PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

dokumen-dokumen yang mirip
Pemodelan Inflasi di Kota Semarang, Yogyakarta, dan Surakarta dengan pendekatan GSTAR

PEMODELAN INFLASI DI KOTA SEMARANG, YOGYAKARTA, DAN SURAKARTA DENGAN PENDEKATAN GSTAR. Oleh : Laily Awliatul Faizah ( )

Kurniawati, Sri Sulistijowati Handajani, dan Purnami Widyaningsih Program Studi Matematika FMIPA UNS

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

SKRIPSI JURUSAN STATISTIKA PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

PERAMALAN DEBIT AIR SUNGAI BRANTAS DENGAN MODEL GSTAR DAN ARIMA. Abstrak

BAB V KESIMPULAN DAN SARAN

Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 1.

PERBANDINGAN HASIL ESTIMASI PARAMETER GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) DENGAN VARIABEL EKSOGEN BERTIPE METRIK

APLIKASI GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) PADA PEMODELAN VOLUME KENDARAAN MASUK TOL SEMARANG. Abstract

PERAMALAN INDEKS HARGA KONSUMEN 4 KOTA DI JAWA TENGAH MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

Pemodelan Autoregressive (AR) pada Data Hilang dan Aplikasinya pada Data Kurs Mata Uang Rupiah

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

BAB III GENERALIZED SPACE TIME AUTOREGRESSIVE. Model GSTAR adalah salah satu model yang banyak digunakan untuk

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

BAB I PENDAHULUAN. Data yang mempunyai keterkaitan dengan kejadian-kejadian sebelumnya

PERAMALAN DBIT AIR SUNGAI BRANTAS DENGAN METODE GSTAR DAN ARIMA

Generated by Foxit PDF Creator Foxit Software For evaluation only.

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Model Generalized Space Time Autoregressive

Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara

PERBANDINGAN MODEL STAR DAN GSTAR UNTUK PERAMALAN INFLASI DUMAI, PEKANBARU, DAN BATAM

PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK)

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN OUTFLOW UANG KARTAL DI BANK INDONESIA WILAYAH JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

PERAMALAN DERET WAKTU MULTIVARIAT SEASONAL PADA DATA PARIWISATA DENGAN MODEL VAR-GSTAR

Penerapan Model ARIMA

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

BAB II LANDASAN TEORI

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode

BAB 2 LANDASAN TEORI

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

PERAMALAN NILAI TUKAR DOLAR SINGAPURA (SGD) TERHADAP DOLAR AMERIKA (USD) DENGAN MODEL ARIMA DAN GARCH

BAB 2 LANDASAN TEORI

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

BAB III MODEL ARIMAX DENGAN EFEK VARIASI KALENDER

PERAMALAN PASANG SURUT AIR LAUT DI PULAU JAWA MENGGUNAKAN MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

BAB II LANDASAN TEORI

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Prediksi Curah Hujan dengan Model Deret Waktu dan Prakiraan Krigging pada 12 Stasiun di Bogor Periode Januari Desember 2014.

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR)

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PEMODELAN SEASONAL GENERALIZED SPACE TIME AUTOREGRESSIVE

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

Penerapan Model ARIMA

ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun )

ABSTRAK. Kata kunci: laju inflasi, GSTAR, invers jarak, normalisasi korelasi silang. iii

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

Tugas Akhir. Peramalan Penjualan Produk Minuman TB Wilayah Pemasaran Jawa Timur dengan Menggunakan Metode VARIMA. Oleh : C. Ade Kurniawan

APLIKASI MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE PADA DATA PENCEMARAN UDARA DI KOTA SURABAYA

Peramalan Jumlah Penumpang Kereta Api Kelas Bisnis Eksekutif Jurusan Madiun Jakarta di PT. Kereta Api (Persero) DAOP VII Madiun

Presented by: Sri Sulistijowati Desy Lusiyanti Hot Bonar

Pemodelan Vector Autoregresive (VAR) pada Komoditas Harga Cabai di Jawa Tengah

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan

Model Vector Autoregressive-Generalized Space Time Autoregressive

Peramalan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series

BABI PENDAHULUAN. 1.1 Latar Belakang

PERAMALAN NILAI EKSPOR DAN NILAI IMPOR INDONESIA KE JEPANG MENGGUNAKAN MODEL VARIMA

BAB III MODEL STATE-SPACE. dalam teori kontrol modern. Model state space dapat mengatasi keterbatasan dari

PEMODELAN TIME SERIES DENGAN PROSES ARIMA UNTUK PREDIKSI INDEKS HARGA KONSUMEN (IHK) DI PALU SULAWESI TENGAH

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA JUMLAH WISATAWAN MANCANEGARA EMPAT KABUPATEN/KOTA DI JAWA TENGAH

PERAMALAN LAJU INFLASI, SUKU BUNGA INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE (VAR)

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, seringkali dijumpai data dari suatu kejadian

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC),

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

1 Novita Dya Gumanti, 2 Sutikno, 3 Setiawan

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA)

PERBANDINGAN INVESTASI PADA MATA UANG DOLAR AMERIKA (USD) DAN YEN JEPANG (JPY) DENGAN MODEL ARIMA DAN GARCH

PENGGUNAAN METODE VaR (Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT. TELKOM DENGAN PENDEKATAN MODEL GARCH-M

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalan Laju Inflasi dan Nilai Tukar Rupiah Terhadap Dolar Amerika Menggunakan Model Vector Autoregressive (VAR)

BAB II TINJAUAN PUSTAKA. keuntungan atau coumpouding. Dari definisi di atas dapat disimpulkan bahwa

HASIL DAN PEMBAHASAN

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Transkripsi:

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran ) Staf Pengajar Jurusan Matematika FMIPA Universitas Padjadjaran 3) Staf Pengajar Statistika Jurusan FMIPA Universitas Padjadjaran Jl.Dipati Ukur No 35 Bandung Email : ) nie_ng@yahoo.co.id, ) bnurani@gmail.com, 3) tine_soemartini@yahoo.com Abstrak Perkembangan inflasi di Jawa Tengah dipantau melalui perkembangan perekonomian di beberapa kota, diantaranya Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal. Inflasi dapat dipengaruhi oleh jumlah barang dan jasa yang dikonsumsi oleh masyarakat di kota yang bersangkutan. Oleh karena itu, dalam memenuhi kebutuhan barang dan jasa, setiap kota membutuhkan kota di sekitarnya untuk menyediakan komoditas yang tidak dapat dipenuhi oleh kota tersebut. Hal ini menimbulkan ketergantungan antar kota dalam pemenuhan kebutuhan komoditas. Dengan demikian pergerakan inflasi di Jawa Tengah selain memiliki keterkaitan dengan waktu sebelumnya, juga memiliki keterkaitan antara satu kota dengan kota lainnya yang disebut dengan hubungan spasial. Model GSTAR merupakan generalisasi dari model Space Time Autoregressive (STAR) yang juga merupakan spesifikasi dari model Vector Autoregressive (VAR). Perbedaan yang mendasar antara model GSTAR dan model STAR terletak pada pengasumsian parameternya. Model STAR mengasumsikan lokasilokasi yang digunakan dalam penelitian adalah homogen, sehingga model ini hanya dapat diterapkan pada lokasi yang bersifat seragam. Sedangkan pada model GSTAR terdapat asumsi yang menyatakan lokasi-lokasi penelitian yang bersifat heterogen, sehingga perbedaan antar lokasi ini ditunjukkan dalam bentuk matriks pembobot. Oleh karena itu, model ini cocok digunakan untuk data inflasi yang stasioner dengan karakteristik lokasi yang heterogen. Nilai orde VAR yang diperoleh adalah model VAR(5). Hal ini terlihat dari Nilai Akaike s Information Criterion terkecil yang diperoleh pada AR(5) dan MA (0). Orde yang didapatkan dari model VAR(5) digunakan sebagai orde pada model GSTAR. Sehingga model GSTAR yang terbentuk adalah GSTAR (: 5). Kata Kunci : Generalized Space Time Autoregressive, Inflasi, Vector Autoregressive I. PENDAHULUAN Kehidupan perekonomian suatu negara tidak terlepas dari masalah ekonomi makro, antara lain : pertumbuhan ekonomi, inflasi, pengangguran, kestabilan kegiatan ekonomi serta neraca perdagangan dan neraca pembayaran (Sukirno, 0). Salah satu masalah ekonomi yang tidak dapat diabaikan oleh suatu negara adalah inflasi, karena dapat menimbulkan dampak bagi ketidakstabilan kegiatan perekonomian negara tersebut. Inflasi adalah salah satu indikator ekonomi makro yang sangat penting bagi pemerintah dan dunia usaha. Adanya kenaikan harga yang tercermin pada angka inflasi merupakan salah satu indikator yang menggambarkan stabilitas ekonomi secara makro di suatu wilayah (Rosidi dan Sugiharto, 005). Tingkat inflasi yang tinggi akan mempengaruhi stabilitas dunia usaha serta melemahkan daya beli masyarakat suatu daerah. Peramalan tingkat inflasi diperlukan untuk mengetahui kisaran nilai inflasi periode yang

akan datang yang akan digunakan dalam perumusan berbagai kebijakan terkait kestabilan harga di waktu yang akan datang. Selain itu, perubahan harga di suatu wilayah cenderung akan berdampak pada harga-harga di daerah di sekitar wilayah tersebut. Perkembangan inflasi di Jawa Tengah dipantau melalui perkembangan perekonomian di beberapa kota, diantaranya Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal. Inflasi dapat dipengaruhi oleh jumlah barang dan jasa yang dikonsumsi oleh masyarakat di kota yang bersangkutan. Oleh karena itu, dalam memenuhi kebutuhan barang dan jasa, setiap kota membutuhkan kota di sekitarnya untuk menyediakan komoditas yang tidak dapat dipenuhi oleh kota tersebut. Hal ini menimbulkan ketergantungan antar kota dalam pemenuhan kebutuhan komoditas. Dengan demikian pergerakan inflasi di Jawa Tengah selain memiliki keterkaitan dengan waktu sebelumnya, juga memiliki keterkaitan antara satu kota dengan kota lainnya yang disebut dengan hubungan spasial. Salah satu model peramalan yang populer dan banyak diterapkan untuk peramalan data time series yang mengandung unsur waktu dan lokasi yaitu model space time. Model space time dikembangkan oleh Pfeifer dan Deutsch yang mengadopsi tahapan-tahapan yang dikembangkan oleh Box-Jenkins (97) untuk pemodelan ARIMA, yang mencakup tentang identifikasi, estimasi, dan uji diagnostik ke dalam pemodelan STARIMA (Space Time Autoregressive Integrated Moving Average). Model Space Time Autoregressive (STAR) merupakan gabungan model Autoregressive orde p, AR(p) dari Box-Jenkins dan model spasial yang melibatkan bobot antar lokasi, sedangkan untuk penaksiran parameter model STAR dapat dilakukan dengan menggunakan metode Ordinary Least Square dengan cara meminimumkan jumlah kuadrat galatnya. Model STAR ini masih mempunyai kelemahan pada fleksibilitas parameter yang mengasumsikan bahwa lokasi-lokasi yang diteliti memiliki karakteristik yang seragam (homogen). Kelemahan dari metode STAR telah direvisi dan dikembangkan oleh Borovkova, Lopuhaa dan Ruchjana (00) melalui suatu model yang dikenal dengan model GSTAR (Generalized Space Time Autoregressive). Model GSTAR merupakan generalisasi dari model Space Time Autoregressive (STAR) yang juga merupakan spesifikasi dari model Vector Autoregressive (VAR). Perbedaan yang mendasar antara model GSTAR dan model STAR terletak pada pengasumsian parameternya. Model STAR mengasumsikan lokasi-lokasi yang digunakan dalam penelitian adalah sama, sehingga model ini hanya dapat diterapkan pada lokasi yang bersifat seragam. Sedangkan pada model GSTAR terdapat asumsi yang menyatakan lokasi-

3 lokasi penelitian yang bersifat heterogen, sehingga perbedaan antar lokasi ini ditunjukkan dalam bentuk matriks pembobot. Oleh karena itu, model ini cocok digunakan untuk data inflasi yang stasioner dengan karakteristik lokasi yang heterogen. Tujuan penelitian ini adalah untuk memodelkan dan meramalkan inflasi beberapa kota di Jawa Tengah, yaitu Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal yang mempunyai keterkaitan dengan waktu sebelumnya dan keterkaitan dengan kota lain yang saling berdekatan. II. TINJAUAN PUSTAKA Multivariate time series merupakan deret waktu yang terdiri dari beberapa variabel yang pada umumnya digunakan untuk memodelkan dan menjelaskan interaksi serta pergerakan diantara sejumlah variabel time series. Pada model multivariate, peramalan data dilakukan dengan menambahkan variabel lain yang mempunyai hubungan jangka panjang untuk mendapatkan keakuratan peramalan. Sama halnya dengan univariate time series, untuk identifikasi pada model multivariate time series juga dapat dilihat dari pola atau matriks fungsi korelasi (MACF) dan matriks fungsi korelasi parsial (MPACF) setelah data stasioner (Wei, 00).. Model Autoregressive Integrated Moving Average (ARIMA) Asumsi dasar yang digunakan dalam pembahasan proses time series ARIMA adalah proses yang stasioner. Walaupun demikian, banyak proses yang bersifat nonstasioner. Upaya yang dilakukan pakar ekonometrika untuk menstasionerkan proses pembentukan data yang tidak stasioner adalah dengan melakukan perbedaan tingkat pertama, kedua, dan seterusnya. Contoh perbedaan tingkat pertama (first difference) adalah :W t = W t W t Hasil dari setiap perbedaan yang dilakukan seperti di atas disebut proses yang terintegrasi (integrated processed). Sedangkan orde dari proses untuk mendapatkan time series yang stasioner ditentukan oleh banyaknya perbedaan (differencing) yang dilakukan. Jika Z t adalah suatu runtun waktu yang sudah dibuat stasioner dengan differencing satu kali, atau lebih dari suatu runtun waktu yang asli (tidak stasioner), W t maka Z t bisa dipresentasikan dengan model ARMA (p, q) atau model ARIMA (p, d, q). sedangkan untuk membuat data stasioner dalam varians dapat dilakukan proses transformasi dengan metode Box-Cox. Pendekatan Box-Jenkins digunakan untuk mengobservasi orde dari proses AR (p), MA (q), dan ARIMA (p, d, q). Dengan kata lain perlu mengidentifikasi

masing-masing nilai p, d dan q. Untuk mengobservasi model ARIMA secara penuh diperlukan tiga tahap, yaitu: identifikasi, estimasi, dan uji diagnostik. Kemudian jika nilai p, d dan q tersebut sudah didapat, peramalan (forecasting) dapat dilakukan. Secara umum model-model ARIMA (stasioner) dapat dibagi menjadi tiga model, yaitu :. Model Autoregressive AR (p) Z t = φ Z t + φ Z t + + φ p Z t p + a t. Model Moving Average MA (q) Z t = a t θ a t θ a t θ q a t q 3. Model Autoregressive Moving Average ARMA (p, q) Z t = Z t = φ Z t + φ Z t + + φ p Z t p + a t a t θ a t θ a t θ q a t q dengan: Z t : besarnya pengamatan (kejadian) pada waktu ke-t Z : Z t μ a t : suatu white noise process atau error pada waktu ke-t yang diasumsikan mempunyai mean 0 dan varians konstan σ α. Model ARIMA (non-stasioner) jika ada orde d (misal :, ), dengan bentuk umum adalah: φ B φ p B p B d Z t = θ B θ q B q a t Sebagai contoh, jika Z t mengikuti model ARIMA (,,0) maka secara matematik Z t mengikuti: φ B B d Z t = a t + φ B + φ B Z t = a t Z t = + φ Z t + φ Z t + a t. Model Vector Autoregressive (VAR) Model VAR adalah suatu pendekatan peramalan kuantitatif yang biasanya diterapkan pada data multivariate time series. Model ini menjelaskan keterkaitan antar pengamatan pada variabel tertentu pada suatu waktu dan pengamatan pada variabel itu sendiri pada waktu-waktu sebelumnya, dan juga keterkaitannya dengan pengamatan pada variabel lain pada waktu-waktu sebelumnya. Jika diberikan z i (t) dengan t T, T = {,,,T) dan i = {,,,N} merupakan indeks parameter waktu dan variabel (misalkan berupa lokasi yang berbeda atau jenis produk yang berbeda) yang terhitung dan terbatas, maka model VARMA secara umum dapat dinyatakan sebagai berikut (Wei, 00) : p B t B t Φ Z Θ e q

5 dengan Z(t) adalah vektor deret waktu multivariate yang terkoreksi nilai rata-ratanya, Φ p (B) dan Θ q (B) berturut-turut adalah suatu matriks autoregressive dan moving average polynomial orde p dan q..3 Model Space Time Autoregressive (STAR) Model STAR merupakan suatu model yang dikategorikan berdasarkan lag yang berpengaruh secara linier baik dalam lokasi maupun waktu (Pfeifer dan Deutsch 90a). Model STAR (:p) dirumuskan sebagai berikut: p Z t = φ k0 W (l) Z t k + φ kl W (l) Z t k + e t k= dengan: Z t : vektor acak ukuran (n x ) ada waktu t φ kl : parameter STAR pada lag waktu k dan lag spasial l W (l) : matriks bobot ukuran (n x n) pada lag spasial l (dimana l = 0,, ) (.). Model Generalized Space Time Autoregressive (GSTAR) Menurut Pfeifer dan Deutsch (90a), model STAR merupakan model yang dikategorikan berdasar lag yang berpengaruh secara linier baik dalam lokasi dan waktu. Model GSTAR merupakan suatu model yang cenderung lebih fleksibel dibandingkan model STAR. Secara matematis, notasi dari model GSTAR(: p) adalah sama dengan model STAR(: p). Perbedaan utama dari model GSTAR(: p) ini terletak pada nilai-nilai parameter pada lag spasial yang sama diperbolehkan berlainan. Sedangkan pada model STAR pada parameter autoregresive diasumsikan sama pada seluruh lokasi. Dalam notasi matriks, model GSTAR(: p) dapat ditulis sebagai berikut: Z t = p k= Φ k0 + Φ k W Z t k + e t dengan: Φ k0 = diag φ n k0,, φ k0 dan : Φ k = diag φ n k,, φ k pembobot W ii = 0 dan i j W ij = e t ~ N(0, σ I N ) untuk i =,,,n (.7) Penaksir parameter model GSTAR dapat dilakukan dengan menggunakan metode kuadrat terkecil dengan cara meminimumkan jumlah kuadrat galat. Dalam mengidentifikasi orde model GSTAR, orde spasial pada umumnya dibatasi pada orde karena orde yang lebih tinggi akan sulit untuk diinterpretasikan. Sedangkan

untuk orde waktu (autoregressive) dapat ditentukan dengan menggunakan AIC (Akaike s Information Criterion). III. ANALISIS DAN PEMBAHASAN 3. Analisis Deskriptif Analisis deskriptif data inflasi bulanan di Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal dari bulan Januari 00 sampai dengan bulan Desember 0 dijelaskan menggunakan statistika deskriptif dan plot time series. Statistik deskriptif digunakan untuk mengetahui rata-rata (mean), minimum, maksimum, standar deviasi, skewness, dan kurtosis, dari data inflasi di empat lokasi kota tersebut. Tabel 3. Deskriptif Data Inflasi Empat Kota di Jawa Tengah Variabel Mean StDev Varians Minimum Maksimum Skewness Kurtosis Purwokerto 0.50 9 0.393-0.5700.7500.9.5 Surakarta 5 0 0.33-00.00 0.9.53 Semarang 0.5 0.55 0.7-0.500.000. Tegal 0.537 05 0.37-0.500.3000 0.9 0.7 Tabel 3. menjelaskan bahwa rata-rata data inflasi yang terjadi di Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal berturut-turut adalah 0.50, 5, 0.5 dan 0.537. Rata-rata keempat lokasi tersebut tidak berbeda jauh dan tertinggi terjadi di Kota Tegal (0.537). Sedangkan nilai varians tertinggi pada data inflasi Kota Purwokerto yaitu 0.393. Nilai varians menunjukkan tingkat keragaman data inflasi di empat lokasi tersebut. Tingkat keragaman dan persebaran data juga dapat dilihat pada nilai skewness dan kurtosis dari data inflasi keempat lokasi tersebut. Tabel 3. Nilai Korelasi Data Inflasi dari Keempat Lokasi Surakarta 0.73 00 Semarang 0.75 00 Tegal 0.597 00 Purwokerto Surakarta Semarang 0.7 00 00 00 Nilai korelasi pada Tabel 3. menunjukkan bahwa keempat lokasi memiliki keterkaitan pada waktu yang sama. Keempat lokasi tersebut saling berkorelasi yang ditunjukkan dari

Autocorrelation Partial Autocorrelation Purwokerto Surakarta Semarang Tegal 7 nilai signifikansi lebih kecil dari α=5. Nilai korelasi terbesar antara Kota Semarang dan Kota Surakarta yaitu 0.7. Sedangkan untuk plot time series untuk data inflasi empat kota di Jawa Tengah adalah sebagai berikut : Time Series Plot of Purwokerto Time Series Plot of Surakarta Time Series Plot of Semarang Time Series Plot of Tegal 3.5.5.5.0.0.0.5.5.5 0.5 0.5 0.5 0-0.5 - - -0.5-0.5 3 0 5 7 0 3 0 5 7 0 3 0 5 7 0 3 0 5 7 0 Index Index Index Index Gambar 3. Plot Time Series Data Inflasi Empat Kota di Jawa Tengah Gambar 3. menunjukkan bahwa pergerakan data inflasi dari empat lokasi tersebut cenderung sama. Data inflasi Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal pada bulan Juli 03 tinggi. Hal ini diakibatkan karena adanya kenaikan harga BBM yang mencapai sekitar.3 persen. Inflasi Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal pada bulan Juli 03 mencapai., 3.9, 3.50 dan.3 persen. Setelah itu, data inflasi dari keempat lokasi cenderung stabil kembali. 3. Model ARIMA (Box Jenkin s) Plot ACF dan PACF data inflasi Kota Purwokerto menunjukkan beberapa kemungkinan orde ARIMA terbaik diantaranya ARIMA(0,0,), ARIMA(,0,0), ARIMA(,0,0) dan ARIMA(,,0,0). Data inflasi Kota Surakarta menunjukkan beberapa kemungkinan model ARIMA diantaranya ARIMA(0,0,), ARIMA(,0,0), ARIMA(,0,0) dan ARIMA(,,0,0). Model ARIMA yang dapat diduga menjadi model untuk inflasi Kota Semarang antara lain ARIMA(0,0,) dan ARIMA(,0,0). Sedangkan data inflasi Kota Tegal menunjukkan kemungkinan model ARIMA(,0,0). Gambar 3. Plot ACF dan PACF Inflasi Kota Purwokerto Autocorrelation Function for Purw (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for Purw (with 5% significance limits for the partial autocorrelations) 0. 0. 0. -0. - - -0. - 0. -0. - - -0. - 0 0

Autocorrelation Partial Autocorrelation Autocorrelation Partial Autocorrelation Autocorrelation Partial Autocorrelation Gambar 3.3. Plot ACF dan PACF Inflasi Kota Surakarta Autocorrelation Function for Sur (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for Sur (with 5% significance limits for the partial autocorrelations) 0. 0. 0. -0. - - -0. - 0. -0. - - -0. - 0 0 Gambar 3. Plot ACF dan PACF Inflasi Kota Semarang Autocorrelation Function for Smg (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for Smg (with 5% significance limits for the partial autocorrelations) 0. 0. 0. -0. - - -0. - 0 0. -0. - - -0. - 0 Gambar 3.5 Plot ACF dan PACF Inflasi Kota Tegal Autocorrelation Function for Tegal (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for Tegal (with 5% significance limits for the partial autocorrelations) 0. 0. 0. -0. - - -0. - 0. -0. - - -0. - 0 0 3.3 Model Vector Autoregressive (VAR) Identifikasi merupakan tahapan awal dalam pemodelan VAR terhadap data inflasi dari empat lokasi, yaitu Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal. Tahap identifikasi ini bertujuan untuk mengetahui kestasioneran data yang digunakan melalui DF Test dan Plot MCCF. Hasil DF Test menunjukkan bahwa data telah stasioner karena nilai p-value lebih kecil dari α (0,05) baik untuk empat lokasi tersebut. Sedangkan pengamatan visual melalui plot MCCF ditunjukkan sebagai berikut : Schematic Representation of Cross Correlations Variable/ 0 3 5 7 9 y ++++ +.++................................. y ++++ +++...........................-....... y3 ++++ +.+....... +....+....................... y ++++ +++..................................+ + is > *std error, - is < -*std error,. is between Gambar 3. Plot MCCF Data Inflasi di Empat Lokasi

9 Gambar 3. menunjukkan bahwa data di empat lokasi telah stasioner karena tanda titik (.) lebih banyak daripada tanda (+) dan (-). Schematic Representation of Partial Cross Correlations Variable/ 3 5 7 9 y... -... +.....-.....................-.... y..+..-................................ y3.......+.. +....+....................... y.............................. +...... + is > *std error, - is < -*std error,. is between Gambar 3.7 Plot MPCCF Data Inflasi di Empat Lokasi Setelah data stasioner, langkah selanjutnya adalah menentukan orde VAR melalui plot MPCCF dan nilai Akaike s Information Criterion (AIC) dari data yang telah stasioner. Nilai AIC yang dilihat adalah nilai AIC yang terkecil. Plot MPCCF dan nilai AIC ditampilkan pada Gambar 3.7 dan Tabel 3.3. Tabel 3.3 Nilai AIC model VAR Minimum Information Criterion MA 0 MA MA MA 3 MA MA 5 AR 0 -.759 -.73 -.0933-5.93-5.9577-5.99 AR -7.0005 -.7799 -.779 -.5 -.53975 -.33 AR -7.5 -.9993 -.5759 -.73 -.97-5.9757 AR 3-7.553 -.70 -.5395 -.73-5.7573-5.399 AR -7.553 -.73 -.73-5.3977-5.009 -.539 AR 5-7.0959 -.397 -.77-5.9 -.705-3.953 Nilai orde VAR yang diperoleh adalah model VAR(5). Hal ini terlihat dari Nilai Akaike s Information Criterion terkecil yang diperoleh pada AR(5) dan MA (0). Penaksiran parameter model VAR (5) menghasilkan parameter seperti yang terlihat pada tabel 3. sebagai berikut : Tabel 3. Penaksiran Parameter Model VAR(5) Lokasi Parameter Estimasi Standar Error t-value p-value variabel Purwokerto φ -977 0.733-0.9 0.775 Z (t ) Z (t) φ 0.337 0.99.57 0.5 Z (t ) φ 3 φ 0.379 0.30 0.59 0.53.70 7 9 0.50 Z 3 (t ) Z (t ) Surakarta Z (t) Semarang Z 3 (t) Tegal Z (t) φ φ φ 3 φ 9 0.397-03 0.573 0.9 0.05 0.55 0.. - 0.90 3 0.959 7 Z (t ) Z (t ) Z 3 (t ) Z (t ) φ 3 φ 3 φ 33 9 0.3073 0.95 0.5 0.7797 0.935 3.73 0. 0.53 7 0.30 Z (t ) Z (t ) Z 3 (t ) φ 3 0.3 0.3 5 0.957 Z (t ) φ 0.393 0.959.0 Z (t ) φ -059 0.55-9 0.975 Z (t ) φ 3 0.750 3 9 9 Z 3 (t ) φ 0.7300 0.5 9 Z (t )

Berdasarkan Tabel di atas, taksiran parameter model VAR dapat ditulis dalam persamaan matriks sebagai berikut : Z (t) Z (t Z 3 (t Z (t = 977 0.337 0.379 0.30 9 0.397 03 0.573 9 0.393 0.3073 059 0.95 0.750 0,3 Z t Z t Z 3 t Z t Persamaan matriks tersebut dapat dijabarkan menjadi model VAR untuk masing-masing lokasi. Berikut persamaan model VAR(5) untuk data inflasi Kota Purwokerto, Kota Surakarta, Kota Semarang dan Kota Tegal : Purwokerto : Z (t) = 977Z t + 0.337Z t + 0.379Z 3 t 0.30Z t Surakarta : Z t = 9Z t + 0.397Z t 03Z 3 t + 0.573 Z t Semarang : Z 3 (t) = 9Z t + 0.3073Z t + 0.95Z 3 t + 0.3 Z t Tegal : Z t = 0.393Z t 059Z t + 0.750Z 3 t Z t Persamaan model VAR untuk inflasi Purwokerto dipengaruhi oleh inflasi Kota Purwokerto itu sendiri, Kota Surakarta, Kota Semarang dan Kota Tegal satu bulan sebelumnya. Begitu juga untuk inflasi Kota Surakarta, Kota Semarang dan Kota Tegal. 3.3. Uji Asumsi White Noise Residual Model VAR(5) Setelah mendapatkan parameter dan model yang signifikan, maka langkah selanjutnya adalah pengujian asumsi apakah residual memenuhi asumsi white noise. Jika letak nilai AIC terdapat pada lag AR(0) dan MA(0), maka residual dapat dikatakan sudah memenuhi asumsi white noise. Schematic Representation of Cross Correlations of Residuals Variable/ 0 3 5 7 9 y ++++... --............................. +..+ y ++++....-.. -.............................. y3 ++++....-.........+....................... y ++++....-.. -.............................. + is > *std error, - is < -*std error,. is between Gambar 3. Plot Cross Correlations of Residuals Gambar 3. menunjukkan bahwa tanda positif lebih banyak yang muncul pada lag (0), hal ini berarti residual sudah memenuhi asumsi white noise.

3. Model Generalized Space Time Autoregressive (GSTAR) Pemodelan menggunakan GSTAR merupakan pemodelan untuk data time series yang memperhatikan faktor lokasi. Faktor lokasi ini ditunjukkan dengan adanya pemberian pembobot pada masing-masing lokasi. Pembobot yang digunakan adalah bobot seragam. Matriks pembobotnya adalah sebagai berikut : w ij = 0 0 0 0 Sedangkan orde time yang digunakan dalam GSTAR sama dengan orde model VAR. Untuk orde spasialnya dibatasi hanya pada orde, sehingga model yang digunakan adalah model GSTAR (;5). Model VAR(5) mempunyai parameter, sedangkan model GSTAR(:5) mempunyai parameter saja, jadi model GSTAR(:5) lebih efisien jika dibandingkan model VAR(5). IV. KESIMPULAN Berdasarkan hasil analisis dan pembahasan di atas, maka dapat diambil kesimpulan sebagai berikut :. Tingkat inflasi di suatu wilayah di suatu wilayah cenderung akan berdampak pada harga-harga di daerah di sekitar wilayah tersebut, sehingga pemodelan inflasi dengan memperhatikan dampak kedekatan lokasi memiliki tingkat akurasi yang lebih baik dibandingkan pemodelan dengan model ARIMA Box Jenkin s.. Orde yang didapatkan dari model VAR(5) digunakan sebagai orde pada model GSTAR, sehingga model GSTAR yang terbentuk adalah GSTAR (: 5). 3. Model GSTAR(:5) lebih efisien dibandingkan model VAR(5) karena model VAR(5) mempunyai parameter, sedangkan model GSTAR(:5) hanya mempunyai parameter saja. DAFTAR PUSTAKA Nurani, B. 00. Pemodelan Kurva Produksi Minyak Bumi Menggunakan Model Generalisasi STAR. Jurnal Forum Statistika dan Komputasi. IPB, Bogor. Pfeifer, P.E dan Deutsch, S.J. 90a. A Three Stage Iterative Procedure for Space Time Modelling. Technometrics, (), 35-7.

, 90b. Identification and Interpretation of First Orde Space-Time ARMA Models. Technometrics, (), 397-0. Ruchjana, B.N, Borovkova, S.A and Lopuhaa, H.P(0). Least Squares Estimation of Generalized Space Time AutoRegressive (GSTAR) Model and Its Properties, The 5 th International Conference on Research and Education in Mathematics, AIP Conf. Proc.50, -. Suhartono dan Atok, R.M. (00). Pemilihan Bobot Lokasi yang Optimal pada Model GSTAR, Prosiding Konferensi Nasional Matematika XIII, Universitas Negeri Semarang, -7 Juli 00, hal. 57-50. (ISBN : 979-70-57-). Wei, W.W.S. 00. Time Series Analysis: Univariate and Multivariate Methods. Canada : Addison-Wesley Publishing Co.