Gelombang Mekanis 1 SUMBER-SUMBER BUNYI

dokumen-dokumen yang mirip
Gelombang Mekanis Adiwarsito.wordpress.com SUMBER-SUMBER BUNYI. dan di bagain tengah terjadi perut. jadi panjang kawat L = 1 2

GELOMBANG MEKANIS. Materi Pendalaman 02:

Pipa Organa Terbuka. Gambar: 3.7. Organa Terbuka. Dengan demikian L = atau λ 1 = 2L. Dan frekuensi nada dasar adalah. f 1 = (3.10)

GETARAN, GELOMBANG DAN BUNYI

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG - GELOMBANG

Getaran, Gelombang dan Bunyi

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG MEKANIS

GELOMBANG MEKANIK. (Rumus)

GELOMBANG BUNYI. Cepat rambat bunyi di udara yang dipengaruhi oleh tekanan dinyatakan dengan persamaan : pada gas ideal ; M

Waktu yang dibutuhkan oleh gelombang adalah 4 sekon.

Fisika I. Gelombang Bunyi

Pengertian Gelombang. Getaran yang merambat. Rambatan energi. Getaran yang merambat tetapi partikelpartikel medium tidak ikut merambat.

LATIHAN SOAL PERSIAPAN UTS MATERI: GEM, GEL. BUNYI, GEL. BERJALAN, GEL. STASIONER

Gelombang Bunyi. Keterangan: γ = konstanta Laplace R = tetapan umum gas (8,31 J/mol K)

BAHAN AJAR MATA PELAJARAN FISIKA Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah

COBA PERHATIKAN GAMBAR GRAFIK BERIKUT

Percobaan Melde digunakan untuk menyelidiki cepat rambat gelombang transversal dalam dawai. Perhatikan gambar di bawah ini.

INTERFERENSI GELOMBANG

Antiremed Kelas 12 Fisika

Kurikulum 2013 Kelas 12 SMA Fisika

Mutawafaq Haerunnazillah 15B08011

BAB GELOMBANG MEKANIK

λ = = 1.grafik simpangan waktu dan grafik simpangan-posisi ditunjukan pada gambar dibawah ini.

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

FISIKA. Sesi GELOMBANG BUNYI A. CEPAT RAMBAT BUNYI

Dasar II Tahun : 2007 GELOMBANG BUNYI PERTEMUAN 03 (OFC)

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

FISIKA. 2 SKS By : Sri Rezeki Candra Nursari

CEPAT RAMBAT BUNYI. Cepat rambat bunyi pada zat padat

LEMBAR EVALUASI (Pilihan Ganda)

Gejala Gelombang. gejala gelombang. Sumber:

Gelombang Dan Bunyi. - Getaran selaras sederhana adalah gerak harmonis yang grafiknya merupakan sinusoidal dengan frekuensi dan amplitudo tetap.

MAKALAH CEPAT RAMBAT BUNYI DI UDARA

SMA IT AL-BINAA ISLAMIC BOARDING SCHOOL UJIAN AKHIR SEMESTER GANJIL TAHUN AJARAN 2011/2012

Antiremed Kelas 12 Fisika

Modul Gelombang Bunyi. Modul Fisika. Untuk SMA/MA Kelas 11. Gelombang Bunyi. Nama : Kelas :

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang

K13 Revisi Antiremed Kelas 11 Fisika

BAB GELOMBANG MEKANIK. Pada pembelajaran pertama ini kita akan mempelajari. mekanik.

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA

1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

PERCOBAAN MELDE TUJUAN PERCOBAAN II. LANDASAN TEORI

PENDIDIKAN FISIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA 2014

GETARAN DAN GELOMBANG BUNYI

I. BUNYI. tebing menurut persamaan... (2 γrt

1. SUMBER BUNYI. Gambar 7

GELOMBANG 1 GELOMBANG

LEMBAR EVALUASI (Pilihan Ganda)

Sifat Alami Gelombang

4. Sebuah mobil bergerak dengan kecepatan konstan 72 km/jam. Jarak yang ditempuh selama selang waktu 20 sekon adalah...

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1

KISI-KISI SOAL UJI COBA. Menurut medium perambatannya, gelombang

Latihan Soal UAS Fisika Panas dan Gelombang

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi.

GELOMBANG MEKANIK 1. Ssebuah gelombang berjalan pada tali memiliki persamaan y Asin(

3. Resonansi. 1. Tujuan Menentukan cepat rambat bunyi di udara

sepanjang lintasan: i) A-B adalah 1/4 getaran ii) A-B-C-B-A adalah 4/4 atau 1 getaran iii) A-B-C-B-A-B adalah 5/4 atau 1,25 getaran

Laporan Praktikum Gelombang PERCOBAAN MELDE. Atika Syah Endarti Rofiqoh

(a) Gelombang Tali 2 = tali) untuk menjalar. Sehingga Laju gelombang tali

FISIKA. Untuk SMA dan MA Kelas XII. Sri Handayani Ari Damari

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN

: 1. KARAKTERISTIK GELOMBANG 2. PERSAMAAN GELOMBANG BERJALAN DAN GELOMBANG TEGAK

1. SUMBER BUNYI. Gambar 1

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Pembahasan soal latihan dari buku fisika 3A Bab 1 untuk SMA, karangan Mikrajuddin Abdullah. 1. perhatikan gambar gelombang pada disamping.

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP )

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

Antiremed Kelas 12 Fisika

BAB 2 TINJAUAN PUSTAKA

materi fisika GETARAN,GELOMBANG dan BUNYI

Laporan Praktikum IPA Modul 6. Gelombang

BAB I GETARAN, GELOMBANG DAN BUNYI

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

BAB I GETARAN, GELOMBANG DAN BUNYI

ULANGAN TENGAH SEMESTER 1 TAHUN PELAJARAN 2013/2014 WAKTU : JUMAT 4 OKTOBER 2013

Gelombang Bunyi 8 SMP

Getaran dan Gelombang

KUMPULAN SOAL FISIKA KELAS XII

Prediksi 1 UN SMA IPA Fisika

ALAT YANG DIPERLUKAN TALI SLINKI PEGAS

BAB 3 GELOMBANG BUNYI

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t

Pusat Perbukuan Departemen Pendidikan Nasional

Ditanya : v =? Jawab : v =

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI Gelombang Berdiri

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

Soal dan Pembahasan Gelombang Bunyi dan Cahaya

GELOMBANG. Lampiran I.2

BAB GEJALA GELOMBANG

BAB GEJALA GELOMBANG

GETARAN DAN GELOMBANG

GELOMBANG BERJALAN DAN GELOMBANG STATIONER

Laboratorium Fisika Dasar Jurusan Pendidikan Fisika FPMIPA UPI Gelombang Berdiri

MODUL PEMBELAJARAN 1

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Fisika Tahun Ajaran 2017/2018. Departemen Fisika - Wardaya College

Gelombang Berdiri. (Drs. Iyon Suyana, M.Si. dan Achmad Samsudin, M.Pd.)

Transkripsi:

Gelombang Mekanis 1 SUMBER-SUMBER BUNY GETARAN BUNY Sehelai dawai ditegangkan dengan beban ariabel. Jika dawai dipetik di tengah-tengahnya, maka seluruh dawai akan bergetar membentuk setengah panjang gelombang. Gelombang yang terjadi adalah gelombang stasioner, pada bagian ujung terjadi simpul dan di bagain tengah terjadi perut. jadi panjang kawat L 1 atau λ o L. Nada yang ditimbulkan adalah nada dasar, Jika rekwensinya dilambangkan dengan o maka : o. λ o o. L o L Jika tepat ditengah dawai dijepit, kemudian senar digetarkan maka getaran yang terjadi dalam senar digambar sebagai berikut : 1 Senar digetarkan pada jarak 4 L dari salah satu ujung senar. Gelombang yang terjadi menunjukkan bahwa pada seluruh panjang tali erjadi 1 gelombang. Jadi L λ 1 dan nada yang ditimbulkannya merupakan nada atas pertama., dengan rekwensi 1. Maka 1. λ 1 1. L 1 L L Dawai juga dapat digetarkan sedemikian sehingga antara kedua ujungnya terdapat dua buah simpul, yaitu dengan cara pada jarak 1 3 panjang dawai dari salah satu ujungnya dijepit dengan penumpu dan dawai digetarkan pada jarak 1 6 L, maka pola gelombang yang terjadi dapat digambar sebagai berikut : Seluruh panjang dawai akan menggetar dengan membentuk 1 1 gelombang. Jadi L 1 1 λ Nada yang ditimbulkan adalah nada atas kedua dengan rekwensi. L 3 λ atau λ 3 L. λ. 3 L

Gelombang Mekanis 3 L dari data di atas dapat disimpulkan : o : 1 : :... 1 : : 3 :... Yang disebut nada selaras (nada harmonis) atau juga dinamakan nada lageolet. Rumus umum dari pada rekwensi nada-nada tersebut di atas adalah : λ n n n + 1 L L n + 1 karena adalah kecepatan rambat gelombang transersal, maka n n + 1 F L ρ. A dari persamaan di atas dapat disimpulkan dalam hukum Mersenne berikut ini : 1. Frekwensi nada dasar dawai berbanding terbalik dengan panjang dawai.. Frekwensi nada dasar dawai berbanding lurus ( berbanding senilai ) dengan akar kuadrat tegangan tali. 3. Frekwensi nada dasar dawai berbanding terbalik dengan akar kudrat penampang dawai. 4. Frekwensi nada dasar dawai berbanding terbalik dengan akar kuadrat masa jenis bahan dawai. Pada nada atas ke-n terdapat ( n+ ) simpul dan ( n+1 ) perut.

Gelombang Mekanis 3 GETARAN KOLOM UDARA PPA ORGANA TERBUKA. Kolom udara dapat beresonansi, artinya dapat bergetar. Kenyataan ini digunakan pada alat musik yang dinamakan Organa, baik organa dengan pipa tertutup maupun pipa terbuka. Dibawah ini adalah gambar penampang pipa organa terbuka. Jika Udara dihembuskan kuat-kuat melalui lobang A dan diarahkan ke celah C, sehingga menyebabkan bibir B bergetar, maka udarapun bergetar. Gelombang getaran udara merambat ke atas dan oleh lubang sebelah atas gelombang bunyi dipantulkan ke bawah dan bertemu dengan gelombang bunyi yang datang dari bawah berikutnya, sehingga terjadilah intererensi. Maka dalam kolom udara dalam pipa organa timbul pola gelombang longitudinal stasioner. Karena bagian atas pipa terbuka, demikian pula celah C, maka tekanan udara di empat tersebut tentulah sama dan sama dengan tekanan udara luar, jadi tekanan di tempat tersebut timbulah perut. Pada gambar (b) di atas terlihat 1 simpul diantara perut. ni berarti pipa organa bergetar dengan nada terendah yang disebut nada dasar organa. Frekwensi nada dasar dilambangkan o, jadi L 1 λ o atauλ o L, sehingga o L. Pada gambar (c) memperlihatkan dua simpul dan satu perut diantara kedua perut, dikatakan udara dalam pipa organa bergetar dengan nada atas pertama dan dilambangkan dengan 1. Pada pola tersebut sepanjang kolom udara dalam pipa terjadi 1 gelombang. λ 1 L 1. λ 1 1. L 1 L L

Gelombang Mekanis 4 Pada gambar (d) memperlihatkan 3 simpul dan dua perut di antara kedua perut, dan bunyi yang ditimbulkan merupakan nada atas kedua dilambangkan. Pada pola tersebut dalam pipa organa terbuka tersebut terjadi 1 1 gelombang, jadi : L 3 λ atau λ 3 L. λ. 3 L 3 L Secara berturut-turut peristiwa di atas dapat kita amati sebagai berikut : 0 1 3 L ( perut dan 1 simpul ) L ( 3 perut dan simpul ) 3 L ( 4 perut dan simpul ) 4 L ( 5 perut dan 4 simpul ) Pada nada atas ke-n terdapat : ( n+ ) perut dan ( n+1 ) simpul sehingga secara umum dapat dirumuskan sebagai : λ n n n + 1 L L n + 1 Dari data di atas dapat disimpulkan bahwa : o : 1 : : 3 :... 1 : : 3 : 4 :... Ungkapan tersebut dinamakan Hukum Bernoulli ke, yaitu : Frekwensi nada-nada yang dihasilkan oleh pipa organa terbuka berbanding sebagai bilangan asli. PPA ORGANA TERTUTUP Apabila pada ujung atas pipa organa tertutup, maka dinamakan pipa organa tertutup, sehingga gelombang longitudinal stasioner yang terjadi pada bagian ujung tertutup merupakan simpul dan pada bagian ujung terbuka terjadi perut.

Gelombang Mekanis 5 Gambar berikut menunjukkan berbagi pola getaran yang terjadi pada pipa organa tertutup. Pada (a) memberikan nada dasar dengan rekwensi o. Pada panjang kolom udara L terjadi 1/4 gelombang, karena hanya terdapat 1 simpul dan 1 perut. L 1 λ o ; λ o 4L 0. λ 0 0. 4L 0 4L Pada pola ( b ) memberikan nada atas pertama dengan Frekwensi 1. Sepanjang kolom udara pipa organa tertutup terjadi simpul dan perut, sehingga panjang pipa 3 4 panjang gelombang. L 3 4 λ 1 atau λ 1 4 3 L 1. λ 1 1. 4 3 L 1 3 4L Pada pola ( c ) memberikan nada atas kedua dengan dengan rekwensi pada panjang kolom udara pipa organa tertutup terjadi 3 simpul dan 3 perut, sehinga panjang pipa 5 4 panjang gelombang. L 5 4 λ atau λ 4 5 L. λ. 4 5 L 5 4L

Gelombang Mekanis 6 Dari keterangan di atas dapat disimpulkan : Pada nada atas ke-n terdapat ( n+1 ) simpul dan ( n+1 ) perut. o : 1 : : 3 :... 1 : 3 : 5 : 7 :... Ungkapan ini dinamakan Hukum Bernoulli ke : Frekwensi nada pipa organa tertutup berbanding sebagai bilangan-bilangan ganjil. Secara umum dirumuskan : n n + 1 4L Sehingga untuk panjang gelombangnya : λ n 4 L n + 1

Gelombang Mekanis 7 SETAP GELOMBANG MERAMBATKAN ENERG Rambatan bunyi adalah ramabatan gelombang, sedangkan rambatan gelombang adalah salah satu bentuk rambatan energi. Makin besar energi bunyi yang diterima makin nyaring suara yang kita dengar. NTENSTAS BUNY. Yang dimaksud dengan intensitas bunyi ialah : Besar energi bunyi tiap satuan waktu tiap satuan luas yang datang tegak lurus. Dapat dirumuskan sebagai : P A ntensitas bunyi dalam watt/m atau watt/cm A Luas bidang bola dalam m atau cm P Daya bunyi dalam J/det atau watt. Bila S merupakan sumber bunyi yang berdaya P watt dan energi bunyi merambat ke segala arah sama rata, ntensitas bunyi di titik yang jaraknya R dari S adalah : P 4 π R 1 1 : : R R 1 Kesimpulan : ntensitas bunyi berbanding terbalik dengan kuadrat jaraknya. TARAF NTENSTAS BUNY. ( T ) ntensitas bunyi terkecil yang masi merangsang pendengaran disebut harga ambang pendengaran, besarnya 10-1 watt/m. ntensitas bunyi terbesar yang masih dapat didengar tanpa menimbulkan rasa sakit pada telinga sebesar 1 watt/m. Logaritma perbandingan intensitas bunyi dengan harga ambang pendengaran disebut Tara ntensitas Bunyi. T tara intensitas bunyi dalam : Bel. o adalah intensitas bunyi. 1 T log adalah harga ambang pendengaran. Bila satuan T dalam Decibel ( db ) hubungan di atas menjadi : 0

Gelombang Mekanis 8 T log 0 1 Bel 10 db. NTERFERENS GELOMBANG BERFREKWENS BERBEDA SEDKT MENMBULKAN LAYANGAN. Sebuah titik P mulai bergetar karena mendapat usikan dari dua gelombang yang rekwensi 1 dan, dimana 1 - δ ( δ bilangan kecil ), Getaran yang dilakukan P oleh pengaruh gelombang-gelombang tersebut masing-masing mempunyai persamaan sebagai berikut : Persamaan gelombang yang pertama : y 1 A 1 sin π 1 t Persamaan gelombang yang kedua : y A sin π t Dalam hal ini A 1 A A, sehingga superposisi kedua gelombang dinyatakan dengan : y y 1 + y y A sin π 1 t + A sin π t y A sin π 1 ( 1 + ) t. cos π 1 ( 1 - ) t y A sin ω + ω 1 t. cos ω Karena 1 - δ, maka persamaan di atas menjadi : + ω 1 y A sin π 1 ( 1 + ) t. cos π 1 δ t Karena nilai δ kecil, maka nilai 1 ( 1 + ) t 1 ( + + δ ) Sehingga persamaan di atas dapat ditulis : y A cos π δ t. sin π t Persamaan di atas dapat dianggap sebagai persaman getaran selaras dengan rekwensi dan amplitudo yang tergantung dari pada waktu, yaitu A cos π δ t. ni berarti amplitudo tersebut mempunyai rekwensi 1 δ dan periode δ detik. ni berarti bahwa dalam selang waktu δ detik amplitudo mencapai harga nol - ekstrim - nol - ekstrim - nol. Karena kuat bunyi (intensitas bunyi) berbanding lurus dengan kuadrat amplitudonya, maka makin besar amplitudonya, makin kuatlah bunyi tersebut, sehinga dalam interal t δ detik tersebut juga akan terdengar bunyi lemah - kuat - lemah - kuat - lemah sesuai dengan pengertian satu layangan.

Gelombang Mekanis 9 Layangan adalah intererensi dua getaran harmonis yang sama arah getarnya, tetapi mempunyai perbedaan rekwensi sedikit sekali. Misalnya dua getaran A dan N berturut-turut mempunyai rekwensi 1 4 Hz dan 6 Hz Mula-mula kedua sumber getar bergetar dengan ase sama, jadi superposisi gelombang saling memperkuat atau terjadi penguatan. Setelah beberapa saat getaran B mendahului 1 getaran dari pada A, sehingga asenya berlawanan, jadi saat ini superposisi saling menghapus. Beberapa saat kemudian B bergetar satu getaran lebih dahulu dari A, maka saat ini ase A dan B sama lagi dan terjadi superposisi saling memperkuat lagi, artinya terjadi terjadi penguatan lagi dan seterusnya. Dari graik di atas terlihat bahwa amplitudo dari superposisi adalah y y 1 + y yang harganya bertambah besar dari nol sampai maksimum dan kemudian menjadi kecil lagi dari maksimum sampai nol. Pada saat terjadi amplitudo maksimum, maka intererensi mencapai terkuat atau terjadi penguatan dan pada saat amplitudo minimum terjadi intererensi pelemahan. Yang dimaksud dengan satu layangan ialah bunyi yang terdengar keras- lemah - keras atau lemah - keras - lemah, seperti yang terlihat pada graik. Jika untuk terjadi satu layangan diperlukan waktu 1 detik, maka dalam satu detik terjadi n layangan. Bilangan ini ternyata sama dengan selisih rekwensi antara sumber bunyi yang menimbulkannya. δ / 1 - / δ jumlah layangan. 1 dan adalah rekwensi-rekwensi yang menimbulkan layangan.