Materi-2 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

dokumen-dokumen yang mirip
KONSEP AKUISISI DATA. Rudi Susanto

Sistem Pengukuran Data Akuisisi

KONSEP AKUISISI DATA DAN KONVERSI

BAB VI INSTRUMEN PENGKONDISI SINYAL

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

BAB II DASAR TEORI. sebagian besar masalahnya timbul dikarenakan interface sub-part yang berbeda.

ADC dan DAC Rudi Susanto

DAC - ADC Digital to Analog Converter Analog to Digital Converter

Gambar 3. 1 Diagram blok system digital

ANALOG SIGNAL PROCESSING USING OPERASIONAL AMPLIFIERS

DASAR-DASAR AKUISISI DATA

ANALISA ADC 0804 dan DAC 0808 MENGGUNAKAN MODUL SISTEM AKUISISI DATA PADA PRAKTIKUM INSTRUMENTASI ELEKTRONIKA

BAHAN AJAR SISTEM DIGITAL

ADC ( Analog To Digital Converter Converter konversi analog ke digital ADC (Analog To Digital Convertion) Analog To Digital Converter (ADC)

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012)

ADC-DAC 28 IN-3 IN IN-4 IN IN-5 IN IN-6 ADD-A 5 24 IN-7 ADD-B 6 22 EOC ALE msb ENABLE CLOCK

BAB III PERANCANGAN ALAT

BAB II DASAR TEORI. Sistem pengukur pada umumnya terbentuk atas 3 bagian, yaitu:

BAB I PENDAHULUAN. 1.1 Latar Belakang

Elektronika Lanjut. Sensor Digital. Elektronika Lanjut Missa Lamsani Hal 1

BAB III PERANCANGAN DAN REALISASI SISTEM. Dalam tugas akhir ini dirancang sebuah modulator BPSK dengan bit rate

No Output LM 35 (Volt) Termometer Analog ( 0 C) Error ( 0 C) 1 0, , ,27 26,5 0,5 4 0,28 27,5 0,5 5 0, ,

TUJUAN : Setelah mempelajari bab ini mahasiswa diharapkan mampu : Menjelaskan pengertian dasar dari DAC dan ADC secara prinsip

Thermometer digital dengan DST-R8C dan OP-01 sebagai rangkaian pengkondisi

INSTRUMENTASI INDUSTRI (NEKA421)

Pertemuan ke-5 Sensor : Bagian 1. Afif Rakhman, S.Si., M.T. Drs. Suparwoto, M.Si. Geofisika - UGM

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

Investigasi Terhadap Kemampuan 2 Tipe ADC

BAB IV PERANCANGAN DAN IMPLEMENTASI SISTEM

Elektronika Lanjut. Pengkondisian Sinyal. Elektronika Lanjut Missa Lamsani Hal 1

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

Pengkondisian Sinyal. Rudi Susanto

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM

BAB 2 TINJAUAN PUSTAKA

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER)

PENGEMBANGAN SISTEM AKUISISI DATA PADA ALAT UJI SUSPENSI MODEL SEPEREMPAT KENDARAAN

BAB II LANDASAN TEORI

$'&$QDORJWR'LJLWDO&RQYHUWLRQ

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015.

II. TINJAUAN PUSTAKA. Akuisisi data merupakan sistem yang digunakan untuk mengambil,

ANALOG TO DIGITAL CONVERTER

FISIKA 1 PENGUKURAN :: BESARAN DAN SATUAN

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

BAB I PENDAHULUAN. resistor, kapasitor ataupun op-amp untuk menghasilkan rangkaian filter. Filter analog

BAB II TEORI DASAR SISTEM C-V METER PENGUKUR KARAKTERISTIK KAPASITANSI-TEGANGAN

BAB II PENCUPLIKAN DAN KUANTISASI

BAB 3 PERANCANGAN SISTEM

BAB III KEGIATAN PENELITIAN TERAPAN

BAB II DASAR TEORI. Modulasi adalah proses yang dilakukan pada sisi pemancar untuk. memperoleh transmisi yang efisien dan handal.

BAB II ANALOG SIGNAL CONDITIONING

BAB III PERANCANGAN SISTEM

BAB IV PENGUJIAN ALAT DAN ANALISIS DATA Kalibrasi IDAC sebagai pembangkit tegangan bias

Materi-3 SENSOR DAN TRANSDUSER (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

Penguat Oprasional FE UDINUS

BAB III PERANCANGAN ALAT. Pada perancangan alat untuk sistem demodulasi yang dirancang, terdiri dari

BAB IV PENGUJIAN DAN ANALISA SISTEM. Bab ini menjelaskan tentang pengujian program yang telah direalisasi.

BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk

Gambar 1.6. Diagram Blok Sistem Pengaturan Digital

KISI KISI SOAL UKA TEKNIK ELEKTRONIKA (532)

BAB I PENDAHULUAN. PSD Bab I Pendahuluan 1

SINYAL & RANGKAIAN DIGITAL

ADC (Analog to Digital Converter)

KONVERTER PERTEMUAN 13. Sasaran Pertemuan 13

2.1. Filter. Gambar 1. Bagian dasar konverter analog ke digital

BAB II LANDASAN TEORI

KUIS Matakuliah Mikrokontroler Dosen Pengampu: I Nyoman Kusuma Wardana, M.Sc.

TEORI ADC (ANALOG TO DIGITAL CONVERTER)

1.1 DEFINISI PROSES KONTROL

BAB III PERENCANAAN. Pada bab ini akan dijelaskan langkah-langkah yang digunakan dalam

III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011

BAB III METODE PENELITIAN

MODUL PRAKTIKUM RANGKAIAN ELEKRONIKA Bagian II

DIGITAL TO ANALOG CONVERTER

PERCOBAAN DAC TANGGA R-2R ( DAC 0808 )

Gambar 1 UVTRON R2868. Gambar 2 Grafik respon UVTRON

III. METODOLOGI PENELITIAN. bertempat di Laboratorium Elektronika Jurusan Teknik Elektro Universitas

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

BAB 4 HASIL UJI DAN ANALISA

BAB III PERANCANGAN Bahan dan Peralatan

BAB III PERANCANGAN SISTEM

Gambar 3.1. Diagram alir metodologi perancangan

Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

BAB III METODOLOGI PENELITIAN

TIN310 - Otomasi Sistem Produksi. h t t p : / / t a u f i q u r r a c h m a n. w e b l o g. e s a u n g g u l. a c. i d

digunakan sebuah solenoid valve. Solenoid valve digunakan untuk pembuangan air

BAB II DASAR TEORI. AVR(Alf and Vegard s Risc processor) ATMega32 merupakan 8 bit mikrokontroler berteknologi RISC (Reduce Instruction Set Computer).

BAB 3 PERANCANGAN DAN PEMBUATAN ALAT

BAB II DASAR TEORI. Signal Conditioning. Gambar 2.1 Diagram blok sistem pengukuran (buku measurement sistem Bolton)

TUGAS AKHIR PENDINGIN CPU OTOMATIS BERBASIS PC (PERSONAL COMPUTER)

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB 4 IMPLEMENTASI DAN EVALUASI. selanjutnya perancangan tersebut diimplementasikan ke dalam bentuk yang nyata

BAB I PENDAHULUAN. menggunakan rangkaian elektronika yang terdiri dari komponen-komponen seperti

BAB IV PENGUJIAN SISTEM DAN ANALISIS HASIL KARAKTERISASI LED

BAB III METODE PENELITIAN

BAB II DASAR TEORI. Gambar 2.1.(a). Blok Diagram Kelas D dengan Dua Aras Keluaran. (b). Blok Diagram Kelas D dengan Tiga Aras Keluaran.

III. METODE PENELITIAN. Penelitian ini dilaksanakan dari bulan Maret - Mei 2015 dan tempat

BABI PENDAHULUAN. Pada dunia elektronika dibutuhkan berbagai macam alat ukur dan analisa.

Perancangan Sistim Elektronika Analog

BAB I PENGENALAN KONSEP DIGITAL

Transkripsi:

Materi-2 SENSOR DAN TRANSDUSER 52150802 (2 SKS / TEORI) SEMESTER 106 TA 2016/2017

KONSEP AKUISISI DATA DAN KONVERSI

PENGERTIAN Akuisisi data adalah pengukuran sinyal elektrik dari transduser dan peralatan pengukuran kemudian memasukkannya ke komputer untuk diproses [Nikolay Kirianaki et all, 2002]. Akuisisi juga dapat diartikan sebagai suatu cara untuk memperoleh informasi tentang sistem atau proses. Parameter informasi seperti temperatur, suhu, tekanan, atau aliran oleh sensor informasi tersebut diubah menjadi sinyal listrik.

Akuisisi data merupakan pengambilan informasi dari dunia nyata yang kemudian informasi tersebut diolah oleh komputer. Akuisisi data umumnya melibatkan proses pengambilan sinyal dan mengolahnya untuk memperoleh informasi. Komponen dari sistem akuisisi data meliputi sensor yang mengubah suatu parameter pengukuran menjadi sinyal listrik yang kemudian diterima oleh perangkat keras akuisisi data. Data yang diperoleh biasanya ditampilkan, dianalisis dan disimpan dalam PC.

Bagian-bagian Sistem Akuisisi Data Bagian-bagian dari sistem akuisisi data lengkap antara lain terdiri atas transduser, pengkondisi sinyal, perangkat keras akuisisi data, personal computer (PC), dan perangkat lunak akuisisi data [National Instruments, 2002].

Software pada Sistem Akuisisi Data Aplikasi akuisisi Data dikendalikan oleh program software yang dikembangkan dengan menggunakan bahasa pemrograman berbagai tujuan umum seperti BASIC, C, Fortran, Java, Lisp, Pascal. Perangkat lunak khusus yang digunakan untuk membangun sistem data akuisisi skala besar termasuk lingkungan pemrograman grafik termasuk logika tangga, Visual C + +, Visual Basic, MATLAB dan LabVIEW.

DASAR-DASAR AKUISISI DATA Elemen-elemen dasar dari sistem akuisisi data berbasis komputer (PC), terdiri dari : Sebuah komputer PC; Transduser; => data Acquition Hardware; => Analysis Hardware => signal conditioning); => Software.

Komputer Personal (PC) Komputer yang digunakan dapat mempengaruhi kecepatan akuisisi data Dan mempengaruhi unjuk-kerja dari sistem akuisisi data secara keseluruhan. Faktor yang mempengaruhi jumlah data yang dapat disimpan dan kecepatan penyimpanan adalah kapasitas dan waktu akses hard disk. Aplikasi-aplikasi akuisisi data secara real-time (waktu-nyata) membutuhkan prosesor yang cepat sehingga perlu prosesor khusus untuk pemrosesan sinyal digital (DSP Digital Signal Processor).

Transduser Transduser mendeteksi fenomena fisik (suhu, tekanan, cahaya, dan lain-lain) kemudian mengubahnya menjadi sinyal-sinyal listrik. Misalnya termokopel, RTD (Resistive Temperature Detectors), termistor, flowmeter dan lain-lain. Pada masing-masing kasus, sinyal listrik yang dihasilkan sebanding dengan parameter fisik yang diamati.

Pengkondisi Sinyal Sinyal-sinyal listrik yang dihasilkan oleh transduser harus dikonversi ke dalam bentuk yang dikenali oleh papan akuisisi data yang dipakai. Tugas pengkondisi sinyal : penguatan (amplification). Misalnya sinyal-sinyal lemah yang berasal dari termokopel, sebaiknya dikuatkan untuk meningkatkan resolusi pengukuran. Dengan menempatkan penguat cukup dekat dengan transduser, maka interferensi atau gangguan yang timbul pada kabel penghubung antara transduser dengan komputer dapat diminimalkan.

Tugas lain dari pengkondisi sinyal adalah melakukan linearisasi. Beberapa alat pengkondisi sinyal dapat melakukan penguatan sekaligus linearisasi untuk berbagai macam tipe transduser. linearisasinya menggunakan perangkat lunak (program). Aplikasi umum dari pengkondisi sinyal lainnya adalah melakukan isolasi sinyal dari transduser terhadap komputer untuk keamanan. Sistem yang diamati bisa mengandung perubahanperubahan tegangan-tinggi yang dapat merusak komputer atau bahkan melukai operatornya. Selain itu pengkondisi sinyal bisa juga melakukan penapisan sinyal (pemfilteran) : BPF, HPF, LPF

PERANGKAT KERAS AKUISISI DATA (DAQ) Masukan Analog Spesifikasi papan perangkat keras akuisisi data meliputi jumlah kanal, Laju pencuplikan, resolusi, jangkauan, ketepatan (akurasi), derau dan ketidak-linearan, Yang semuanya berpengaruh pada kualitas sinyal yang terdigitisasi (terakuisisi secara digital).

Jumlah kanal masukan analog menentukan berapa tranduser yang dapat ditangani. Laju pencuplikan (dalam Hz) menentukan seberapa banyak nilai cuplikan yang diperoleh. Laju pencuplikan yang tinggi akan menghasilkan data yang lebih banyak dan akan menghasilkan penyajian-ulang sinyal asli yang lebih baik.

Pemultipleksan merupakan cara yang sering digunakan untuk menambah jumlah kanal masukan ke ADC (papan akuisisi data). ADC yang bersangkutan mencuplik sebuah kanal, kemudian berganti ke kanal berikutnya, kemudian mencuplik kanal tersebut, berganti lagi ke kanal berikutnya dan seterusnya. Karena menggunakan sebuah ADC untuk mencuplik beberapa kanal, maka laju efektif pencuplikan pada masing-masing kanal berbanding terbalik dengan jumlah kanal yang dicuplik.

Multiplekser Multiplekser adalah suatu peranti yang mampu menyalurkan beberapa jalur data ke satu jalur luaran. Multiplekser mempunyai satu atau lebih sinyal masukan yang terhubung pada masukannya. Pemilihan saluran masukan dilakukan oleh sinyal kontrol. Suatu multiplekser dengan 2 n saluran masukan memerlukan n sinyal kontrol.

Demultiplekser Demultiplekser adalah suatu rangkaian yang mendistribusikan satu masukan ke lebih dari satu luaran. Demultiplekser disebut juga data distributor. Pemilihan saluran luaran dilakukan oleh sinyal kontrol. Suatu demultiplekser dengan n sinyal kontrol akan memiliki 2 n saluran luaran.

Misalnya sebuah papan akuisisi data mampu mencuplik dengan laju 100Kcuplik/detik pada 10 kanal, maka masing-masing kanal secara efektif memiliki laju pencuplikan : Dengan kata lain laju pencuplikan menurun seiring dengan bertambahnya kanal yang dimultipleks.

Resolusi (dalam satuan bit) adalah istilah untuk jumlah atau lebar bit yang digunakan oleh ADC dalam penyajian-ulang sinyal analog. Semakin besar resolusinya, semakin besar pembagi jangkauan tegangan masukan sehingga semakin kecil perubahan tegangan yang bisa dideteksi.

Konverter mempunyai resolusi 3 bit sehingga pembagian jangkauan sinyal analog menjadi 2 3 atau 8 bagian. Masing-masing bagian disajikan dalam kode-kode biner antara 000 hingga 111. Dengan meningkatkan resolusi hinggga 16 bit, misalnya, maka jumlah kode-kode bilangan ADC meningkat dari 8 menjadi 65.536. Dengan demikian, penyajian-ulang digitalnya lebih akurat dibanding 3-bit.

Jangkauan berkaitan dengan tegangan minimum dan maksimum yang bisa ditangani oleh ADC yang bersangkutan. Papan akuisisi data yang baik memiliki jangkauan yang bisa dipilih sedemikian rupa hingga mampu dikonfigurasi untuk menangani berbagai macam jangkauan tegangan yang berbeda-beda.

Spesifikasi jangkauan, resolusi dan penguatan (gain) pada papan akuisisi data menentukan seberapa kecil perubahan tegangan yang mampu dideteksi. Perubahan tegangan ini menyatakan 1 LSB (Least Signifincant Bit ) pada nilai digital dan sering dinamakan sebagai Lebar Kode (code width). Lebar kode yang ideal ditentukan menggunakan persamaan berikut :

Jika diketahui jangkauan tegangannya antara 0 sampai dengan 5 V dan penguatan 500 dan resolusi 16 bit, maka diperoleh : Lebar_kode_ideal = 5 / (500 x 2 16 ) = 153 nanovolt

Pada gambar 5.2 ditunjukkan sebuah grafik gelombang sinus serta grafik digital yang diperoleh menggunakan ADC 3-bit.

Keluaran Analog Rangkaian keluaran analog dibutuhkan untuk menstimulus suatu proses atau unit yang diuji pada sistem akuisisi data. Beberapa spesifikasi DAC yang menentukan kualitas sinyal keluaran yang dihasilkan adalah settling time, slew rate dan resolusi. Settling time dan slew rate bersama-sama menentukan seberapa cepat DAC dapat mengubah aras sinyal keluaran. Settling time adalah waktu yang dibutuhkan oleh keluaran agar stabil dalam durasi tertentu. Slew rate adalah laju perubahan maksimum agar DAC bisa menghasilkan keluaran. Dengan demikian, settling time yang kecil da slew rate yang besar dapat menghasilkan sinyal-sinyal dengan frekuensi tinggi karena hanya dibutuhkan waktu sebentar untuk mengubah keluaran ke aras tegangan baru secara akurat.

Resolusi keluaran mirip dengan resolusi masukan. Yaitu jumlah bit kode digital yang (nantinya) akan menghasilkan keluaran analog. Semakin banyak jumlah bit resolusinya semakin besar kenaikan tegangan nya (semakin kecil perubahan tegangan yang mampu dideteksi), sehingga dimungkinkan untuk menghasilkan perubahan sinyal yang halus.

DAC (DIGITAL TO ANALOG CONVERTER) Rangkaian pada gambar 5.5, diambil dari data sheet DAC 0832 yang merupakan suatu pendekatan dengan melakukan konversi dari data-data digital menjadi analog (tegangan) menggunakan rangkaian tangga R 2R (R 2R ladder). Nilai dari R dan Rfb sekitar 15 K ohm sehingga 2Rnya sekitar 30 Kohm.

Logika "1" dan "0" mengindikasikan posisi-posisi saklar MOSFET yang ada dalam konverter. Saklar-saklar tersebut akan terhubung pada "1" jika bit yang terkait dalam kondisi ON dan akan terhubung "0" jika OFF. Suatu saklar yang terhubung ke posisi "1 akan meneruskan arus dari Vref ke loutl, sedangkan saklar yang terhubung ke posisi "0 akan meneruskan arus dari Vref ke Iout2, masing-masing melalui resistor-resistor yang terkait.

INGAT materi Inverting OP-AMP

Contoh aplikasi DAC : Jika digunakan tegangan referensi -5 volt, jika hanya bit MSB saja yang ON atau data digital 10000000 (gambar 5.5), maka satu-satunya resistor yang terhubungkan pada loutl adalah 2R yang ada di paling kiri. maka (2R = 30KB dan Rfb = 15K serta Vref = -5V) diperoleh rangkaian gambar 5.8.

Secara teori (berdasar rumus datasheet)

Jika data digital 01000000 ke data Analog

Sensor adalah peralatan yang digunakan untuk merubah suatu besaran fisik menjadi besaran listrik sehingga dapat dianalisa dengan rangkaian listrik tertentu. Sensor merupakan jenis transducer yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan / arus listrik.

Tranduser adalah alat yang dapat mengubah energi dari satu bentuk ke bentuk yang lain. Tranduser dapat dibagi menjadi dua klas transduser input dan transduser output. Transduser input listrik mengubah mengubah energi non listrik, misalnya suara atau sinar menjadi tenaga listrik. tenaga output-listrik bekerja pada urutan yang sebaliknya. Transduser tersebut mengubah energi listrik pada bentuk energi non listrik.

Jalur R4 diputus dari rangkaian dan disederhanakan menjadi gambar berikut : Maka Rpengganti = 30K

Vi = ((30//30) /( 15+(30//30))) x -5 V = -2,5V Vo = -(Rf/ Ri) x Vi = 1,25 V

Aplikasi Rangkaian DAC0808

Rumus tegangan keluar (Vo)

ADC (ANALOG-TO-DIGITAL CONVERTER) yaitu suatu alat yang mampu untuk mengubah sinyal atau tegangan analog menjadi informasi digital yang nantinya akan diproses lebih lanjut dengan komputer. Perlu dicatat bahwa data-data digital yang dihasilkan ADC hanyalah merupakan pendekatan proporsional terhadap masukan analog. Hal ini karena tidak mungkin melakukan konversi secara sempurna berkaitan dengan kenyataan bahwa informasi digital ber-ubah dalam step-step, sedangkan analog berubahnya secara kontinyu. Misalnya ADC dengan resolusi 8 bit menghasilkan bilangan 0 sampai dengan 255 (256 bilangan dan 255 step), dengan demikian tidak mungkin menyajikan semua kemungkinan nilai-nilai analog. Jika sekarang resolusinya menjadi 20 bit maka akan terdapat 1.048.575 step, semakin banyak kemungkinan nilai-nilai analog yang bisa disajikan. Penting untuk diingat, bagaimanapun juga pada sebuah step terdapat tak terhingga kemungkinan nilai-nilai analog untuk sembarang ADC yang dapat diperoleh di dunia ini. Sehingga apa yang dibuat manusia (Human-made) tidak akan pernah bisa menyamai kondisi dunia-nyata.

Skema rangkaian ADC Kerja komparator menerima masukan analog dan menghasilkan suatu keluaran digital. Keluaran akan HIGH ("1") jika masukan analog arus + lebih besar dari arus -, selain itu keluarannya akan selalu LOW ("0").

Proses konversi ADC menggunakan pendekatan beruntun atau succesive approximation

Sebagai contoh akan dilakukan konversi tegangan 3,21 volt. Diasumsikan bahwa konverter analog ke digital menyediakan suatu tegangan dan komparator akan membandingkan tegangan. Konverter pendekatan beruntun yang sebenarnya menggunakan arus. Dari penjelasan tentang DAC diperoleh persamaan

Akhirnya tiga bit dipertahankan, menghasilkan 10100100 (=164 10 ) untuk menyajikan tegangan 3,21 volt.