ESTIMASI UNSUR-UNSUR CUACA UNTUK MENDUKUNG SISTEM PERINGKAT BAHAYA KEBAKARAN HUTAN/LAHAN DENGAN DATA MODIS

dokumen-dokumen yang mirip
ANALISIS PERUBAHAN SUHU PERMUKAAN TANAH DENGAN MENGGUNAKAN CITRA SATELIT TERRA DAN AQUA MODIS (STUDI KASUS : DAERAH KABUPATEN MALANG DAN SURABAYA)

ESTIMASI EVAPOTRANSPIRASI SPASIAL MENGGUNAKAN SUHU PERMUKAAN DARAT (LST) DARI DATA MODIS TERRA/AQUA DAN PENGARUHNYA TERHADAP KEKERINGAN WAHYU ARIYADI

BAB II TINJAUAN PUSTAKA. 2.1 Evapotranspirasi Potensial Standard (ETo)

Pemetaan Tingkat Kekeringan Berdasarkan Parameter Indeks TVDI Data Citra Satelit Landsat-8 (Studi Kasus: Provinsi Jawa Timur)

1* 2 3. Eko Heriyanto, Lailan Syaufina dan Sobri Effendy. Puslitbang, BMKG 2. Departemen Silvikultur, Fakultas Kehutanan IPB 3

ANALISIS SISTEM PERINGKAT BAHAYA KEBAKARAN UNTUK DESKRIPSI KEJADIAN KEBAKARAN HUTAN/LAHAN DI PROVINSI KALIMANTAN TENGAH

ANALISA DAERAH POTENSI BANJIR DI PULAU SUMATERA, JAWA DAN KALIMANTAN MENGGUNAKAN CITRA AVHRR/NOAA-16

KEKERINGAN TAHUN 2014: NORMAL ATAUKAH EKSTRIM?

ESTIMASI EVAPOTRANSPIRASI SPASIAL MENGGUNAKAN SUHU PERMUKAAN DARAT (LST) DARI DATA MODIS TERRA/AQUA DAN PENGARUHNYA TERHADAP KEKERINGAN WAHYU ARIYADI

BAB I PENDAHULUAN. 1.1 Latar Belakang

ANALISIS HUBUNGAN KODE-KODE SPBK (SISTEM PERINGKAT BAHAYA KEBAKARAN) DAN HOTSPOT DENGAN KEBAKARAN HUTAN DAN LAHAN DI KALIMANTAN TENGAH

Jurnal Geodesi Undip April 2017

1 BAB I PENDAHULUAN. 1.1 Latar Belakang

Sistem Informasi Tingkat Bahaya Kebakaran Hutan dan Lahan Dengan Menggunakan Fire Weather Index (FWI) dan SIG Arcview.

Lampiran 1. Karakteristik satelit MODIS.

PENGARUH FENOMENA LA-NINA TERHADAP SUHU PERMUKAAN LAUT DI PERAIRAN KABUPATEN MALANG

Pengkajian Pemanfaatan Data Terra-Modis... (Indah Prasasti et al).

4. HASIL DAN PEMBAHASAN

PREDIKSI LUAS AREA KEBAKARAN HUTAN BERDASARKAN DATA METEOROLOGI DENGAN MENGGUNAKAN PENDEKATAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

Gambar 1.1 Siklus Hidrologi (Kurkura, 2011)

IV. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Maret hingga Agustus. Kondisi ini didukung oleh suhu rata-rata 21 0 C 36 0 C dan

Pengamatan kebakaran dan penyebaran asapnya dari angkasa: Sebuah catatan kejadian kebakaran hutan/lahan di Sumatera Selatan tahun 2014

1. PENDAHULUAN 2. TINJAUAN PUSTAKA

LAPORAN PELATIHAN PENGUATAN KAPASITAS DAERAH DAN SINERGI PEMANFAATAN INFORMASI KEBAKARAN HUTAN/LAHAN PERKEBUNAN DI PROVINSI KALIMANTAN TENGAH

BAB II TINJAUAN PUSTAKA

PENERAPAN METODE THORNTHWAITE UNTUK MENGESTIMASI EVAPOTRANSPIRASI DI DAS CITARUM MENGGUNAKAN DATA TERRA-MODIS

Dukungan Teknologi Penginderaan Jauh dalam Penilaian Sumberdaya Hutan Tingkat Nasional: Akses Citra Satelit, Penggunaan dan Kepentingannya

3. METODOLOGI. Penelitian ini dilaksanakan pada bulan Maret hingga Desember 2010 yang

Analisis Indeks Vegetasi Menggunakan Citra Satelit FORMOSAT-2 Di Daerah Perkotaan (Studi Kasus: Surabaya Timur)

Ir. Rubini Jusuf, MSi. Sukentyas Estuti Siwi, MSi. Pusat Teknologi dan Data Penginderaan Jauh Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

BAB I PENDAHULUAN 1.1. Latar Belakang

TINJAUAN PUSTAKA. non hutan atau sebaliknya. Hasilnya, istilah kebakaran hutan dan lahan menjadi. istilah yang melekat di Indonesia (Syaufina, 2008).

METODE PENELITIAN Bujur Timur ( BT) Gambar 5. Posisi lokasi pengamatan

KAJIAN TEMPORAL KEKERINGAN MENGGUNAKAN PERHITUNGAN KEETCH BYRAM DRYNESS INDEX (KBDI) DI WILAYAH BANJARBARU, BANJARMASIN DAN KOTABARU PERIODE

ix

5. Restaurasi merupakan konsep mengenai kegiatan yang dilakukan terhadap wilayah atau daerah pasca kebakaran.

KAJIAN KORELASI ANTARA KELEMBABAN TANAH DENGAN TATA GUNA LAHAN BERBASIS CITRA SATELIT. (Studi Kasus Daerah Bandung dan Sekitarnya) IRLAND FARDANI

STUDI ESTIMASI CURAH HUJAN, SUHU DAN KELEMBABAN UDARA DENGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

IV. HASIL DAN PEMBAHASAN

Oleh : Hernandi Kustandyo ( ) Jurusan Teknik Geomatika Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

I. PENDAHULUAN. bagi kehidupan manusia. Disamping itu hutan juga memiliki fungsi hidrologi sebagai

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN PENDAHULUAN

Pemanfaatan Citra Landsat 7 ETM+ untuk Menganalisa Kelembaban Hutan Berdasarkan Nilai Indeks Kekeringan (Studi Kasus : Hutan KPH Banyuwangi Utara)

BAB I PENDAHULUAN 1.1. Latar Belakang

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA AQUA MODIS

ANALISIS KELEMBABAN TANAH PERMUKAAN MELALUI CITRA LANDSAT 7 ETM+ DI WILAYAH DATARAN KABUPATEN PURWOREJO

Prediksi Curah Hujan Di Kota Pontianak Menggunakan Parameter Cuaca Sebagai Prediktor Pada Skala Bulanan, Dasarian Dan Harian Asri Rachmawati 1)*

1 PENDAHULUAN. Latar Belakang

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

PUSAT PEMANFAATAN PENGINDERAAN JAUH LAPAN LITBANG PEMANFAATAN DATA PENGINDERAAN JAUH UNTUK KEKERINGAN DAN KEBAKARAN HUTAN/LAHAN

3 METODE PENELITIAN. Gambar 7. Peta Lokasi Penelitian

BAB II TINJAUAN PUSTAKA

PENGINDERAAN JAUH UNTUK PEMANTAUAN KEKERINGAN LAHAN SAWAH

ANALISA KESEHATAN VEGETASI MANGROVE BERDASARKAN NILAI NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX ) MENGGUNAKAN CITRA ALOS

PENGKAJIAN PEMANFAATAN DATA PENGINDERAAN JAUH MULTI SKALA/RESOLUSI UNTUK KEGIATAN MITIGASI BENCANA

1 Peneliti Pusbangja, LAPAN 2 Dosen Statistika, IPB 3 Mahasiswa Statistika, IPB. Abstrak

Fungsi Ruang Terbuka Hijau (RTH) bagi Kesetimbangan Lingkungan Atmosfer Perkotan

III. METODOLOGI. Gambar 3.1 Lokasi Penelitian WP Bojonagara

KEMENTERIAN LINGKUNGAN HIDUP DAN KEHUTANAN DIREKTORAT JENDERAL PENGENDALIAN PERUBAHAN IKLIM DIREKTORAT PENGENDALIAN KEBAKARAN HUTAN DAN LAHAN

Halda Aditya*, Sri Lestari**, Hilda Lestiana*** Abstract

STUDY ON MERGING MULTI-SENSOR SSTs OVER THE EAST ASIA. Penggabungan multi sensor sst disepanjang Asia timur

MODIFIKASI ALGORITMA AVHRR UNTUK ESTIMASI SUHU PERMUKAAN LAUT (SPL) CITRA SATELIT TERRA MODIS

ANALISA NERACA AIR LAHAN WILAYAH SENTRA PADI DI KABUPATEN PARIGI MOUTONG PROVINSI SULAWESI TENGAH

Studi Akurasi Citra Landsat 8 dan Citra MODIS untuk Pemetaan Area Terbakar (Studi Kasus: Provinsi Riau)

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

Pasang Surut Surabaya Selama Terjadi El-Nino

Sistem Pengolahan Data NOAA dan METOP

2. TINJAUAN PUSTAKA. Suhu permukaan laut Indonesia secara umum berkisar antara O C

BAB I PENDAHULUAN 1.1 Latar Belakang

Aplikasi Penginderaan Jauh Untuk Monitoring Perubahan Ruang Terbuka Hijau (Studi Kasus : Wilayah Barat Kabupaten Pasuruan)

III. METODOLOGI. Gambar 1. Peta Administrasi Kota Palembang.

INFORMASI TITIK PANAS (HOTSPOT) KEBAKARAN HUTAN/LAHAN PANDUAN TEKNIS (V.01)

PENENTUAN EVAPOTRANSPIRASI REGIONAL DENGAN DATA LANDSAT TM DAN NOAA AVHRR

INFORMASI KEBAKARAN HUTAN DAN LAHAN BERDASARKAN INDEKS KEKERINGAN DAN TITIK PANAS DI KABUPATEN SAMOSIR

PUSAT PEMANFAATAN PENGINDERAAN JAUH LAPAN PEDOMANPEMBUATAN INFORMASI SPASIAL ZONA POTENSI PENANGKAPAN IKAN BERBASIS DATA SATELIT PENGINDERAAN

Analisis Rona Awal Lingkungan dari Pengolahan Citra Landsat 7 ETM+ (Studi Kasus :Daerah Eksplorasi Geothermal Kecamatan Sempol, Bondowoso)

Aplikasi Analisis Komponen Utama dalam Pemodelan Penduga Lengas Tanah dengan Data Satelit Multispektral

IDENTIFIKASI INDIKATOR KEKERINGAN MENGGUNAKAN TEKNIK PENGINDERAAN JAUH FERSELY GETSEMANI FELIGGI

IDENTIFIKASI AREAL BEKAS KEBAKARAN HUTAN DAN LAHAN (KARHUTLA, KEBAKARAN HUTAN DAN LAHAN)

Dedi Irawadi Kepala Pusat Teknologi dan Data Penginderaan Jauh. KLHK, Jakarta, 25 April 2016

PENENTUAN POLA SEBARAN KONSENTRASI KLOROFIL-A DI SELAT SUNDA DAN PERAIRAN SEKITARNYA DENGAN MENGGUNAKAN DATA INDERAAN AQUA MODIS

BAB II TINJAUAN PUSTAKA...

Di zaman modern seperti sekarang ini, semakin sering. DNB/VIIRS: Menatap Bumi di Malam Hari AKTUALITA

BAB II TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. pengamatan parameter-parameter cuaca secara realtime maupun dengan alat-alat

TINJAUAN SECARA METEOROLOGI TERKAIT BENCANA BANJIR BANDANG SIBOLANGIT TANGGAL 15 MEI 2016

Jurnal KELAUTAN, Volume 3, No.1 April 2010 ISSN : APLIKASI DATA CITRA SATELIT NOAA-17 UNTUK MENGUKUR VARIASI SUHU PERMUKAAN LAUT JAWA

ANALISA VALIDASI PERALATAN METEOROLOGI KONVENSIONAL DAN DIGITAL DI STASIUN METEOROLOGI SAM RATULANGI oleh

ABSTRAK. Kata Kunci: kebakaran hutan, penginderaan jauh, satelit Landsat, brightness temperature

ANALISA VARIASI HARMONIK PASANG SURUT DI PERAIRAN SURABAYA AKIBAT FENOMENA EL-NINO

PERBANDINGAN MODEL IDENTIFIKASI DAERAH BEKAS KEBAKARAN HUTAN DAN LAHAN DI KALIMANTAN BARAT RIA RACHMAWATI

Buletin Pemantauan Ketahanan Pangan INDONESIA. Volume 7, Agustus 2017

DETEKSI SEBARAN TITIK API PADA KEBAKARAN HUTAN GAMBUT MENGGUNAKAN GELOMBANG-SINGKAT DAN BACKPROPAGATION (STUDI KASUS KOTA DUMAI PROVINSI RIAU)

BAB I PENDAHULUAN 1.1 Latar Belakang

3. METODOLOGI PENELITIAN

3. METODOLOGI Waktu dan Lokasi Penelitian. Lokasi pengamatan konsentrasi klorofil-a dan sebaran suhu permukaan

Transkripsi:

ESTIMASI UNSUR-UNSUR CUACA UNTUK MENDUKUNG SISTEM PERINGKAT BAHAYA KEBAKARAN HUTAN/LAHAN DENGAN DATA MODIS M. Rokhis Khomarudin 1, Orta Roswintiarti 1, dan Arum Tjahjaningsih 1 1 Lembaga Penerbangan dan Antariksa Nasional (LAPAN) Jalan LAPAN 70, Pekayon-Pasar Rebo, Jakarta 13710 Telp/Fax : +6 1 8710065/+6 1 871074 email : ayah_ale@yahoo.com Abstrak Kebakaran hutan/lahan di wilayah Indonesia (khususnya di P. Sumatra dan P. Kalimantan) yang terjadi setiap tahun antara lain diakibatkan oleh meningkatnya tekanan sosial-ekonomi dan perubahan penggunaan lahan yang selalu meningkat. Sistem peringatan dini bahaya kebakaran hutan/lahan yang sedang dikembangkan di Indonesia mengadopsi Sistem Peringkat Bahaya Kebakaran (SPBK) Canada. Salah satu komponen utama dari SPBK tersebut adalah sistem Indeks Cuaca Kebakaran (re Weather Index, FWI). Sistem FWI terdiri dari tiga kode kelembaban, yaitu ne Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), dan Drought Code (DC), serta tiga indeks perilaku kebakaran, yaitu Initial Spread Index (ISI), Buildup Index (BUI), dan re Weather Index (FWI). Kode-kode FWI asanya dihitung dari titik-titik pengamatan (umumnya stasiun cuaca) dengan masukan parameter suhu udara, kelembaban udara, kecepatan angin, dan curah hujan. Pada daerah-daerah dimana lokasi stasiun cuaca tidak terjangkau, maka data satelit penginderaan jauh dapat digunakan untuk menyediakan informasi spasial yang leh homogen. Tujuan dari penelitian ini adalah melakukan pengkajian pendugaan unsur cuaca dengan data Moderate Resolution Imaging Spectroradiometer (MODIS) Satelit Terra/Aqua yang kemudian dapat digunakan dalam pembuatan peringkatperingkat bahaya kebakaran hutan/lahan. Dalam penelitian ini metode regresi berganda (multiple regression) digunakan untuk menduga suhu udara dan kelembaban relatif. Input yang digunakan dalam pendugaan suhu udara dan kelembaban relatif adalah suhu permukaan dan Normalized Difference Vegetation Index (NDVI) dari data MODIS. Input lain adalah ketinggian tempat dan letak lintang. Selanjutnya, dalam penelitian ini didapatkan tiga model regresi berganda untuk menduga suhu udara dan tiga model regresi berganda untuk menduga kelembaban relatif. Tiga model persamaan untuk menduga suhu udara adalah model regresi linear berganda dengan R = 0.668, SE=1.58, model regresi berganda kuadratik dengan R = 0.70, SE=1.53, model regresi berganda komnasi polinomial dengan R = 0.69, SE=1.58. Untuk pendugaan kelembaban relatif memiliki tiga model persamaan yaitu model regresi linear berganda dengan R = 0.835, SE=5.03, model regresi berganda kuadratik dengan R = 0.856, SE=4.86, model regresi berganda komnasi polinomial dengan R = 0.68, SE=6.97. Secara umum, suhu udara yang dihasilkan dari ketiga model di atas menunjukkan masih dalam kisaran suhu pengukuran, namun polanya tidak mengikuti data observasi. Untuk kelembaban udara hasil dari ketiga model memiliki kisaran nilai yang sama dengan data pengukuran lapangan dan memiliki pola yang mirip dengan data pengukuran. Kata kunci : MODIS, Suhu Permukaan, NDVI, Suhu Udara, Kelembaban Relatif 1. PENDAHULUAN Sistem peringatan dini bahaya kebakaran hutan/lahan yang sedang dikembangkan di Indonesia mengadopsi Sistem Peringkat Bahaya Kebakaran (SPBK) Canada. SPBK tersebut adalah sistem Indeks Cuaca Kebakaran (re Weather Index, FWI). Sistem FWI terdiri dari tiga kode kelembaban, yaitu ne Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), dan Drought Code (DC), serta tiga indeks perilaku kebakaran Initial Spread Index (ISI), Buildup Index (BUI), dan re Weather Index (FWI). Kode-kode FWI asanya dihitung dari titik-titik pengamatan (umumnya stasiun cuaca) dengan masukan Surabaya, 14 15 September 005 MBA - 8

parameter suhu udara, kelembaban udara, kecepatan angin, dan curah hujan. Seperti disebutkan di atas, bahwa data stasiun klimatologi/meteorologi yang digunakan untuk menghitung kode kode FWI masih berbasiskan titik (point base), untuk menjadikan suatu informasi spasial (keruangan) memerlukan teknik interpolasi. Hal ini dapat menimbulkan kesalahan terutama apala jarak titik stasiun sangat berjauhan dan tidak mewakili topografi wilayah (Narasimhan, et al. (00). Berbeda teknik interpolasi yang digunakan, akan menghasilkan informasi spasial yang berbeda pula. Teknik interpolasi memerlukan jaringan stasiun klimatologi/meteorologi yang cukup mewakili suatu wilayah. Untuk suatu wilayah yang luas seperti Sumatera maupun Kalimantan diperlukan jaringan stasiun klimatologi/meteorologi yang terdistribusi homogen, sehingga dapat mewakili seluruh wilayah di Sumatera maupun Kalimantan. Perkembangan metode yang dapat menggambarkan kondisi spasial adalah penginderaan jauh. Penggunaan data penginderaan jauh memiliki keunggulan dibandingkan dengan data lain untuk suatu lahan yang luas, pengukuran yang sedikit dan ketersediaan data historis yang baik. Unggul untuk lahan yang luas berarti bahwa data penginderaan jauh dapat mencakup suatu lokasi yang luas. Data LANDSAT TM dapat mencakup 185 x 185 km dalam satu foto, sedangkan data NOAA AVHRR dapat mencakup luasan 800 x 800 km, atau hampir ¾ luas wilayah Indonesia. Hal ini berarti jika dibandingkan dengan pengukuran manual dengan alat-alat cuaca yang hanya mencakup satu lokasi atau titik, maka data penginderaan jauh leh efektif untuk suatu luasan yang besar. Beberapa penelitian untuk menduga unsur cuaca, seperti curah hujan, suhu udara, kelembaban udara dan kecepatan angin telah banyak dilakukan. Curah hujan yang diduga dari data satelit merupakan curah hujan sesaat, yaitu pada waktu dimana data citra tersebut diaml. Salah satu teknik untuk menggambarkan data curah hujan harian adalah dengan menggabungkan beberapa data satelit. Teknik ini telah dilakukan oleh National Center for Environmental Programme (NCEP) dan informasinya tersedia setiap hari dalam website NCEP. Data kecepatan angin yang diperoleh dari data MODIS saat ini masih memerlukan penelitian leh lanjut. Fokus penelitian ini adalah menduga suhu udara dan kelembaban relatif (Relative Humidity, RH) dengan data penginderaan jauh. Han, et al. (003) telah melakukan pendugaan suhu udara dan kelembaban relatif dari data NOAA AVHRR. Beberapa metode lain juga telah dikembangkan menggunakan konsep termodinamika oleh Sun et al. (005) dan Dong (004) dengan mengembangkan teknik jaringan saraf tiruan (neural network). Input yang digunakan dalam penelitian di atas adalah suhu permukaan, NDVI, air mampu curah, letak lintang, ketinggian tempat, waktu setempat, dan tanggal. Beberapa metode di atas menghasilkan pendugaan yang baik jika dibandingkan dengan data pengukuran di lapangan. Tujuan penelitian ini adalah menduga suhu udara dan kelembaban relatif untuk mendukung SPBK hutan/lahan dengan menggunakan teknik regresi berganda seperti yang dikembangkan oleh Han, et al. (003).. METODOLOGI PENELITIAN SPBK dengan menggunakan sistem re Weather Index (FWI) telah dikembangkan oleh pemerintah Canada sejak tahun 1970. Gambar 1 adalah data masukan dan informasi keluaran dari sistem FWI. Pada Gambar 1 terlihat bahwa input dari kodekode sistem Fwi adalah suhu udara, kelembaban relatif, kecepatan angin, dan curah hujan. Penelitian ini akan menduga dua unsur cuaca yang dapat digunakan sebagai input dalam perhitungan sistem FWI. Unsur tersebut adalah suhu udara dan kelembaban relatif. Gambar 1. Struktur sistem FWI Surabaya, 14 15 September 005 MBA - 9

Untuk melakukan pendugaan suhu udara dan kelembaban relatif diperlukan bahan dan peralatan sebagai berikut: 1. Data MODIS Terra/Aqua Level NDVI dan kanal 31 dan 3 untuk menghitung suhu permukaan (periode tanggal 4 Agustus 004 8 Agustus 004). Data suhu udara dan kelembaban relatif dari stasiun BMG (3 stasiun di Sumatera dan 1 stasiun di Kalimantan) 3. Data ketinggian (DEM) Metode yang digunakan dalam penelitian ini adalah dengan menggunakan regresi berganda (multiple regression) sebagai berikut: Y = b 0 + n i= 1 b i F dimana, Y = Suhu udara atau kelembaban relatif dugaan b 0 F i = konstanta = koefisien regresi i = variabel bebas yang merupakan komnasi dari beberapa variabel input Dalam penelitian ini, input yang digunakan dalam menduga suhu udara dan kelembaban relatif adalah suhu permukaan, NDVI, ketinggian, letak lintang. Untuk menduga kelembaban, inputnya ditambah dengan suhu udara sebagai parameter pendugaan. Suhu permukaan diperoleh dengan persamaan Ulivieri et al. (1994) dengan resolusi 1000 m dengan menggunakan kanal 31 dan 3 MODIS, NDVI diperoleh dari data MODIS level dengan resolusi 50 m, data DEM dari data SRTM dengan resolusi 90 m. Komnasi persamaan variabel bebasnya adalah dengan metode linear berganda, kuadratik, dan komnasi polinomial yang merujuk pada persamaan Han, et al (004). Keluaran modelmodel tersebut kemudian dibandingkan dengan observasi dari data stasiun Badan Meteorologi dan Geofisika (BMG) yang terdiri dari 3 stasiun di Sumatera dan 1 stasiun di Kalimantan. 3. HASIL DAN PEMBAHASAN 3.1. Hasil Persamaan Model Penelitian ini menghasilkan model pendugaan suhu udara dan kelembaban relatif dengan metode regresi berganda dengan tiga komnasi persamaan, yaitu linear, kuadratik, dan polinomial. Untuk persamaan polinomial, komnasi variabel bebas mengikuti yang dilakukan oleh Han, et al. (003), kecuali parameter tanggal, waktu setempat, dan air mampu curah. Data yang digunakan tidak cukup memadai untuk memasukkan parameter tanggal dan waktu setempat, sedang untuk menduga air mampu curah model penurunan dengan MODIS masih dikembangkan. Jumlah variabel bebas untuk menduga suhu udara dan kelembaban relatif berkurang menjadi 11 variable bebas dari 31 variabel bebas untuk menduga suhu udara dan 8 variabel bebas untuk menduga kelembaban relatif. Tabel 1 dan merupakan perolehan konstanta b 0, koefisien regresi, b i, serta koefisien determinasi (R ) dan standar error (SE) dari model pendugaan suhu udara dan kelembaban relatif. Tabel 1. Model pendugaan suhu udara Model Variabel, Koefisien, SE Linear b 0 = 30.5 0.668 1.58 X 1 b 1 = 0.03 X b =-0.540 X 3 b 3 =-5.190 X 4 b 4 = -0.049 Kuadratik b 0 = 5.1 0.70 1.53 X 1 b 1 = 0.38 X b = 3.39 X 3 b 3 = -1.5 X 4 b 4 = -0.08 X 1 b 5 = -0.007 X b 6 = -4.9 X 3 b 7 =-.08 X 4 b 8 = 0.08 Model Variabel, Koefisien, SE Polinomial b 0 b 0 = 7.3 0.69 1.58 komnasi 3 X 1 b 1 = - 0.00009 X 1 X b = 0.0044 X 1 X 4 b 3 = - 0.0001 R R Surabaya, 14 15 September 005 MBA - 10

X X 1 b 4 = -0.113 X 3 X 1 b 5 = - 0.136 X 1 b 6 = 0.3 X 3 X b 7 = 0.85 X 4 X b 8 = 0.01566 X b 9 = -1.57 X 4 X 3 b 10 = 0.065 X 3 b 11 = -1.95 Tabel. Model pendugaan kelembaban relatif Model Varia bel, Koefisien, R SE Linear b 0 =171.8 0.83 5.03 X 1 b 1 =0.0196 X b =-1.035 X 3 b 3 =3.993 X 4 b 4 =0.3 X 5 b 5 =-3.55 Kuadratik b 0 =159.48 0.85 4.85 X 1 b 1 =-.51 X b =-8.3 X 3 b 3 =7.5 X 4 b 4 =0.496 X 5 b 5 =-0.568 X 1 b 6 =0.05 X b 7 =13.33 X 3 b 8 =-.47 X 4 b 9 =0.0985 X5 b 10 =-0.0553 Polinomial b 0 =57.07 0.68 6.9 komnasi 3 X 1 b 1 =0.000403 X X 3 X 1 b =1.03685 X X 5 X 1 b 3 =-0.073 X X 3 b 4 =4.889 X b 5 =0.94 X 3 X b 6 =-37.65 X 4 X b 7 =-0.01658 X b 8 =40.7466 X 3 X 5 b 9 =6.6 X 1 X 3 b 10 =-0.45 X 5 X 4 b 11 =0.000504 Keterangan : X 1 = suhu permukaan ( C), X = NDVI (- 1<x<1), X 3 = ketinggian tempat (km), X 4 = letak lintang (desimal) (N = +, S = -), X 5 = suhu udara ( C), R = koefisien determinasi, SE = standar error 3.. Model vs Observasi Perbandingan suhu udara dan kelembaban relatif hasil model dibandingkan dengan data pengukuran BMG yang meliputi wilayah Sumatera dan Kalimantan, yang terdiri dari 3 stasiun di Suhu Udara ( C) 35.00 34.00 33.00 3.00 31.00 30.00 9.00 8.00 Ta Ta** Ta* Ta*** 7.00 1 4 7 10 13 16 19 5 8 31 34 37 40 43 46 49 5 55 58 61 Data ke - Gambar. Grafik perbandingan suhu udara dugaan dari beberapa model dengan suhu udara pengukuran Sumatera dan 1 Stasiun di Kalimantan. Hasil pendugaan suhu udara dengan model regresi berganda linear (Ta*), kuadratik (Ta**), dan polinomial (Ta***) menunjukkan masih dalam kisaran nilai suhu udara jika dibandingkan dengan hasil pengukuran di stasiun BMG. Namun pola hasil suhu udara dugaan dengan observasi masih terlalu jauh, sehingga model masih belum mengikuti pola suhu pengukuran. Gambar merupakan perbandingan suhu udara dugaan dengan suhu udara hasil pengukuran (Ta). Demikian juga dengan perbandingan hasil pendugaan kelembaban relatif dengan kelembaban relatif hasil pengukuran menunjukkan kisaran nilai yang sama dan memiliki pola yang mirip. Hal ini dimungkinkan karena nilai koefisien determinasi (R ) model pendugaan RH leh tinggi dibandingkan dengan model pendugaan suhu udara. Gambar 3 merupakan grafik perbandingan antara kelembaban relatif hasil model regresi linear berganda (RH*), kuadratik (RH**), dan polinomial (RH***) dengan kelembaban relatif hasil pengukuran (RH). Kelembaban Relatif (%) 80.00 75.00 70.00 65.00 60.00 55.00 50.00 45.00 40.00 35.00 RH RH** RH* RH*** 30.00 1 4 7 10 13 16 19 5 8 31 34 37 40 43 46 49 5 55 58 61 Data ke- Gambar. Grafik perbandingan kelembaban relatif dugaan dari beberapa model dengan kelembaban relatif pengukuran Surabaya, 14 15 September 005 MBA - 11

4. KESIMPULAN DAN SARAN Dalam penelitian ini didapatkan tiga model regresi berganda untuk menduga suhu udara dan tiga model regresi berganda untuk menduga kelembaban relatif. Tiga model persamaan untuk menduga suhu udara adalah model regresi linear berganda dengan R = 0.668, SE=1.58, model regresi berganda kuadratik dengan R = 0.70, SE=1.53, model regresi berganda komnasi polinomial dengan R = 0.69, SE=1.58. Untuk pendugaan kelembaban relatif memiliki tiga model persamaan yaitu model regresi linear berganda dengan R = 0.835, SE=5.03, model regresi berganda kuadratik dengan R = 0.856, SE=4.86, model regresi berganda komnasi polinomial dengan R = 0.68, SE=6.97. Secara umum, suhu udara yang dihasilkan dari ketiga model di atas menunjukkan masih dalam kisaran suhu pengukuran, namun polanya tidak mengikuti data observasi. Untuk kelembaban udara hasil dari ketiga model memiliki kisaran nilai yang sama dengan data pengukuran lapangan dan memiliki pola yang mirip dengan data pengukuran. retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol. 80, 37 48 5. DAFTAR PUSTAKA Dong, J.J, 004. Evaluation of thermal-water stress of forest in southern Québec from satellite images. Université Laval FACULTÉ DE FORESTRIE ET DE GÉOMATIQUE. Doctorat en sciences géomatiques Han, K.S, Viau,A.A. and Anctil, F, 003. Highresolution forest fire weather index computations using satellite remote sensing. Canadian. Journal For. Remote Sensing. Vol. 33. Narasimhan, B and Srinivasan, R, 00. Determination of Regional Scale Evapotranspiration of Texas from NOAA-AVHRR Satellite. nal Report Submitted to Texas Water Resources Institute. March, 5, Texas. USA Ulivieri, C, Castronouvo, M. M., Francioni, R., and Cardillo, A, 1994. A split-window algorithm for estimating land surface temperature from satellites. Advances in Space Research, Vol. 14, No. 3, pp. 59-65 Sun, Y.-J. Wang, J.-F. Zhang, R.-H. Gillies, R. R. Xue, Y. and Bo, Y.-C, 005. Air temperature Surabaya, 14 15 September 005 MBA - 1