STUDI PEMODELAN INELASTIK DAN EVALUASI KINERJA STRUKTUR GANDA DENGAN MIDAS/Gen TM

dokumen-dokumen yang mirip
PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

STUDI MENENTUKAN PARAMETER DAKTILITAS STRUKTUR GEDUNG TIDAK BERATURAN DENGAN ANALISIS PUSHOVER

ANALISIS DINAMIK STRUKTUR GEDUNG DUA TOWER YANG TERHUBUNG OLEH BALOK SKYBRIDGE

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

BAB 1 PENDAHULUAN. hingga tinggi, sehingga perencanaan struktur bangunan gedung tahan gempa

BAB 1 PENDAHULUAN. Indonesia merupakan negara kepulauan yang dilewati oleh pertemuan

BAB IV PERMODELAN STRUKTUR

BAB IV PEMODELAN STRUKTUR

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

II. KAJIAN LITERATUR. tahan gempa apabila memenuhi kriteria berikut: tanpa terjadinya kerusakan pada elemen struktural.

EVALUASI SENDI PLASTIS DENGAN ANALISIS PUSHOVER PADA GEDUNG TIDAK BERATURAN

BAB II TINJAUAN PUSTAKA

BAB III STUDI KASUS 3.1 UMUM

BAB V ANALISIS DAN PEMBAHASAN

ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN

ANALISIS DINAMIK RAGAM SPEKTRUM RESPONS GEDUNG TIDAK BERATURAN DENGAN MENGGUNAKAN SNI DAN ASCE 7-05

BAB I PENDAHULUAN 1.1 Latar Belakang

Pengaruh Core terhadap Kinerja Seismik Gedung Bertingkat

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

Desain Review Pier Flyover Bridge di Jakarta Jalur Tn.Abang Kp.Melayu

Konferensi Nasional Teknik Sipil 4 (KoNTekS 4) Sanur-Bali, 2-3 Juni 2010

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB III METODOLOGI PENELITIAN

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI

ANALISIS KINERJA STRUKTUR GEDUNG DENGAN COREWALL TUGAS AKHIR

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

TESIS EVALUASI KINERJA STRUKTUR GEDUNG BETON BERTULANG SISTEM GANDA DENGAN ANALISIS NONLINEAR STATIK DAN YIELD POINT SPECTRA O L E H

EVALUASI KINERJA GEDUNG BETON BERTULANG SISTEM GANDA DENGAN VARIASI GEOMETRI DINDING GESER PADA WILAYAH GEMPA KUAT

EVALUASI KINERJA BANGUNAN GEDUNG DPU WILAYAH KABUPATEN WONOGIRI DENGAN ANALISIS PUSHOVER

DAFTAR ISI Annisa Candra Wulan, 2016 Studi Kinerja Struktur Beton Bertulang dengan Analisis Pushover

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

KINERJA STRUKTUR RANGKA BETON BERTULANG DENGAN PERKUATAN BREISING BAJA TIPE X

BAB 1 PENDAHULUAN. yaitu di kepulauan Alor (11 Nov, skala 7.5), gempa Papua (26 Nov, skala 7.1),

STUDI KOMPARATIF PERANCANGAN STRUKTUR GEDUNG TAHAN GEMPA DENGAN SISTEM RANGKA GEDUNG BERDASARKAN TATA CARA ASCE 7-05 DAN SNI

ANALISIS PERILAKU STRUKTUR PELAT DATAR ( FLAT PLATE ) SEBAGAI STRUKTUR RANGKA TAHAN GEMPA TUGAS AKHIR

PENGARUH RASIO KEKAKUAN LATERAL STRUKTUR TERHADAP PERILAKU DINAMIS STRUKTUR RANGKA BETON BERTULANG BERTINGKAT RENDAH

KAJIAN DAKTILITAS STRUKTUR GEDUNG BETON BERTULANG DENGAN ANALISIS RIWAYAT WAKTU DAN ANALISIS BEBAN DORONG

ANALISA KINERJA STRUKTUR BETON BERTULANG DENGAN KOLOM YANG DIPERKUAT DENGAN LAPIS CARBON FIBER REINFORCED POLYMER (CFRP)

KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SESUAI SNI DITINJAU DARI KETENTUAN SENGKANG MINIMUM KOLOM

T I N J A U A N P U S T A K A

ANALISA PORTAL DENGAN DINDING TEMBOK PADA RUMAH TINGGAL SEDERHANA AKIBAT GEMPA

Keywords: structural systems, earthquake, frame, shear wall.

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

ANALISIS KINERJA STRUKTUR BETON BERTULANG DI WILAYAH GEMPA INDONESIA INTENSITAS TINGGI DENGAN KONDISI TANAH LUNAK

DAFTAR ISI. BAB II TINJAUAN PUSTAKA Umum Beban Gempa Menurut SNI 1726: Perkuatan Struktur Bresing...

EVALUASI KINERJA PORTAL BAJA 3 DIMENSI DENGAN PENGAKU LATERAL AKIBAT GEMPA KUAT BERDASARKAN PERFORMANCE BASED DESIGN

VISUALISASI PEMBELAJARAN DESAIN PENULANGAN DINDING GESER DENGAN BAHASA PEMROGRAMAN DELPHI

PERENCANAAN STRUKTUR GEDUNG RUMAH SUSUN SEDERHANA DAN SEWA ( RUSUNAWA ) MAUMERE DENGAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS

EVALUASI KINERJA INELASTIK STRUKTUR RANGKA BETON BERTULANG TERHADAP GEMPA DUA ARAH TUGAS AKHIR PESSY JUWITA

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

PERBANDINGAN PERILAKU ANTARA STRUKTUR RANGKA PEMIKUL MOMEN (SRPM) DAN STRUKTUR RANGKA BRESING KONSENTRIK (SRBK) TIPE X-2 LANTAI

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

STUDI KINERJA SENDI PLASTIS PADA GEDUNG DAKTAIL PARSIAL DENGAN ANALISIS BEBAN DORONG

BAB VI KESIMPULAN DAN SARAN. Perencanaan letak sendi plastis dengan menggunakan reduced beam

PENGARUH DOMINASI BEBAN GRAVITASI TERHADAP KONSEP STRONG COLUMN WEAK BEAM PADA STRUKTUR RANGKA PEMIKUL MOMEN KHUSUS

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

DESAIN GEDUNG BETON BERTULANG DENGAN PERENCANAAN BERBASIS PERPINDAHAN

PEMODELAN STRUKTUR RANGKA BAJA DENGAN BALOK BERLUBANG

BAB III METODOLOGI PENELITIAN

EVALUASI KINERJA SISTEM RANGKA PEMIKUL MOMEN KHUSUS SNI PADA STRUKTUR DENGAN GEMPA DOMINAN

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB IV ANALISIS & PEMBAHASAN

STUDI PERILAKU STRUKTUR BETON BERTULANG TERHADAP KINERJA BATAS AKIBAT PENGARUH TINGGI BANGUNAN DAN DIMENSI KOLOM BERDASARKAN SNI

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

BAB II DASAR TEORI. Pada bab ini akan dibahas sekilas tentang konsep Strength Based Design dan

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

PERENCANAAN GEDUNG PERPUSTAKAAN KOTA 4 LANTAI DENGAN PRINSIP DAKTAIL PARSIAL DI SURAKARTA (+BASEMENT 1 LANTAI)

BAB 1 PENDAHULUAN. di wilayah Sulawesi terutama bagian utara, Nusa Tenggara Timur, dan Papua.

BAB II TINJAUAN PUSTAKA

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

Pengaruh Bentuk Bracing terhadap Kinerja Seismik Struktur Beton Bertulang

BAB III METODE ANALISIS

BAB 3 METODE PENELITIAN

HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN KATA PENGANTAR ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR LAMPIRAN

Prosiding Seminar Nasional Teknik Sipil 1 (SeNaTS 1) Tahun 2015 Sanur - Bali, 25 April 2015

PERENCANAAN STRUKTUR GEDUNG PARKIR SUNTER PARK VIEW APARTMENT DENGAN METODE ANALISIS STATIK EKUIVALEN

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

STUDI EVALUASI KINERJA STRUKTUR BAJA BERTINGKAT RENDAH DENGAN ANALISIS PUSHOVER ABSTRAK

EVALUASI KEMAMPUAN STRUKTUR RUMAH TINGGAL SEDERHANA AKIBAT GEMPA

BAB V ANALISIS DAN PEMBAHASAN

PERANCANGAN STRUKTUR GEDUNG KAMPUS STMIK AMIKOM YOGYAKARTA

BAB II STUDI PUSTAKA

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB I PENDAHULUAN Latar Belakang

PERENCANAAN GEDUNG PASAR TIGA LANTAI DENGAN SATU BASEMENT DI WILAYAH BOYOLALI (DENGAN SISTEM DAKTAIL PARSIAL)

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

BAB I PENDAHULUAN. adalah kolom. Kolom termasuk struktur utama yang bertujuan menyalurkan beban tekan

LAPORAN PENELITIAN PELAKSANAAN PENELITIAN PF/PAK/PPM

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA

EVALUASI KINERJA STRUKTUR BANGUNAN YANG MENGGUNAKAN SAMBUNGAN LEWATAN (LAP SPLICES) PADA UJUNG KOLOM

EVALUASI STRUKTUR DENGAN PUSHOVER ANALYSIS

BAB I PENDAHULUAN Konsep Perencanaan Struktur Beton Suatu struktur atau elemen struktur harus memenuhi dua kriteria yaitu : Kuat ( Strength )

PEMODELAN STRUKTUR BANGUNAN GEDUNG BERTINGKAT BETON BERTULANG RANGKA TERBUKA SIMETRIS DI DAERAH RAWAN GEMPA DENGAN METODA ANALISIS PUSHOVER

Transkripsi:

Konferensi Nasional Teknik Sipil I (KoNTekS I) Universitas Atma Jaya Yogyakarta Yogyakarta, 11 12 Mei 2007 STUDI PEMODELAN INELASTIK DAN EVALUASI KINERJA STRUKTUR GANDA DENGAN MIDAS/Gen TM Yosafat Aji Pranata 1, Djoni Simanta 2 1 Dosen Jurusan Teknik Sipil, Universitas Kristen Maranatha, Jl. Suria Sumantri 65, Bandung, yosafat.ap@eng.maranatha.edu 2 Dosen Pascasarjana Magister Teknik Sipil, Universitas Katolik Parahyangan, Jl. Ciumbuleuit 94, Bandung, simanta@home.unpar.ac.id ABSTRAK Perencanaan struktur tahan gempa dengan sistem struktur ganda (interaksi antara sistem rangka pemikul momen dan shearwall) telah banyak dijumpai pada saat ini. Namun, pemodelan struktur dalam perencanaan berbasis kinerja untuk mengetahui kinerja bangunan pada sistem struktur ganda mengalami beberapa kendala, yaitu antara lain pemodelan properti sendi untuk elemen struktur shearwall. Software analisis dan desain struktur MIDAS/Gen TM memiliki fasilitas untuk memodelkan properti sendi tersebut. Dalam studi ini, gedung perkantoran beton bertulang dengan sistem struktur ganda, dua puluh lantai, dengan kategori gedung beraturan, akan didesain sesuai Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung (SNI 1726-2002) dan Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung (SNI 03-2874-2002), kemudian dilakukan evaluasi berbasis kinerja dengan menggunakan analisis pushover. Pemodelan properti sendi sesuai ATC-40 untuk elemen rangka dan shearwall. Evaluasi dilakukan terhadap dua model gedung yang didesain di wilayah gempa 4 dan 6, dengan jenis tanah lunak, sistem struktur SRPMM (wilayah 4) dan SRPMK (wilayah 6). Hasil evaluasi memperlihatkan bahwa seluruh model gedung termasuk dalam tingkat kinerja damage control, artinya pada saat terjadi gempa rencana, struktur dapat berdeformasi secara daktail, mekanisme leleh telah terbentuk, terjadi kerusakan namun struktur tidak runtuh. Kata kunci: Gedung beton bertulang, beraturan, shearwall, analisis pushover. 1. PENDAHULUAN Telah diketahui bersama bahwa perencanaan struktur bangunan gedung tahan gempa di Negara Indonesia menjadi hal yang penting, mengingat kejadian gempa yang terjadi hampir di seluruh bagian wilayah Pulau Sumatera, Pulau Jawa, dan pulau yang lainnya. Berdasarkan peta gempa Indonesia [SNI 1726-2002, 2002], dapat dilihat bahwa hampir sebagian besar wilayah Indonesia, khususnya bagian sebelah barat pulau sumatera, bagian selatan pulau jawa, serta beberapa tempat lainnya terletak pada wilayah gempa dengan intentitas moderat hingga tinggi. Salah satu teknik perencanaan yang sedang berkembang pada saat ini adalah perencanaan berbasis kinerja. Beberapa kunci bagaimana membuat perencanaan berbasis kinerja menjadi lebih bermanfaat, yaitu antara lain berbasis persetujuan umum, memberikan kesan ekonomis, transparan, simpel, konsisten, berakar pada kondisi nyata, dan apabila perlu secara berkala diperbaharui [Poland, 2004]. Tahap awal perencanaan berbasis kinerja adalah pemilihan awal target kinerja bangunan, yang mempunyai maksud untuk mengetahui level kerusakan struktur atau memilih kemampuan absorpsi energi untuk mengantisipasi akibat adanya beban gempa. Untuk mencapai tujuan ini, maka dibutuhkan kemampuan untuk memprediksi kinerja deformasi struktur sampai dengan tingkat kerusakan ultimit [MIDASoft, 2006]. ISBN 979.9243.80.7 451

Yosafat Aji Pranata dan Djoni Simanta (a). Perencanaan berbasis gaya. (b). Perencanaan berbasis kinerja. Gambar 1. Konsep metode perencanaan berbasis gaya dan berbasis kinerja [ATC, 1996] Analisis pushover menjadi salah satu metode untuk mengevaluasi deformasi struktur, kurva spektrum beban-peralihan dibuat sebagai ilustrasi kurva capacity vs demand. Kurva demand dibuat bergantung dari level kemampuan absorpsi energi struktur. Dari perpotongan kedua kurva tersebut kemudian diperoleh titik kinerja (Gambar 1.b). Gambar 2. Tingkat Kinerja Struktur [Applied Technology Council, 1996] Ruang lingkup penulisan meliputi : gedung perkantoran beton bertulang dengan sistem struktur ganda (kombinasi struktur sistem rangka pemikul momen dan shearwall), kategori beraturan, jumlah lantai dua puluh, gedung didesain pada wilayah gempa 4 dan 6 di Indonesia dengan jenis tanah lunak, sistem rangka menggunakan SRPMM (Wilayah 4) dan SRPMK (Wilayah 6), pemodelan properti sendi sesuai ATC-40 [Applied Technology Council, 1996], Struktur dianggap terjepit lateral pada taraf jepitan lateral di pondasi. Tujuan penulisan meliputi : melakukan perencanaan dan detailing struktur bangunan gedung, serta melakukan evaluasi kinerja struktur dengan menggunakan analisis pushover. Software yang digunakan dalam penulisan ini menggunakan MIDAS/Gen TM. 452 ISBN 979.9243.80.7

Studi Pemodelan Inelastik dan Evaluasi Kinerja Struktur Ganda dengan Midas/Gen TM 2. TINJAUAN LITERATUR 2.1. Pemodelan Struktur dan Sistem Struktur Ganda Pemodelan struktur dilakukan untuk mempelajari perilaku struktur apabila dikenakan beban Gempa Rencana. Secara umum struktur bangunan dapat dimodelkan menjadi struktur atas dan struktur bawah. Struktur atas adalah seluruh bagian struktur bangunan gedung yang berada di atas muka tanah. Struktur bawah adalah seluruh bagian struktur bangunan gedung yang berada di bawah muka tanah, yang terdiri dari struktur basement (bila ada) dan/atau struktur pondasi. Apabila tidak dilakukan analisis interaksi tanah-struktur, struktur atas dan struktur bawah suatu struktur bangunan gedung dapat dianalisis terhadap pengaruh Gempa Rencana secara terpisah, di mana struktur atas dianggap terjepit lateral pada taraf lantai dasar [SNI 1726-2002, 2002]. Sistem struktur ganda berfungsi untuk memikul seluruh beban gravitasi dan pemikul beban lateral berupa shearwall dan rangka pemikul momen. Pada sistem struktur ganda, perencanaan dengan asumsi sistem memikul secara bersama-sama seluruh beban lateral harus memperhatikan interaksi/sistem ganda [SNI 1726-2002, 2002]. 2.2. Analisis Pushover dan Evaluasi Kinerja Metode analisis pushover merupakan metode dengan pendekatan nonlinier statik, dimana dapat digunakan pada struktur dengan karakteristik dinamik mode tinggi yang tidak dominan. Spektrum kapasitas hasil dari analisis pushover selanjutnya menunjukkan hubungan kurva beban lateral-peralihan oleh peningkatan beban statik sampai pada kondisi ultimit. Gambar 3. Transformasi kurva pushover menjadi spektrum kapasitas. Beberapa manfaat dari analisis pushover yaitu : dapat digunakan untuk mengevaluasi karakteristik perilaku dan kinerja struktur, memungkinkan dilakukan investigasi skema kelelehan atau distribusi sendi plastis, serta pada saat kondisi struktur diperlukan suatu perkuatan maupun retrofit, dapat diketahui elemen-elemen struktur mana saja yang perlu diperkuat, sehingga hal ini berhubungan efisiensi biaya. Gambar 4. Klasifikasi tingkat Keamanan [Applied Technology Council, 1996]. ISBN 979.9243.80.7 453

Yosafat Aji Pranata dan Djoni Simanta 2.3. Pemodelan Properti Sendi Model properti sendi untuk elemen balok 2D dan elemen balok-kolom 3D adalah seperti terlihat pada Gambar 5.a. Beban dan peralihan elemen balok atau elemen balok-kolom menggambarkan efek dari momen biaksial pada bidang 3D. { P} T = { F, M, F, M, F, M, F, M, F, M, F, M } x1 x1 y1 y1 z1 z1 x2 x2 y2 y2 z2 z2 x1 x1 y1 y1 z1 z1 x2 x2 y2 y2 z2 z2...(1) {} u T = { u, θ, v, θ, v, θ, u, θ, v, θ, v, θ }...(2) (a). Elemen balok 2D dan balok-kolom 3D. (b). Elemen shearwall. Gambar 5. Nodal forces dan peralihan. Sedangkan model properti sendi untuk elemen wall dapat dilihat pada Gambar 5.b. sebuah garis vertikal pada bagian tengah yang menghubungkan balok rigid atas dan bawah merupakan elemen wall. Garis tengah ini sama seperti pada elemen 3D balokkolom. Balok rigid atas dan bawah menggambarkan rigid bodies pada bidang x-y, dan momen terhadap sumbu-z menunjukkan perilaku bending. (a). Moment-y, z hinge property (b). P-My-Mz hinge property Gambar 6. Pemodelan properti sendi pada MIDAS/Gen TM. 2.4. Karakteristik Spring Nonlinier Spring yang dimodelkan pada tiap elemen baik balok, kolom, maupun wall tersebut bukanlah menggambarkan kondisi aktual elemen spring, namun hanyalah penyederhanaan. Elemen balok berhubungan dengan beban-peralihan, gaya aksial arah-1 sudut momenrotasi, gaya geser-deformasi geser, dan torsi-deformasi torsi. Sedangkan untuk elemen kolom dan wall berhubungan dengan beban-peralihan, gaya aksial arah-2 sudut momen-rotasi, gaya geser-deformasi geser, dan torsi-deformasi torsi. Deformasi elemen dinyatakan dalam Persamaan 3. 454 ISBN 979.9243.80.7

Studi Pemodelan Inelastik dan Evaluasi Kinerja Struktur Ganda dengan Midas/Gen TM Gambar 7. Distribusi dari kekakuan lentur asumsi. Sedangkan deformasi plastik akibat momen lentur yang diasumsikan terjadi dan terkonsentrasi pada zona αl dapat dilihat pada ilustrasi Gambar 7. Oleh karena itu, matrik fleksibilitas termasuk didalamnya deformasi plastik dan deformasi geser. Hubungan beban-peralihan untuk spring dapat disusun dalam Persamaan 4 dan 5. e p s θ = θ + θ + θ... (3) {} θ = [ f]{ M}...(4) e p s [ f ] = [ f] + [ f] + [ f]...(5) α α M M nx ny + = 1, 0 M nox M...(6) noy Gaya aksial, momen torsi, dan gaya geser sisa konstan dan sendi plastis pada titik tengah elemen untuk analisis pushover. Maka hubungan gaya-deformasi dapat dinyatakan mirip dengan deformasi lentur. Sedangkan untuk spring lentur biaksial dinyatakan dalam Persamaan 6. Gambar 8. Kurva yang menunjukkan hubungan sudut momen-deformasi. 3. STUDI KASUS DAN PEMBAHASAN 3.1. Asumsi Data dan Model Struktur Studi kasus menggunakan data mutu beton (f c ) = 30 MPa dan mutu baja (f y ) = 400 MPa. Jumlah lantai dua puluh, dengan tinggi lantai dasar 4 meter, dan tinggi lantai 2-20 tipikal 3,8 meter. Beban mati superimposed (SDL) = 1,5 kn/m², sedangkan beban hidup (LL) = 2,5 kn/m² (lantai) dan 1,0 kn/m² (atap). Variasi model gedung berupa wilayah gempa, jenis tanah, sistem struktur selengkapnya dapat dilihat pada Tabel 1 dan Tabel 2. ISBN 979.9243.80.7 455

Yosafat Aji Pranata dan Djoni Simanta Gambar 9. Denah model struktur gedung. (a). Model 3D. (b). Potongan (portal arah-y). Gambar 10. Model 3D dan potongan struktur gedung. Tabel 1: Variasi model struktur. Model Wilayah Gempa Jenis Tanah Sistem Struktur G4 4 Lunak SRPMM G6 6 Lunak SRPMK Tabel 2: Dimensi dan ukuran penampang. Model Lantai Balok (mm) Kolom (mm) Shearwall (mm) G4 11-20 300 x 550 500 x 500 350 1-10 300 x 550 600 x 600 350 G6 11-20 300 x 600 600 x 600 350 1-10 300 x 600 700 x 700 350 3.2. Pemodelan, Analisis, Desain, dan Detailing Pemodelan dilakukan untuk masing masing model struktur. Analisis dilakukan dengan menggunakan analisis dinamik respons spektrum untuk mengetahui karakteristik dinamik untuk semua variasi model gedung [SNI 1726-2002, 2002]. Dari hasil analisis dinamik diperoleh nilai T sebesar 3,29 detik (model G4) dan 2,96 detik (model G6). Desain dilakukan untuk mendapatkan jumlah tulangan nominal untuk desain. Kombinasi pembebanan yang digunakan adalah (a). 1,4DL; (b). 1,2DL + 1,6LL; (c). 1,2DL + 0,5LL ± E; dan (d). 0,9DL ± E. Setelah tahapan pemodelan, analisis dan 456 ISBN 979.9243.80.7

Studi Pemodelan Inelastik dan Evaluasi Kinerja Struktur Ganda dengan Midas/Gen TM desain selesai, selanjutnya dilakukan detailing. Hasil penulangan model gedung G4 dan G6 selengkapnya ditampilkan pada Tabel 3, Tabel 4, dan Tabel 5. Tabel 3: Penulangan balok. Portal Lantai Tump. kiri Lapangan Tump.kanan Model G4 arah-x tengah 11-20 atas 5D25 2D25 5D25 bawah 2D25 2D25 2D25 arah-x tengah 1-10 atas 4D25 2D25 4D25 bawah 2D25 2D25 2D25 arah-x tepi 1-20 atas 3D25 2D25 3D25 bawah 2D25 2D25 2D25 arah-y 11-20 atas 5D25 2D25 5D25 arah-y 1-10 atas 4D25 2D25 4D25 Model G6 arah-x tengah 11-20 atas 5D25 2D25 5D25 arah-x tengah 1-10 atas 4D25 2D25 4D25 arah-x tepi 1-20 atas 3D25 2D25 3D25 bawah 2D25 2D25 2D25 arah-y 16-20 atas 5D25 2D25 5D25 arah-y 6-15 atas 5D25 2D25 5D25 bawah 4D25 2D25 4D25 arah-y 1-5 atas 4D25 2D25 4D25 Tulangan sengkang diperoleh D10-100 mm (daerah tumpuan) dan D10-150 mm (lapangan). 3.3. Analisis Pushover Model Gedung G4 dan G6 Tabel 4: Penulangan shearwall. Tulangan Vertikal D25-250 Horisontal D10-150 Tabel 5: Penulangan kolom. Model Gedung Lantai Tul. utama Tul. sengkang G4 16-20 8D25 D10-100 11-15 8D25 D10-100 6-10 12D25 D10-100 1-5 36D25 D10-100 G6 16-20 8D25 D10-100 11-15 8D25 D10-100 6-10 12D25 D10-100 1-5 24D25 D10-100 Parameter pola beban yang digunakan dalam analisis ini yaitu pola beban Mode-1, dan asumsi target peralihan adalah sebesar 0,595 meter. Sebagai initial loads digunakan beban gravitasi yaitu beban mati (DL) dan beban hidup (LL). Hasil analisis pushover berupa skema kelelehan / distribusi sendi plastis yang terjadi dan kurva kapasitas ditampilkan pada Gambar 11 dan Gambar 12. ISBN 979.9243.80.7 457

Yosafat Aji Pranata dan Djoni Simanta (a). Model G4. (b). Model G6. Gambar 11. Distribusi sendi plastis. (a). Model G4. (b). Model G6. Gambar 12. Kurva kapasitas. 3.4. Evaluasi Kinerja dan Pembahasan Evaluasi kinerja dilakukan setelah diperoleh kurva kapasitas, untuk mendapatkan titik kinerja bangunan. Hasil selengkapnya ditampilkan dalam Gambar 13 dan Tabel 6. (a). Model G4. (b). Model G6. Gambar 13. Evaluasi kinerja prosedur B ATC-40 [Applied Technology Council, 1996]. 458 ISBN 979.9243.80.7

Studi Pemodelan Inelastik dan Evaluasi Kinerja Struktur Ganda dengan Midas/Gen TM Evaluasi tingkat kinerja bangunan selanjutnya dilakukan setelah titik kinerja berupa informasi gaya geser dasar dan peralihan diperoleh, dari hasil peralihan kemudian dapat dihitung rasio drift, lalu dapat diperoleh level kinerja bangunan sesuai tabel klasifikasi tingkat keamanan ATC-40 (Gambar 4). Tabel 6: Hasil evaluasi kinerja bangunan. Model Gedung V (kg) D (meter) T eff (detik) β eff (%) drift Kinerja G4 1440000 0,5097 2.44 25.23 0,00669 Damage Control G6 1526000 0,5338 2.47 16.35 0,00701 Damage Control 4. KESIMPULAN Kesimpulan yang dapat diambil dari penulisan ini adalah sebagai berikut : 1. Sendi plastis terbentuk pada elemen kolom dan shearwall lantai dasar, sedangkan pada elemen balok terjadi di seluruh lantai. 2. Hasil evaluasi memperlihatkan bahwa seluruh model gedung masih termasuk tingkat kinerja damage control, artinya pada saat terjadi gempa rencana, struktur dapat berdeformasi secara daktail, mekanisme leleh telah terbentuk, terjadi kerusakan namun struktur tidak runtuh, sehingga masih memenuhi persyaratan kriteria model struktur yang direncanakan untuk gedung perkantoran. 3. Damping efektif (β eff ) pada saat tercapai titik kinerja bangunan belum melampaui kriteria ijin sebesar 40% untuk model struktur sebagai bangunan baru. 4. Nilai T eff diperoleh berkisar antara 2,44 s/d. 2.47 detik, hal ini menunjukkan penggunaan shearwall cukup baik untuk berperan memikul beban lateral, sehingga struktur mempunyai kekakuan yang cukup. 5. DAFTAR PUSTAKA 1. Applied Technology Council (1996), Seismic Evaluation and Retrofit of Concrete Buildings, ATC 40, Volume 1, Report No. SSC 96-01. 2. Applied Technology Council (2004), Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Draft Camera-Ready, ATC-55 Project. 3. Bozorgnia, Y., Bertero, V.V. (2004), Earthquake Engineering: from Engineering Seismology to Performance-Based Engineering, CRC Press, USA. 4. MIDASoft, Inc. (2006), Analysis Manual version 7.02, MIDASoft, Inc., Houston, USA. 5. Poland, C.D. (2004), Making Performance-Based Engineering Useful, 13WCEE, Canada. 6. Pranata, Y.A. (2005), Studi Analisis Beban Dorong Untuk Gedung Beton Bertulang Beraturan dan Tidak Beraturan, Tesis, Program Pascasarjana, Magister Teknik Sipil, Universitas Katolik Parahyangan, Bandung. 7. SNI 03-2847-2002 (2002), Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, Departemen Permukiman dan Prasarana Wilayah. ISBN 979.9243.80.7 459

Yosafat Aji Pranata dan Djoni Simanta 8. SNI 1726-2002 (2002), Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung. 460 ISBN 979.9243.80.7