BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara

dokumen-dokumen yang mirip
ANALISA TEGANGAN DUA DIMENSI PADA BALOK TINGGI DENGAN MENGGUNAKAN METODE ELEMEN HINGGA DAN METODE HEFT 240

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari

ANALISA TEGANGAN DUA DIMENSI PADA BALOK TINGGI DENGAN MENGGUNAKAN METODE ELEMEN HINGGA DAN METODE HEFT 240

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB III METODE PENELITIAN

I.1 Latar Belakang I-1

BAB V PENULANGAN ELEMEN VERTIKAL DAN HORIZONTAL

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

BAB I PENDAHULUAN. pesat, terutama terjadi di daerah perkotaan. Seiring dengan hal tersebut,

BAB I PENDAHULUAN. yang paling utama mendukung beban luar serta berat sendirinya oleh momen dan gaya

BAB II DASAR TEORI. 2.1 Pengertian rangka

PERANCANCANGAN STRUKTUR BALOK TINGGI DENGAN METODE STRUT AND TIE

PRINSIP DASAR MEKANIKA STRUKTUR

BAB I PENDAHULUAN. A. Latar Belakang. Di dalam perencanaan desain struktur konstruksi bangunan, ditemukan dua

Jl. Banyumas Wonosobo

BAB III ANALISA PERENCANAAN STRUKTUR

BAB II STUDI LITERATUR

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

2- ELEMEN STRUKTUR KOMPOSIT

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

BAB I PENDAHULUAN. segi estetika dari bangunan tersebut. Salah satu bangunan yang direncanakan

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD

ANALISA STRUKTUR PORTAL RUANG TIGA LANTAI DENGAN METODE KEKAKUAN DIBANDINGKAN DENGAN PROGRAM ANSYS HERY SANUKRI MUNTE

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 2

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

Tegangan Dalam Balok

PLATE GIRDER A. Pengertian Pelat Girder

BAB III PEMODELAN STRUKTUR

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Dalam pembangunan prasarana fisik di Indonesia saat ini banyak pekerjaan

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 3

STRUKTUR STATIS TAK TENTU

Perhitungan Struktur Bab IV

BAB II KAJIAN PUSTAKA. glide/refleksi geser, grup simetri, frieze group, graphical user interface (GUI) dijelaskan mengenai operasi biner.

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

ANALISA GEOMETRI NON-LINIER PELAT LANTAI DENGAN MENGGUNAKAN SAP2000 DAN PERCOBAAN PEMBEBANAN. Andri Handoko

STRUKTUR DAN KONSTRUKSI BANGUNAN IV

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

BAB III LANDASAN TEORI

Pengertian struktur. Macam-macam struktur. 1. Struktur Rangka. Pengertian :

BAB II TINJAUAN PUSTAKA

Dosen Pembimbing: 1. Tavio, ST, MS, Ph.D 2. Bambang Piscesa, ST, MT

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

ANALISA STRUKTUR PELAT DUA ARAH TANPA BALOK (FLAT SLAB)

STRUKTUR PERMUKAAN BIDANG

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

Pertemuan V,VI III. Gaya Geser dan Momen Lentur

BAB II TINJAUAN PUSTAKA

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

III. TEGANGAN DALAM BALOK

Gambar 2.1 Rangka dengan Dinding Pengisi

BAB III METODOLOGI PENELITIAN

LENDUTAN (Deflection)

DESAIN PONDASI TELAPAK DAN EVALUASI PENURUNAN PONDASI ENDRA ADE GUNAWAN SITOHANG

BAB IV PERENCANAAN AWAL (PRELIMINARY DESIGN)

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. yang demikian kompleks, metode eksak akan sulit digunakan. Kompleksitas

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan


BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara

PLATE GIRDER A. Pengertian Pelat Girder

Pedoman Pengerjaan PERANCANGAN STRUKTUR BETON

BAB II TINJAUAN PUSTAKA

Perancangan Struktur Atas P7-P8 Ramp On Proyek Fly Over Terminal Bus Pulo Gebang, Jakarta Timur. BAB II Dasar Teori

BAB III METODOLOGI PERANCANGAN

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

PUNTIRAN. A. pengertian

VI. BATANG LENTUR. I. Perencanaan batang lentur

ANALISIS PENENTUAN TEGANGAN REGANGAN LENTUR BALOK BAJA AKIBAT BEBAN TERPUSAT DENGAN METODE ELEMEN HINGGA

GETARAN BEBAS PADA BALOK KANTILEVER. Kusdiman Joko Priyanto. Abstrak. Kata kunci : derajad kebebasan, matrik massa, waktu getar alamai

BAB I PENDAHULUAN. 1 Universitas Kristen Maranatha

Kuliah ke-2. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Analisis Struktur Statis Tak Tentu dengan Force Method

BAB II METODE KEKAKUAN

BAB V PEMBAHASAN. terjadinya distribusi gaya. Biasanya untuk alasan efisiensi waktu dan efektifitas

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Soal 1: Alinemen Horisontal Tikungan Tipe S-C-S

sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

II. TINJAUAN PUSTAKA. rintangan yang berada lebih rendah. Rintangan ini biasanya jalan lain ( jalan

MODIFIKASI PERENCANAAN GEDUNG PERKANTORAN THE BELLEZZEA OFFICE JAKARTA SELATAN MENGGUNAKAN FLAT SLAB

Tata Cara Pengujian Beton 1. Pengujian Desak

MODIFIKASI PERENCANAAN JEMBATAN KALI BAMBANG DI KAB. BLITAR KAB. MALANG MENGGUNAKAN BUSUR RANGKA BAJA

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

Bab V Implementasi Dan Pembahasan Metode Elemen Hingga Pada Struktur Shell

Soal 1: Alinemen Horisontal Tikungan Tipe S-S

Transkripsi:

BAB I PENDAHULUAN 1.1 Umum Balok tinggi adalah elemen struktur yang dibebani sama seperti balok biasa dimana besarnya beban yang signifikan dipikul pada sebuah tumpuan dengan gaya tekan yang menggabungkan pembebanan dan reaksi. Sebagai hasilnya, distribusi tegaangannyatidak lagi linier dan deformasi geser menjadi signifikan jika dibandingkan pada lenturan murni. Ada banyak cara dalam menganalisis sebuah balok tinggi, misalnya metode finite difference, metode elastisitas dua dimensi, metode analisis tegangan. Metode elemen hingga (finite element method ) dapat digunakan untuk menganalisis tegangan yang timbul dan menghitung deformasi pada balok tinggi. Tegangan-tegangan yang dihasilkan dapat dipakai sebagai gambaran untuk menempatkan tulangan pada perencanaan balok tinggi. Menurut Daryl L. Logan (007), tegangan bidang didefensisikan sebagai keadaan yang mana tegangan normal dan tegangan geser yang mengarah tegak lurus terhadap bidang diasumsikan sama dengan nol. Sementara regangan bidang didefenisikan sebagai keadaan yang mana regangan normal pada bidang x-y, εε zz dan regangan geser, γγ xxxx dan, γγ yyyy diasumsikan sama dengan nol. Asumsi dari regangan bidang secara realistis pada bidang yang memanjang kearah x dengan potingan melintang konstan dan diberi pembebanan yang bereaksi hanya pada arah x dan/ atau arah y dan tidak bervariasi pada arah z. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 007) 15

Gambar 1. regangan bidang pada (a) dam yang mengalami beban horizontal (b) pipa yang mengalami beban vertikal (Daryl L. Logan : 007) Konsep dari kondisi tegangan dan regangan dua dimensi dan hubungan antara tegangan/regangan untuk tegangan bidang dan regangan bidang perlu diketahui pada penyusunan dan aplikasi dari matriks kekakuan untuk tegangan/ regangan bidang dengan elemen segitiga. Pertama sekali dilustrasikan keadaan tegangan dua dimensi berdasarkan gambar berikut : Gambar 1.3 keadaan tegangan dua dimensi (Daryl L. Logan : 007) Elemen sangat kecil dengan sisi dx dan dy yang telah mengalami tegangan normal σσ xx dan σσ yy masing-masing berperan pada arah sumbu x dan y ( disini pada permukaan vertikal dan horizontal). Sedangkan gaya geser ττ xxxx berperan pada tepi sumbu y ( permukaan vertikal ) dalam arah y dan gaya geser ττ yyyy berperan pada tepi sumbu x( permukaan vertikal ) dalam arah y. Momen keseimbangan dari elemen menghasilkan ττ xxxx yang sama besarnya dengan ττ yyyy. Oleh karena itu tiga tegangan-tegangan yang secara bebas ada dan diwakili oleh vektor matriks kolom. 16

σσ xx {σσ} = σσ yy ττ xxxx Tegangan yang diberikan dari persamaan diatas akan dinyatakan dalam derajat kebebasan perpindahan pada suatu titik. Oleh karena itu setelah perpindahan nodal ditentukan maka tegangan- tegangan dapat langsung dievaluasi. Berdasarkan konsep tegangan, tegangan-tegangan utama dimana tegangan minimum dan maksimum pada bidang dua dimensi dapat diperoleh dari persamaan berikut : σσ 1 = σσ xx + σσ yy + σσ xx σσ yy + ττ xxxx = σσ mmmmmm σσ 1 = σσ xx + σσ yy σσ xx σσ yy + ττ xxxx = σσ mmmmmm Juga sudut utama θθ pp yang mendefinisikan keadaan normal yang arahnya tegak lurus terhadap bidang dimana tegangan maksimum atau minimum berperan dapat dicari melalui persamaan : ττ xxxx ttttttθθ pp = σσ xx σσ yy Metode elemen hingga dapat dipandang sebagai perluasan metode perpindahan ( yang dikenal pada konstruksi rangka ) ke masalah kontinum berdimensi duadan tiga, seperti plat, stuktur selaput (shell) dan lain-lain.dalam metode ini, kontinum sebenarnya diganti dengan sebuah struktur ideal ekivalen yang terdiri dari elemen elemen diskrit. Pada dasarnya struktur dengan system diskrit ini sama dengan system generalized, yaitu bilajumlah elemen-elemen yang membangun struktur tersebut mendekati tak berhingga. Pemecahan sistem iniberupa persamaan aljabar yang dinyatakan dalam bentuk matiks, sedangkan untuk sistem generalized pemecahan berupa persamaan diferensial. 17

Ada dua tipe elemen yang paling umum digunakan yaitu elemen berbentuk segi empat dan berbentuk segitiga, Dalam tulisan ini akan dibahan mengenai pemakaian elemen segitiga. Gambar 1.4 model elemen segitiga Masing masing titik pada elemen mempunyai derajat kebebasan (two degree of freedom ). maka untuk elemen segitiga total derajat kebebasannya menjadi 6 ( u1, v1, u, v, u3, v3 ). Serta gaya- gaya yang sesuai adalah ( Fx, Fy1, Fx, Fy, Fx3, Fy3 ) Berdasarkan JR William Weaver dan Paul R Johnston. (1993), Matriks Kekakuan elemen segitiga (Constant Strain Triangle) dapat dinyatakan sebagai : [kk] = tt AA [BB] TT [DD][BB] Dimana : [k] = matriks kekakuan struktur, t = tebal elemen, AA= luasan elemen, [B] = matriks gabungan, [D] = matriks elastisitas. 18

Dalam tulisan ini yang akan dihitung adalah tegangan bidang dan asusmsi yang digunakan adalah : σσ zz = ττ xxxx = ττ yyyy = 0 Hubungan antara tegangan dan regangan adalah : σσ xx = σσ yy = ττ xxxx = EE (1 vv ) εε xx + vvεε yy EE (1 vv ) εε yy + vvεε xx EE (1 vv ) = γγ xxxx = GGγγ xxxx Dimana : E = merupakan modulus elastisitas bahan v = angka poisson. G = modulus geser Matriks elastisitas [D] didapat dari kondisi tegangan dan regangan dua dimensi, didapat matriks : {σσ} = [DD]{εε} [DD] = EE 1 vv 0 1 vv vv 1 0 0 0 1 vv Matriks gabungan [B] didapat dari hubungan antara regangan/ perpindahan dan tegangan / regangan. Regangan yang berhubungan dengan perpindahan dengan elemen dua dimensi dinyatakan dalam matriks dibawah ini : 19

uu ii {εε} = 1 ββ ii 0 ββ ii 0 ββ mm 0 vv ii AA uu 0 γγ ii 0 γγ ii 0 γγ jj mm γγ ii ββ ii γγ jj ββ jj γγ mm ββ mm vv jj uu mm vvmm Atau : dd ii {εε} = [ββ ii ββ jj ββ mm ] dd jj dd mm Dimana : ββ ii 0 ββ jj 0 ββ mm 0 [ββ ii ] = 1 0 γγ AA ii ββ jj = 1 0 γγ jj [ββ AA ii ] = 1 0 γγ AA mm γγ ii ββ ii γγ jj ββ jj ββ mm Kemudian matriks diatas disederhanakan menjadi : {εε} = [BB]{dd} [BB] = BB ii BB jj BB mm Sehingga hubungan dari matriks kekakuan elemen segitiga dapat dijabarkan menjadi : [kk] = tt AA [BB] TT [DD][BB] ββ ii 0 γγ ii 0 γγ ii ββ ii ββ [kk] = tttt jj 0 γγ ββ ii 0 ββ jj 0 ββ mm 0 1 vv 0 jj EE 0 γγ ii 0 γγ 0 γγ jj ββ jj 0 γγ vv 1 0 mm jj 1 vv γγ ββ mm0 0 γγ ii ββ ii γγ ii ββ mm jj γγ mm ββ ii 0 0 1 vv ββ mm γγ mm γγ mm Dimana: disimbolkan [k] = sebuah fungsi variasi dari koordinat titik x dan y, dan dapat dengan γγ dan ββ. E = merupakan modulus elastisitas bahan. v = angka poisson. 0

Setelah kita mendapatkan matriks kekakuan [k], maka nilai kekakuan setiap elemen dapat digabungkan kedalam matriks kekakuan global. {FF} = [KK]{dd} Dimana: {FF} = matriks gaya {dd} = matriks perpindahan Dengan didapatkannya nilai perpidahan, maka kita bisa mencari nilai tegangan, melalui persamaan matriks : {σσ} = [DD][BB]{dd} Secara umum, penjabaran persamaan diatas menjadi σσ xx σσ yy = ττ xxxx dd 1xx 1 vv 0 dd 1yy EE (1 vv ) vv 1 0 0 0 1 vv xx 1 ββ 1 0 ββ 3 0 ββ 0 AA dd 0 γγ 1 0 γγ 3 0 γγ 3xx γγ 1 ββ 1 γγ 3 ββ 3 γγ ββ dd 3yy dd xx dd yy 1

1. Latar Belakang Masalah Dalam menghitung tegangan pada balok tinggi dapat dikerjakan melalui berbagai metode.secara eksak nilai tegangan dapat dicari tetapi membutuhkan waktu yang lama dan pendalaman pada rumus yang dipakai. Salah satu metode lain yang bisa dipakai untuk mencari tegangan pada balok tinggi dapat menggunakan metode elemen hingga ( finite element method ). Untuk melakukan analisis ini dipergunakan elemen segitiga yaitu dengan membuat garis fiktif yang sedemikian rupa sehingga membentuk elemen-elemen segitiga dan masing-masing nodal diberi nomor-nomor yang berurutan. Tetapi dalam perhitungannya akan mejadi lama jika dilakukan secara manual. Maka diperlukan alat bantu yang dapat mempermudah pekerjaan dalam menyelesaikan perhitungan tersebut, oleh karena itu penulis memakai program Microsoft Excel yang nantinya nilai tegangan yang didapat akan dibandingkan dengan menggunakan metode Heft 40. Metode Heft 40 dipergunakan untuk mendapatkan tegangan dengan prosedur dan tabel-tabel yang sudah ditetapkan untuk berbagai kondisi perletakan dan pembebanan. Gambar 1.5 keadaan tegangan antara balok biasa dengan balok tinggi(m. Rὄsler, 00)

Dibawah ini adalah model balok tinggi yang akan dianalisis : 400 kn 400 kn 3000 mm 3000 mm Gambar 1.6 model balok tinggi Kemudian struktur diatas akan dihitung dengan menggunakan elemen segitiga. 3

400 kn 400 kn 3000 mm Gambar 1.7 pembagian elemen segitiga 400 kn 400 kn 13 14 7 8 41 4 49 11 1 5 6 39 40 48 9 10 3 4 37 38 47 7 8 1 35 36 46 5 6 19 0 33 34 45 3 4 17 18 31 3 44 1 15 16 3000 mm 9 30 43 Gambar 1.8 penomoran elemen 4

1.3 Aplikasi 1.3.1 Transfer girder Balokgirderadalah balok diantara dua penyangga (pier atauabutment ) yang berfungsi untuk mendukung balok lainnya yang lebih kecil dalam suatu konstruksi, umumnya merupakan balok I, tetapi juga bisa berbentuk box, ataupun bentuk lainnya. Pada balok tinggi sebagai transfer girder adalah ketika balok tinggi mengambil peranan balok girder ini dengan menyalurkan pembebanan yang dipikul dari struktur diatasnya ke perletakan. Contoh bangunannya adalah Brunswick Building, dimana setiap beban pada kolom-kolom perimeter yang berjarak disalurkan melalui balok tinggi pada sebuah kolom berasr berjarak pada lantai dasar. Gambar 1.9Brunswick Building 1.3. Bangunan bentang lebar tanpa kolom (a) (b) 5

(c) Gambar 1.10(a) Biological Station of Garducho(b) penulangan balok tinggi memanjang (c) melintang 1.3.3 PemasanganDinding Precast Pada Bangunan Tanpa Kolom Gambar 1.11 pemasangan dinding precast 6

Gambar 1.1 pemasangan struktur precast 1.4 Tujuan Tujuan dari tugas akhir ini adalah untuk membandingkan perhitungan tegangan pada balok tinggi dengan metode elemen hingga (finite element method ) dengan hasil metode heft 40. 1.5 Batasan Masalah Pada analisa ini, penulis membatasi permasalahan untuk penyederhanaan sehingga tujuan dari penulisan tugas akhir ini dapat dicapai, yaitu : 1. Model struktur bangunan adalah balok tinggi ( h= L )dengan panjang 3 meter, lebar3 meter dan tebal 0,5 meter.. Beban yang bekerja adalah beban vertikal statis ekivalen sebesar 400 kn yang bekerja pada balok dengan perletakan sederhana ( sendi-rol). 3. Menganalisa tengangan yang terjadi akibat beban terpusat. Analisa struktur yang dilakukan adalah dengan finite element method untuk dua dimensi. 4. Sebagai perbandingan dari nilai tegangan yang diperoleh dengan metode elemen hingga akan dikontrol dengan metode Heft 40. 7

1.6 Metode Pembahasan Metode yang digunakan dalam penulisan tugas akhir ini adalah analisa dengan mengumpulkan data-data dan keterangan dari buku yang berhubungan dengan pembahasan tugas akhir ini serta masukan masukan dari dosen pembimbing. Perhitungan dan pemasukan matriks matriks finite element method dilakukan dengan bantukan program Microsoft Excel 010. Sedangkan sebagai perbandingan nilai tegangan yang didapatkan dengan menggunakan metode Heft 40. 8