Air Tanah Lempung Terhadap Nilai Resistivitas/Tahanan Jenis pada Model Fisik dengan Metode ERT (Electrical Resistivity Tomography)

Cross Diagonal Survey Geolistrik Tahanan Jenis 3D untuk Menentukan Pola Penyebaran Batuan Basal di Daerah Pakuan Aji Lampung Timur

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN

BAB V HASIL DAN PEMBAHASAN

PRISMA FISIKA, Vol. II, No. 3 (2014), Hal ISSN :

SURVEY GEOMAGNET DI DAERAH PANAS BUMI SONGA-WAYAUA, KABUPATEN HALMAHERA SELATAN, MALUKU UTARA. Eddy Sumardi, Timor Situmorang

Pengukuran Geolistrik Tahanan Jenis untuk Menentukan Letak Akuifer Air Bawah Tanah (Studi Kasus : Kecamatan Airmadidi, Kabupaten Minahasa Utara)

BAB V ANALISA DAN PEMBAHASAN

POLA SEBARAN AKUIFER DI DAERAH PESISIR TANJUNG PANDAN P.BELITUNG

KAJIAN PENYEBARAN LIMBAH CAIR BAWAH PERMUKAAN BERDASARKAN SIFAT KELISTRIKAN BATUAN DI LOKASI PEMBUANGAN AKHIR (LPA) BENOWO SURABAYA

Bayu Suhartanto, Andy Pramana,Wardoyo, M. Firman, Sumarno Jurusan Fisika Fakultas MIPA Universitas Bengkulu, Bengkulu

ANALISIS DATA INVERSI 2-DIMENSI DAN 3-DIMENSI UNTUK KARAKTERISASI NILAI RESISTIVITAS BAWAH PERMUKAAN DI SEKITAR SUMBER AIR PANAS KAMPALA

BAB 2 LANDASAN TEORITIS PERMASALAHAN

INTERPRETASI MIKROGRAVITY ANTAR WAKTU SEBAGAI UPAYA UNTUK MEMPREDIKSI (PREKURSOR) TERJADINYA GEMPABUMI (Studi Kasus : Sesar Cimandiri Jawa Barat)

ANALISIS INTRUSI AIR LAUT MEGGUNAKAN DATA RESISTIVITAS DAN GEOKIMIA AIRTANAH DI DATARAN ALUVIAL KOTA SEMARANG

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN 1.1. Latar Belakang

REVISI, PEMODELAN FISIKA APLIKASI METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER UNTUK INVESTIGASI KEBERADAAN AIR TANAH

Prosiding Seminar Nasional XII Rekayasa Teknologi Industri dan Informasi 2017 Sekolah Tinggi Teknologi Nasional Yogyakarta

PENENTUAN ZONA PENGENDAPAN TIMAH PLASER DAERAH LAUT LUBUK BUNDAR DENGAN MARINE RESISTIVITY Muhammad Irpan Kusuma 1), Muhammad Hamzah 2), Makhrani 2)

IDENTIFIKASI BIDANG GELINCIR DI TEMPAT WISATA BANTIR SUMOWONO SEBAGAI UPAYA MITIGASI BENCANA LONGSOR

PEMODELAN 2D RESPON ANOMALI GAYA BERAT MIKRO ANTAR WAKTU AKIBAT AMBLESAN DAN DINAMIKA MUKA AIR TANAH

BAB III METODE PENELITIAN. Dalam penelitian survei metode gayaberat secara garis besar penyelidikan

SURVEI GEOLISTRIK METODE RESISTIVITAS UNTUK INTERPRETASI KEDALAMAN LAPISAN BEDROCK DI PULAU PAKAL, HALMAHERA TIMUR

PEMODELAN ANOMALI GRAVITASI MENGGUNAKAN METODE INVERSI 2D (DUA DIMENSI) PADA AREA PROSPEK PANAS BUMI LAPANGAN A

Abstrak. Abstract. Kata kunci: Anomali Gravitasi; pemodelan ke depan; pemodelan Inversi

STUDI POTENSI ENERGI GEOTHERMAL BLAWAN- IJEN, JAWA TIMUR BERDASARKAN METODE GRAVITY

Transkripsi:

SEMINAR NASIONAL JURUSAN FISIKA FMIPA UM 2016 Identifikasi Perubahan Muka Air Tanah Berdasarkan Data Gradien Vertikal Gaya Berat Antar Waktu SUPRIYADI, M. AHGANIYA NAUFAL, SULHADI Jurusan Fisika Universitas Negeri Semarang Jl. Sekaran Gunungpati Semarang E-mail: supriyadi@mail.unnes.ac.id *) PENULIS KORESPONDEN TEL: 085726930893 / 081226407475 ABSTRAK: Telah dilakukan penelitian gradien vertikal gaya berat antar waktu di wilayah Kota Semarang untuk periode Oktober 2013 dan Mei 2014 dengan menggunakan gravimeter Scintrex Autograv CG-5. Hasil penelitian menunjukan daerah yang mengalami kenaikan muka air tanah adalah Bulu, Bulu Lor, Barusari, Tugumuda, Karangampel, Dadapsari, Panggung Lor dan Bandarharjo. Daerah yang mengalami penurunan muka air tanah adalah Purwodinatan, Mlatiharjo, Kemijen, Miroto, Simpang Lima, Mugassari, Kuningan, Tawang Mas, Tanjung Emas bagian timur, Bangunharjo, Rejosari, Bugangan, Jagalan dan Kranggan. Kenaikan muka air tanah disebabkan mengetahui perubahan muka air tanah. Metode gradien vertikal gaya berat gaya berat antar waktu dapat diaplikasikan untuk mengetahui perubahan densitas bawah permukaan secara vertikal. Pengukuran gaya berat antar waktu dilakukan sebanyak dua periode yaitu oleh intrusi air laut dan penambahan air tawar dari daerah selatan penelitian. Penurunan muka air tanah disebabkan oleh aktifitas penduduk sehari-hari. Kenaikan dan penurunan muka air tanah pada daerah penelitian berada pada kisaran 1 sampai 5 meter. Kata Kunci: Gradien vertikal, gaya berat mikro antar waktu, muka air tanah PENDAHULUAN Metode gaya berat merupakan metode geofisika yang berdasarkan hukum Newton tentang gravitasi. Metode ini mengukur variasi percepatan gravitasi di bumi yang merefleksikan variasi densitas pada bawah permukaan. Seiring dengan perkembangan zaman, metode gaya berat mengalami perkembangan dalam hal teknik pengukuran. Beberapa teknik pengukuran metode gaya berat adalah pengukuran gradien vertikal, antar waktu, dll. Pengukuran dengan teknik antar waktu yaitu mengukur nilai percepatan gravitasi secara periodik. Apabila nilai percepatan gravitasi pada suatu titik berbeda dalam suatu periode diasumsikan terjadi perubahan densitas pada titik tersebut. Pengukuran dengan teknik gradien vertikal yaitu mengukur nilai percepatan gravitasi pada suatu titik dengan tinggi pengukuran yang berbeda. Apabila nilai gradien vertikal percepatan gravitasi pada titik pengukuran tidak nol maka diasumsikan terjadi perubahan densitas secara vertikal pada titik tersebut. Gradien vertikal gaya berat antar waktu merupakan pengembangan dari metode gradien vertikal gaya berat dengan pengukuran secara periodik. Gradien vertikal gaya berat antar waktu adalah selisih nilai gradien vertikal gaya berat pada periode yang berbeda. Penerapan gradien vertikal gaya berat telah diterapkan untuk keperluan survei situs arkeologi (Stefanelli et al, 2008), penentuan bidang batas (Tatchum et al, 2008), dinamika air tanah (Supriyadi, 2012) dan penelusuran gua bawah tanah (Butler, 1984). Skema pengukuran gradien gaya berat vertikal (Gambar 1) dibuat dari dua buah kotak dengan ketinggian antar kotak masing-masing 1 meter, sehingga variasi finitedifference dari gradien vertikal dapat ditentukan. Pengukuran gaya berat dengan dua beda ketinggian yaitu pengukuran dipermukaan tanah (hi-1) dan pengukuran diatas FG-29

permukaan tanah (hi), maka turunan vertikal pertama pengukuran dapat dihitung dengan persamaan berikut: g gi 1 gi z hi 1 hi (1) dengan g/ z = gradien vertikal gaya berat, gi-1 = nilai gaya berat pada permukaan tanah, gi = nilai gaya berat diatas permukaan tanah, hi-1 = ketinggian gravimeter pada permukaan tanah, hi = ketinggian gravimeter diatas permukaan tanah Gravimeter diatas permukaan tanah (hi) Gravimeter dipermukaan tanah (hi-1) Gambar 1. Ilutrasi pengukuran gradien vertikal gaya berat Jika pengukuran pada periode awal digunakan sebagai acuan awal (t 1), maka nilai gradien vertikal gaya berat antar waktu diperoleh dengan menggunakan persamaan berikut: g g g t t2 t1 z z z (2) dengan g/ z ( t) = gradien vertikal gaya berat antar waktu, g/ z (t 2 ) = gradien vertikal gaya berat periode selanjutnya, g/ z (t 1 ) = gradien vertikal gaya berat periode awal. METODE PENELITIAN Pengukuran gaya berat dilakukan di kota Semarang khususnya Kec. Semarang Utara, Kec. Semarang Tengah dan Kec. Semarang Timur dengan jumlah titik pengukuran tiap periode 93 titik (Gambar 2). Pengukuran gaya berat menggunakan gravimeter Scintrex Autograv CG5. Pengukuran dengan teknik gradien vertikal gaya berat dilakukan dengan menggunakan skema pengukuran seperti pada Gambar 1 untuk masing-masing periode sehingga nilai gradien vertikal gaya berat diperoleh dengan menggunakan Persamaan (1). Pengukuran dilakukan selama dua periode yaitu periode Oktober 2013 sebagai acuan awal dan periode Mei 2014. Nilai gradien vertikal gaya berat antar waktu diperoleh dengan mencari selisih nilai gradien vetikal gaya berat periode Mei 2014 dengan periode Oktober 2013. Pada penelitian ini, penulis melakukan pemodelan kedepan untuk mengetahui karakteristik gradien vertikal gaya berat terhadap dinamika air tanah, dan pemodelan inversi untuk mengetahui persebaran densitas bawah permukaan. Karakteristik gradien vertikal gaya berat akibat dinamika air tanah dapat diketahui dengan membangun sebuah model (pemodelan kedepan). Model dibangun dengan memasukan parameter densitas air tanah (densitas air tanah = 1 gram/cm3 (Telford, 1990) dengan porositas batuan 30 % (Sarkowi, 2008). Model dibangun dalam tiga jenis (Tabel 1) yaitu Model 1 sebagai acuan awal, Model 2 saat terjadi penambahan air tanah dan Model 3 saat terjadi pengurangan air tanah. Hasil yang diperoleh dari pemodelan kedepan adalah kontur gradien vertikal gaya berat akibat dinamika air tanah. Pemodelan inversi dilakukan dengan memasukan data gaya berat antar waktu. Mesh yang digunakan dalam pemodelan inversi berukuran 4800x5300x150 meter (x,y,z). Metode interpretasi yang dilakukan yaitu mengkorelasikan data lapangan gradien vertikal gaya berat antar waktu dengan hasil pemodelan inversi. Hasil yang diperoleh FG-30

dari pemodelan inversi adalah penampang perubahan densitas antar waktu dalam rupa 3D. Gambar 2 merupakan peta lokasi pengukuran gaya berat. Gambar 2. Lokasi pengukuran gaya berat Tabel 1. Parameter Pemodelan Kedepan Model 1 2 3 X (m) Y (m) Ketebalan (m) 40 50 30 Kedalaman Batas Atas (m) 60 50 70 Densitas (gram/cm3) 0.3 0.3 0.3 HASIL DAN PEMBAHASAN Gradien Vertikal Gaya Berat Akibat Perubahan Muka Air Tanah Nilai gradien vertikal gaya berat akibat perubahan muka air tanah diperoleh dengan mengurangkan nilai gradien vertikal gaya berat model saat terjadi perubahan muka air tanah (Model 2 atau Model 3) dengan model awal (Model 1). Model akuifer berada pada koordinat X= 170-330 m, Y= 170-330 m dan batas atas untuk masingmasing model pada kedalaman 60 m (Model 1), 50 m (Model 2), 70 m (Model 3). Crosssection model dan nilai gradien vertikal gaya berat akibat perubahan muka air tanah ditampilkan pada Gambar 3 (a,b,c,d). Nilai gradien vertikal gaya berat akibat kenaikan muka air tanah diperoleh dengan mengurangkan nilai gradien vertikal gaya berat Model 2 dengan Model 1. Kenaikan muka air tanah dalam model terjadi pada koordinat X= 170-330 m, Y= 170-330 m dan kenaikan muka air tanah sebesar 10 m pada kedalaman 50-60 m. Selisih nilai densitas pada model kenaikan muka air tanah (Gambar 3.a) bernilai 0,3 g/cm3 yang ditunjukan pada area penambahan air tanah. Nilai gradien vertikal gaya berat akibat kenaikan muka air tanah memiliki rentang nilai -0,00085 mgal/m s.d. 0 mgal/m (Gambar 3.b). Hasil pemodelan menunjukan bahwa kenaikan muka air tanah memberikan selisih nilai gradien vertikal gaya berat antar waktu bernilai negatif. Cross-section model kenaikan FG-31

muka air tanah dan nilai gradien vertikal gaya berat akibat kenaikan muka air tanah ditunjukan pada Gambar 3.a-b. Gambar 3. Simulasi gradien vertikal gaya berat antar waktu akibat perubahan muka air tanah, (a) Cross-section model kenaikan muka air tanah, (b) Gradien vertikal akibat kenaikan muka air tanah, (c) Cross-section model penurunan muka air tanah, (d) Gradien vertikal akibat penurunan muka air tanah Nilai gradien vertikal gaya berat akibat penurunan muka air tanah diperoleh dengan mengurangkan nilai gradien vertikal Model 3 dengan Model 1. Penurunan muka air tanah dalam model terjadi pada koordinat X= 170-330 m, Y= 170-330 m dan penurunan muka air tanah sebesar 10 m pada kedalaman 60-70 m. Selisih nilai densitas pada model penurunan muka air tanah (Gambar 3.c) bernilai -0,3 g/cm3 yang ditunjukan pada area pengurangan air tanah. Nilai gradien vertikal gaya berat akibat penurunan muka air tanah memiliki rentang nilai 0 mgal/m s.d. 0,00075 mgal/m (Gambar 3.d). Hasil pemodelan menunjukan bahwa penurunan muka air tanah memberikan selisih nilai gradien vertikal gaya berat antar waktu bernilai positif. Cross-section model penurunan muka air tanah dan nilai gradien vertikal gaya berat antar waktu akibat penurunan air tanah ditunjukan pada Gambar 3.c-d. Gradien Vertikal Gaya Berat Antar Waktu Gradien vertikal gaya berat diperoleh dengan mengukur nilai percepatan gravitasi dengan ilustrasi pengukuran seperti pada Gambar 1. Metode pengukuran tersebut bertujuan untuk mendapatkan nilai gradien vertikal gaya berat secara langsung. Gradien vertikal gaya berat antar waktu diperoleh melalui mengurangkan nilai gradien vertikal periode Mei 2014 dengan gradien vertikal periode Oktober 2013. Nilai gradien vertikal antar waktu memiliki rentang nilai -0,24 mgal/m s.d. 0,12 mgal/m. Variasi nilai gradien vertikal gaya berat antar waktu yang terjadi pada daerah penelitian diasumsikan telah terjadi perubahan densitas pada arah vertikal selama periode penelitian. Daerah yang memiliki nilai gradien vertikal gaya berat antar waktu positif (0,03 mgal/m s.d. 0,12 mgal/m) adalah Simpang Lima, Rejosari, Purwodinatan, Kuningan dan Tawang Mas. Daerah dengan nilai gradien vertikal gaya berat antar waktu negatif (-0,03 mgal/m s.d. -0,24 mgal/m) adalah daerah Bulu, Barusari, Bulu Lor, Dadapsari, Karangampel bagian selatan dan Panggung Lor bagian utara. Gambar 4 FG-32

merupakan persebaran nilai gradien vertikal gaya berat antar waktu pada daerah penelitian. Gambar 4. Gradien Vertikal Gaya Berat Antar Waktu Analisa Gradien Vertikal Gaya Berat 4D Analisa 3D menggunakan teknik pemodelan inversi dengan hasil yang didapatkan berupa nilai perubahan densitas dalam rupa 3D. Mesh yang digunakan pada data gradien vertikal gaya berat antar waktu memiliki dimensi x = 4800 m, y = 5300 m, z = 150 m. Pemodelan inversi pada penelitian ini bertujuan untuk mengetahui persebaran perubahan densitas secara vertikal dan horisontal berdasarkan data gaya berat antar waktu. Nilai gaya berat antar waktu digunakan sebagai input data pada pemodelan inversi dalam rupa 3D dengan menggunakan software Grav3D yang bersumber dari makalah Li dan Oldenburg (1998). Nilai densitas hasil pemodelan inversi adalah perubahan nilai densitas dalam selang periode pengukuran berdasarkan data gaya berat antar waktu. Hasil dari pemodelan inversi memiliki rentang nilai perubahan densitas -0,104 g/cm3 s.d. 0,104 g/cm3 yang ditampilkan pada Gambar 5.a-e. Perubahan nilai densitas berdasarkan pemodelan inversi diduga akibat perubahan muka air tanah. Asumsi dinamika yang terjadi di kota Semarang adalah dinamika air tanah. Thanden et al (1996) menyatakan bahwa kota Semarang bagian utara merupakan daerah endapan aluvial pantai, endapan aluvial pantai ini terdiri dari batuan lempung dan pasir (lapisan pembawa air). Marsudi (2001) mengemukakan bahwa akuifer dangkal pada dataran Semarang terdapat pada kedalaman 5 sampai 30 FG-33

m di bawah permukaan tanah sekitar (dbpts). Akuifer dalam yang bersifat akuifer tertekan terdapat pada kedalaman 30 sampai 150 m dbpts. FG-34

Gambar 5. Persebaran perubahan densitas hasil pemodelan inversi 3D yang ditampilkan pada (a) permukaan, (b) kedalaman 30 m, (c) kedalaman 60m, (d) kedalaman 90 m, (e) kedalaman 120 m. Pada kedalaman 30 m (Gambar 5.b) daerah yang memiliki rentang nilai perubahan densitas 0,0347 g/cm3 s.d. 0,104 g/cm3 adalah daerah Bulu, Bulusari, Panggung Lor bagian utara, Bandarharjo bagian utara dan Karangampel bagian selatan. Jika dikorelasikan dengan pemodelan kedepan (perubahan densitas positif) dan data gradien vertikal gaya berat antar waktu (nilai gradien vertikal gaya berat antar waktu bernilai negatif), daerah Bulu, Barusari, Panggung Lor bagian utara, Bandarharjo bagian utara dan Karangampel bagian selatan diduga telah mengalami kenaikan muka air tanah dangkal pada kedalaman 30 m. Kenaikan muka air tanah dalam terjadi pada kedalaman lebih dari 90 m (Gambar 5.d-e) yang meliputi daerah Bulu, Bulu Lor, Barusari, Krobokan, Karangampel, Tugu Muda, Dadapsari, Bandarharjo, Tanjung Emas bagian barat dan Panggung Lor. Perubahan nilai densitas bernilai positif pada daerah Bulu, Barusari dan Karangampel berkaitan dengan kenaikan muka air tanah akibat penambahan air tanah yang berasal dari daerah selatan penelitian. Daerah Panggung Lor dan Bandarharjo mengalami kenaikan muka air tanah diduga akibat intrusi air laut dengan asumsi kota Semarang pada bagian utara berbatasan dengan Laut Jawa. Pendugaan terjadinya intrusi air laut berdasarkan perubahan nilai densitas sebesar 0,104 g/cm3 (densitas air laut 1,04 g/cm3 (Telford et al, 1990) dengan porositas batuan 10%). Kenaikan muka air tanah pada daerah penelitian diduga berada pada kisaran 1 sampai 5 meter. Nilai perubahan densitas 0 g/cm3 pada kedalaman kurang dari 30 m meliputi daerah Tanjung Emas, Bandarharjo, Panggung Lor, Kuningan, Tawang Mas, Mlatiharjo, Bugangan, Bangunharjo, Jagalan, Rejosari, Simpang Lima, Kranggan, Miroto, Mugassari, Dadapsari, Karangampel dan Purwodinatan. Jika dikorelasikan dengan data gradien vertikal gaya berat antar waktu, nilai gradien vertikal gaya berat antar waktu pada beberapa daerah tidak bernilai 0 mgal/m. Daerah dengan nilai gradien vertikal gaya berat antar waktu 0 mgal/m diduga mengalami dinamika air tanah pada kedalaman yang lebih dalam. Perubahan densitas bernilai negatif pada kedalaman lebih dari 60 m (Gambar 5.c-e) meliputi daerah Purwodinatan, Mlatiharjo, Kemijen, Miroto, Simpang Lima, Mugassari, Kuningan, Tawang Mas, Tanjung Emas bagian timur, Bangunharjo, Rejosari, Bugangan, Jagalan dan Kranggan. Berdasarkan pemodelan kedepan dan korelasi data gradien vertikal gaya berat antar waktu menunjukan bahwa daerah dengan perubahan densitas bernilai negatif berkaitan penurunan muka air tanah dalam (nilai perubahan densitas bernilai negatif dan nilai gradien vertikal gaya berat antar waktu bernilai positif). Penurunan muka air tanah pada daerah penelitian diduga disebabkan eksploitasi air tanah untuk kegiatan penduduk sehari-hari dan industri. Penurunan muka air tanah pada daerah penelitian diduga berada pada kisaran 1 sampai 5 meter. Perisitwa intrusi air laut yang terjadi pada daerah penelitian diduga karena eksploitasi air tanah sejak lampau. Eksploitasi air tanah dapat menyebabkan ruang kosong pada lapisan akuifer sehingga menyebabkan masuknya air laut kedalam lapisan akuifer. Apabila tidak ada air laut yang masuk kedalam ruang kosong lapisan akuifer akan terjadi amblesan tanah yang berdampak secara regional. Masalah yang ditimbulkan oleh eksploitasi air tanah di kota Semarang dapat dicegah dengan membuat area recharge untuk air tanah. KESIMPULAN Nilai gradien vertikal gaya berat antar waktu akibat dinamika air tanah menghasilkan anomali gradien vertikal antar waktu positif, negatif atau nol. Nilai gradien vertikal antar waktu bernilai positif berkaitan dengan terjadinya penurunan muka air tanah sebaliknya nilai negatif berkaitan dengan terjadinya kenaikan muka air FG-35

tanah, sedangkan gradien vertikal antar waktu bernilai nol berkaitan dengan tidak terjadi dinamika air tanah. Daerah yang mengalami kenaikan muka air tanah adalah Bulu, Bulu Lor, Barusari, Tugumuda, Karangampel, Dadapsari, Panggung Lor dan Bandarharjo. Daerah yang mengalami penurunan muka air tanah adalah Purwodinatan, Mlatiharjo, Kemijen, Miroto, Simpang Lima, Mugassari, Kuningan, Tawang Mas, Tanjung Emas bagian timur, Bangunharjo, Rejosari, Bugangan, Jagalan dan Kranggan. Solusi untuk mengurangi dampak penurunan muka air tanah salah satunya adalah pembangunan area recharge untuk air tanah di kota Semarang. Pengukuran gradien vertikal gaya berat antar waktu memerlukan perangkat gps dan gravimeter yang akurat. Lokasi pengukuran di daerah perkotaan memerlukan ketelitian pengukuran yang tinggi terutama ketika ada getaran yang ditimbulkan oleh aktifitas manusia atau dapat menggunakan alat seperti peredam getaran. UCAPAN TERIMA KASIH Ucapan terima kasih ditujukan kepada DP2M DIKTI yang telah mendanai penelitian ini melalui Skim HIKOM dan kepada BMKG pusat atas dukungannya untuk alat Gravimeter. DAFTAR RUJUKAN Butler, K. D. 1984. Microgravimetric and Gravity Gradient Technique for Detection of Subsurface Cavities. J. Geophysics, 49. 1084-1096. Li, Y., Oldenburg, D.W., 1998. 3-D Inversion of Gravity Data. Geophysics, Vol 63, 109119. Marsudi. 2001. Prediksi Laju Amblesan Tanah Di Dataran Aluvial Semarang Propinsi Jawa Tengah. Disertasi tidak diterbitkan. Program Pasca Sarjana ITB. Sarkowi., 2008. Gradien vertikal gaya berat mikro antar waktu dan hubungannya dengan dinamika air tanah. Prosiding Seminar Nasional Sains dan Teknologi-II, Universitas Lampung, 17-18 November 2008 hal: 49-56, ISBN : 978-979-1165-74-7. Stefanelli, P., Carmisciano, C., Tontini, F. C., Cochi, L., Beverini, N., Fidcaro, T., Embriaco, D., 2008. Microgravity Vertical Gradient Measurement in the Site of Virgo Interferometric Antenne (Pisa Plain, Italy). Annals Geophysics. Vol. 51. No. 5/6. pp. 877-886. Supriyadi, Sarkowi., 2012. Metode Gradien Vertikal Gayaberat Mikro Antar Waktu dan Aplikasinya. Prosiding Seminar Fisika Terapan III. ISBN: 978-979-17494-2-8. Tatchum, C.N., Tabod, T.C., Koumeto, F., Dicom, E., 2011. A gravity model study for differentiating vertical and dipping geological contact with application to a Bouguer gravity anomaly over the Foumban shear zone Cameroon. Geophysics. 47 (1-2), pp. 4355. Telford, W. M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics Second Edition. Cambridge University Press. New York. Thanden, R.E., Sumadirdja, H., Richards, P.W., Sutisna, K., Amin, T.C., 1996. Peta Geologi Lembar Magelang dan Semarang, Jawa. Pusat Penelitian dan Pengembangan Geologi. Bandung. FG-36