HIDROGRAF SATUAN OBSERVASI DAERAH ALIRAN SUNGAI CILIWUNG HULU-KATULAMPA SEBAGAI BENCHMARKING MANAJEMEN BANJIR JAKARTA

dokumen-dokumen yang mirip
Ariani Budi Safarina ABSTRAK

Ariani Budi Safarina ABSTRAK

Analisa Multi Hydrograf Satuan Daerah Aliran Sungai Citarum Hulu Menggunakan Peta Isokhorn dan Mekanisme Runoff Routing

BAB I PENDAHULUAN 1.1. Latar Belakang

PENELUSURAN BANJIR MENGGUNAKAN METODE LEVEL POOL ROUTING PADA WADUK KOTA LHOKSEUMAWE

V. HASIL DAN PEMBAHASAN

Modifikasi Hydrograf Satuan Sintetik SCS Sungai Serayu Dengan Metoda Optimasi

MODEL HIDROGRAF BANJIR NRCS CN MODIFIKASI

STUDI PERBANDINGAN ANTARA HIDROGRAF SCS (SOIL CONSERVATION SERVICE) DAN METODE RASIONAL PADA DAS TIKALA

BAB III METODA ANALISIS. desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa.

Modifikasi Hydrograf Satuan Sintetik Nakayasu Sungai Cisangkuy Dengan Metoda Optimasi

BAB I PENDAHULUAN. dan mencari nafkah di Jakarta. Namun, hampir di setiap awal tahun, ada saja

Gambar 3. Curah Hujan Rata-Rata Bulanan di Lima Stasiun di Jakarta Tahun (Sumber: BMG Jakarta)

BAB I PENDAHULUAN. DKI Jakarta terletak di daerah dataran rendah di tepi pantai utara Pulau

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG

REKAYASA HIDROLOGI II

Sungai dan Daerah Aliran Sungai

PENERAPAN KOLAM RETENSI DALAM PENGENDALIAN DEBIT BANJIR AKIBAT PENGEMBANGAN WILAYAH KAWASAN INDUSTRI

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

KAJIAN ANALISIS HIDROLOGI UNTUK PERKIRAAN DEBIT BANJIR (Studi Kasus Kota Solo)

DAERAH ALIRAN SUNGAI

Bab I Pendahuluan. I.1 Latar Belakang

ANALISA PENGARUH TOPOGRAFI DAN POLA TATA GUNA LAHAN TERHADAP ABSTRAKSI DAERAH ALIRAN SUNGAI BERDASARKAN MODEL RAINFALL RUNOFF

STUDI PENELUSURAN ALIRAN (FLOW ROUTING) PADA SUNGAI KRUENG TEUNGKU KEC. SEULIMUM KAB. ACEH BESAR

BAB V ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

PENDAHULUAN Latar Belakang

III. FENOMENA ALIRAN SUNGAI

BAB VI P E N U T U P

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

ANALISIS POTENSI LIMPASAN PERMUKAAN (RUN OFF) DI KAWASAN INDUSTRI MEDAN MENGGUNAKAN METODE SCS

BAB IV ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

PENGARUH HUJAN EKSTRIM DAN KONDISI DAS TERHADAP ALIRAN

Spektrum Sipil, ISSN Vol. 2, No. 2 : , September 2015

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

PERENCANAAN SISTEM DRAINASE DI DAERAH ALIRAN SUNGAI (DAS) KALI DAPUR / OTIK SEHUBUNGAN DENGAN PERKEMBANGAN KOTA LAMONGAN

ANALISA DEBIT BANJIR SUNGAI BONAI KABUPATEN ROKAN HULU MENGGUNAKAN PENDEKATAN HIDROGRAF SATUAN NAKAYASU. S.H Hasibuan. Abstrak

PEMBUATAN PETA TINGKAT KERAWANAN BANJIR SEBAGAI SALAH SATU UPAYA MENGURANGI TINGKAT KERUGIAN AKIBAT BENCANA BANJIR 1 Oleh : Rahardyan Nugroho Adi 2

BAB I PENDAHULUAN 1.1 Latar Belakang

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

I. PENDAHULUAN I.1 Latar Belakang I.2 Tujuan II. TINJAUAN PUSTAKA 2.1 Daur Hidrologi

ANALISIS VOLUME TAMPUNGAN KOLAM RETENSI DAS DELI SEBAGAI SALAH SATU UPAYA PENGENDALIAN BANJIR KOTA MEDAN

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN PENDAHULUAN Uraian Umum

Surface Runoff Flow Kuliah -3

ANALISIS LIMPASAN LANGSUNG MENGGUNAKAN METODE NAKAYASU, SCS, DAN ITB STUDI KASUS SUB DAS PROGO HULU

Limpasan (Run Off) adalah.

I. PENDAHULUAN. angin bertiup dari arah Utara Barat Laut dan membawa banyak uap air dan

Modul 3 ANALISA HIDROLOGI UNTUK PERENCANAAN SALURAN DRAINASE

Bab V Analisa dan Diskusi

PENDUGAAN TINGKAT SEDIMEN DI DUA SUB DAS DENGAN PERSENTASE LUAS PENUTUPAN HUTAN YANG BERBEDA

Tahun Penelitian 2005

BIOFISIK DAS. LIMPASAN PERMUKAAN dan SUNGAI

HIDROLOGI. 3. Penguapan 3.1. Pendahuluan 3.2. Faktor-faktor penentu besarnya penguapan 3.3. Pengukuran Evaporasi 3.4. Perkiraan Evaporasi

BAB III METODOLOGI PENELITIAN. Lokasi penelitian terletak di Bandar Lampung dengan objek penelitian DAS Way

ANALISIS DEBIT BANJIR RANCANGAN BANGUNAN PENAMPUNG AIR KAYANGAN UNTUK SUPLESI KEBUTUHAN AIR BANDARA KULON PROGO DIY

M. Tamam Ilman 1, Donny Harisuseno 2, A. Tunggul Sutan Haji 3.

dasar maupun limpasan, stabilitas aliran dasar sangat ditentukan oleh kualitas

ANALISA PENINGKATAN NILAI CURVE NUMBER TERHADAP DEBIT BANJIR DAERAH ALIRAN SUNGAI PROGO. Maya Amalia 1)

Bab IV Metodologi dan Konsep Pemodelan

APLIKASI SIG UNTUK EVALUASI SISTEM JARINGAN DRAINASE SUB DAS GAJAHWONG KABUPATEN BANTUL

Peranan Curah Hujan dan Aliran Dasar Terhadap Kejadian Banjir Jakarta

PERSYARATAN JARINGAN DRAINASE

DAFTAR PUSTAKA. Setia Graha, Gneis : REKAYASA HIDROLOGI, Universitas Mercubuana, Jakarta.

Analisa Debit Banjir Sintetis. Engineering Hydrology Lecturer: Hadi KARDHANA, ST., MT., PhD.

HYDROGRAPH HYDROGRAPH 5/3/2017

PENGARUH PERUBAHAN PENGGUNAAN LAHAN TERHADAP DEBIT PUNCAK PADA SUBDAS BEDOG DAERAH ISTIMEWA YOGYAKARTA. R. Muhammad Isa

ANALISIS PENGARUH BACK WATER (AIR BALIK) TERHADAP BANJIR SUNGAI RANGKUI KOTA PANGKALPINANG

Gambar 1.1 DAS Ciliwung

IV. HASIL DAN PEMBAHASAN. tersebut relatif tinggi dibandingkan daerah hilir dari DAS Ciliwung.

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pengembangan perumahan di perkotaan yang demikian pesatnya,

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG

I. PENDAHULUAN 1.1. Latar Belakang

SKRIPSI SUYANTI X. Oleh

PERUBAHAN KECEPATAN ALIRAN SUNGAI AKIBAT PERUBAHAN PELURUSAN SUNGAI

BAB I PENDAHULUAN. karena curah hujan yang tinggi, intensitas, atau kerusakan akibat penggunaan lahan yang salah.

PROSEDUR DALAM METODA RASIONAL

BAB IV HASIL DAN ANALISIS

PENGEMBANGAN POTENSI SUMBERDAYA AIR PERMUKAAN

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Tujuan: Peserta mengetahui metode estimasi Koefisien Aliran (Tahunan) dalam monev kinerja DAS

BANJIR JABODETABEK DITINJAU DARI ASPEK DAYA DUKUNG LAHAN WILAYAH

II. TINJAUAN PUSTAKA 2.1. Aliran Permukaan 2.2. Proses Terjadinya Aliran Permukaan

IV. HASIL DAN PEMBAHASAN

ESTIMASI DEBIT PUNCAK BERDASARKAN BEBERAPA METODE PENENTUAN KOEFISIEN LIMPASAN DI SUB DAS KEDUNG GONG, KABUPATEN KULONPROGO, YOGYAKARTA

Bab III Metodologi Analisis Kajian

PENGARUH PERUBAHAN AREAL KEDAP AIR TERHADAP AIR PERMUKAAN. Achmad Rusdiansyah ABSTRAK

BAB I PENDAHULUAN. secara topografik dibatasi oleh igir-igir pegunungan yang menampung dan

TINJAUAN PUSTAKA. Menurut Peraturan Menteri Kehutanan Nomor: P. 39/Menhut-II/2009,

1267, No Undang-Undang Nomor 4 Tahun 2011 tentang Informasi Geospasial (Lembaran Negara Republik Indonesia Tahun 2011 Nomor 49, Tambahan Lem

HIDROLOGI DAS CILIWUNG DAN ANDILNYA TERHADAP BANJIR JAKARTA 1

BAB IV HASIL DAN PEMBAHASAN

PETA SUNGAI PADA DAS BEKASI HULU

MEMBUAT TANGGUL DAN PENATAAN SISTEM DRAINASE DAPAT MENGURANGI GENANGAN AIRDALAM KOMPLEK PERUMAHAN SUNGAI PAWOH KOTA LANGSA

BAB I PENDAHULUAN. 1.1 Latar Belakang

Tinjauan Pustaka. Banjir pada dasarnya adalah surface runoff yang merupakan salah satu bagian dari siklus hidrologi. The Hydrologic Cycle

PERENCANAAN EMBUNG MEMANJANG DESA NGAWU KECAMATAN PLAYEN KABUPATEN GUNUNG KIDUL YOGYAKARTA. Oleh : USFI ULA KALWA NPM :

Perencanaan Sistem Drainase Pembangunan Hotel di Jalan Embong Sawo No. 8 Surabaya

Transkripsi:

HIDROGRAF SATUAN OBSERVASI DAERAH ALIRAN SUNGAI CILIWUNG HULU-KATULAMPA SEBAGAI BENCHMARKING MANAJEMEN BANJIR JAKARTA ARIANI BUDI SAFARINA Dosen Jurusan Teknik Sipil Universitas Jenderal Achmad Yani Jalan Terusan Jenderal Sudirman Cimahi 40532, Telepon/Fax : 022664743 Email: arianibudis@yahoo.com Abstrak Kunci Pengelolaan Sumberdaya Air Kota Jakarta dan sekitarnya adalah pengelolaan pada kondisi ekstrim maksimum dimana total rainfall yang terjadi melampaui kapasitas sungai sungai besar yang melalui kota ini yaitu Sungai Cisadane dan Sungai Ciliwung. Wilayah ini perlu mempunyai early warning yang tepat terhadap kondisi ekstrim muka air sungai di daerah hulu yang akan memberikan dampak signifikan terhadap meluapnya air di dalam kota dan mengakibatkan banjir. Daerah hulu wilayah sungai Ciliwung Cisadane yang dapat digunakan sebagai benchmarking manajemen banjir Jakarta dan sekitarnya adalah Daerah Aliran Sungai Ciliwung Hulu-Katulampa dengan luas 5 km 2. Berdasarkan penelitian yang telah dilakukan, hidrograf satuan observasi DAS ini menggunakan event hujan tanggal 7 Oktober 2006 didapatkan puncak debit pada Katulampa adalah 9.64 m 3 /s untuk satu mm hujan efektif dengan waktu puncak 4 jam sejak terjadinya hujan. Dengan laju abstraksi sebesar 6,0 mm/jam berdasarkan metoda Ø Indeks dihasilkan koefisien runoff DAS ini adalah 8,8% sehingga banjir pada tahun 996 yang diakibatkan oleh total rainfall 300 mm/hari mengakibatkan muka air Katulampa naik hingga 320 cm yang hampir mencapai muka air Katulampa tingkat siaga I yaitu 350 cm. Kata Kunci Abstraksi, Debit Puncak, Hidrograf Satuan Observasi, Total Rainfall, Waktu Puncak. PENDAHULUAN Berdasarkan Peraturan Mentri PU no. 22/PRT/M/2009 mengenai Pedoman Teknis dan Tatacara Penyusunan Pola Pengelolaan Sumber daya Air, pasal (), disebutkan bahwa pengelolaan sumber daya air adalah upaya merencanakan, melaksanakan, memantau, dan mengevaluasi penyelenggaraan konservasi sumber daya air, pendayagunaan sumber daya air, dan pengendalian daya rusak air. Pengendalian daya rusak air adalah upaya untuk mencegah, menanggulangi, dan memulihkan kerusakan kualitas lingkungan yang disebabkan oleh daya rusak air,yaitu daya air yang dapat merugikan kehidupan. Banjir yang seringkali terjadi di Jakarta adalah salah satu fenomena dari daya rusak air yang secara umum diakibatkan oleh meluapnya sungai sungai besar yang melalui kota ini yaitu sungai Ciliwung dan sungai Cisadane. Kota Jakarta terletak di dataran rendah dengan ketinggian rata rata 8 m diatas Manajemen dan Rekayasa Sumber Daya Air A-6

permukaan laut dengan luas 740 km 2, dan kepadatan penduduk 2978 jiwa/ km 2.[5] Berdasarkan konsep pengaliran air dalam suatu jaringan sungai di daerah aliran sungai (DAS), pengelolaan sumberdaya air yang utama bagi daerah hilir seperti ini adalah monitoring curah hujan ekstrim di hulu DAS.[] Daerah hulu DAS Ciliwung-Cisadane adalah DAS Ciliwung Hulu-Katulampa. DAS ini luasnya 5 km 2 dan kemiringan rata rata,5%. Dengan menggunakan hidrograf satuan observasi DAS ini, dapat dianalisis ketinggian muka air sungai di hilirnya yaitu wilayah kota Jakarta dan sekitarnya. Daerah aliran sungai Ciliwung Hulu terletak pada posisi -6.62 0 LU sampai -6.76 0 LU dan 06.83 0 BT sampai 07.00 0. Luas DAS ini adalah 5 Km 2 serta keliling sepanjang 58 Km 2. Kondisi tanah DAS ini memiliki 3 jenis tanah yaitu : Andosol, latosol dan Regosol.[2] Stasiun muka air Katulampa dan stasiun pengamatan hujan Cilember merupakan stasiun otomatis yang digunakan dalam analisa hydrologi.. Hidrograf satuan observasi dapat dibuat menggunakan metode konvolusi.[3] Metode ini menentukan debit dari perkalian konvolusi antara excess rainfall tiap jam dengan koordinat hidrograf satuan. Jika yang akan ditentukan adalah koordinat unit hydrograf, maka dilakukan perhitungan inversnya yang disebut dengan dekonvolusi. Persamaan metode konvolusi adalah sebagai berikut Q n = n m m= P m U n m+ () Q adalah outflow di oulet DAS, P adalah hujan efektif dan U adalah ordinat unit hidrograf observasi. Dalam menentukan aliran dasar banyak metode yang dapat digunakan diantaranya adalah metode garis lurus [3] seperti ditunjukkan pada gambar 2. Laju abstraksi dengan metode Ø Indeks yang mengasumsikan ditentukan menggunakan data curah hujan real time yaitu volume direct runoff dengan volume total rainfall seperti ditunjukkan pada persamaan laju abstraksi dari metode Ø Indeks sebagai berikut, M rd = ( Rm φ t) m= (2) Dimana rd adalah tinggi direct runoff dalam mm, R adalah curah hujan terbesar dalam suatu event curah hujan dalam mm, t adalah selang waktu diskrit dalam jam dan Ø adalah laju abstraksi dalam mm/jam. Hujan efektif adalah curah hujan yang turun tidak termasuk yang tertahan di lahan dan yang terinfiltrasi di tanah. Setelah mengalir melalui permukaan DAS, hujan efektif menjadi limpasan langsung pada outlet DAS dengan asumsi aliran overland dari horton. Grafik antara hujan efektif dan waktu atau hyetograf hujan efektif (ERH) merupakan komponen kunci dari studi tentang hubungan rainfall-runoff. Perbedaan antara hyetograf curah hujan total pada pengukuran observasi dengan hyetograf hujan efektif adalah abstraksi atau losses. Losses terutama karena infiltrasi, intersepsi dan tampungan air permukaan.[4] Koefisien pengaliran dapat ditentukan jika diketahui total rainfall dan volume hujan efektif berdassarkan persamaan berikut, C = r m= d R m (3) Dimana C adalah koefisien pengaliran. Air Permukaan adalah air yang tersimpan atau mengalir di permukaan bumi. Sistem air permukaan terdiri dari proses aliran di lahan Manajemen dan Rekayasa Sumber Daya Air A-62

(overland flow), limpasan permukaan (surface runoff), outflow dari aliran bawah permukaan (subsurface) dan air tanah (groundwater) dan limpasan (runoff) ke sungai dan laut. [4] Dua jenis aliran dapat dibedakan secara mendasar yaitu aliran di lahan (overland flow) dan aliran di saluran (channel flow). Aliran lahan mempunyai lapisan tipis dengan permukaan yang luas, sedangkan aliran saluran merupakan aliran di dalam saluran yang lebih sempit dan dalam lintasan yang terbatas. Pada DAS yang natural, aliran lahan merupakan awal mekanisme pengaliran air permukaan namun hanya dapat bertahan pada jarak yang pendek (sampai dengan 00ft) sebelum ketidakseragaman permukaan DAS memusatkan aliran pada saluran yang berlikuliku. Secara bertahap, dari saluran sungai sungai kecil ini bergabung ke saluran saluran yang terakumulasi ke arah hilir dan membentuk aliran di outlet DAS. Aliran air permukaan mengikuti prinsip prinsip kontinuitas dan momentum. Aplikasi prinsip prinsip tersebut untuk aliran unsteady tiga dimensi pada permukaan DAS memungkinkan hanya untuk kondisi yang sangat disederhanakan, sehingga asumsi yang digunakan adalah satu atau dua dimensi [5]. Waktu pengaliran suatu aliran dari suatu tutik pada DAS ke titik lainnya dapat dideduksi dari jarak aliran dan kecepatan.[6] Jika dua titik dalam sungai berjarak L dan kecepatan sepanjang lintasan itu adalah v(l), maka waktu pengaliran t adalah: dl = v(l) dt (4) t L dl dt = v( l (5) 0 0 ) t = L dl v( l (6) 0 ) Jika kecepatan diasumsikan konstan vi pada panjang Λ li, dimana i=,2,...,l, maka t = l vi (7) l i= i Karena waktu pengaliran ke outlet DAS, hanya sebagian dari DAS yang mengkontribusi aliran permukaan pada setiap waktu t. Daerah yang mengkontribusi aliran dalam DAS, dapat dilihat pada Gambar 3. Jika hujan dengan intensitas konstan i mulai jatuh dan terus berlangsung lama, maka permukaan bagian dengan garis putus-putus t akan mengkontribusi debit sungai dalam DAS, demikian juga setelah t 2, adalah permukaan dengan garis putus-putus t 2. Batas t dan t 2 tersebut disebut isokhron. Waktu dimana seluruh DAS mulai mengkontribusi debit, disebut waktu konsentrasi T c, ini adalah waktu pengaliran dari titik terjauh ke outlet DAS.[7] 2. METODOLOGI Pada penelitian ini digunakan peta rupa bumi skala : 25000 yang merupakan peta dasar yang disusun dan dioverlapkan kemudian didigitasi ulang menjadi peta hidrologi DAS Ciliwung Hulu yang berbasis Sistem Informasi Geografis (SIG) dan dilengkapi dengan koordinat stasiun Katulampa dan stasiun Cilember. Peta hidrologi DAS Ciliwung Hulu-Katulampa ditunjukkan pada gambar. Hidrograf satuan observasi dibuat berdasarkan event curah hujan tanggal 7 Oktober 2006 dan data elevasi muka air di Manajemen dan Rekayasa Sumber Daya Air A-63

Katulampa untuk waktu yang sama. Laju abstraksi diasumsikan konstan dan aliran dasar ditentukan menggunakan metode garis lurus. 3. HASIL PENELITIAN Perhitungan ordinat hidrograf satuan observasi DAS Ciliwung Hulu-Katulampa dengan event hujan tanggal 7 Oktober 2006, abstraksi dengan metode Ø Indeks, dan metode stright line untuk menentukan base flow, dapat dilihat pada Tabel. Berdasarkan tabel ini waktu puncak terjadi 4 jam sejak awal terjadi curah hujan dan debit puncak untuk tiap mm hujan efektif adalah 9.64 m 3 /s. Dari hasil perhitungan didapat debit baseflow adalah 2 m 3 /s, laju abstraksi konstan 6,0 mm/jam dan ketinggian hujan efektif 7,99 mm. Dengan menggunakan persamaan (3) di atas dapat ditentukan bahwa koefisien pengaliran adalah 8,8%. Hidrograf satuan observasi DAS Ciliwung Hulu- Katulampa dapat dilihat pada gambar 4. Berdasarkan Ciliwung Cisadane Water Resources Project [7] tingkat siaga banjir DKI Jakarta dibagi dalam empat tingkat siaga banjir yaitu mulai dari yang paling dini yaitu siaga 4, siaga 3, siaga 2 dan siaga. Benchmarking pencatatan tingkat siaga tersebut adalah 0 pos pencatatan mulai dari yang paling hulu yaitu Katulampa, Depok, Pintu Air manggarai, Pintu Air Karet, Pintu Air Pulo Gadung, Pintu Air Sunter, Pintu Air pesanggrahan, Sunter Hulu, Cakung Drain dan Cengkareng Drain. Benchmarking siaga banjir dan benchmarking curah hujan total yang dapat meningkatkan tinggi muka air Katulampa berdasarkan hidrograf satuan observasi yang diperoleh di atas, dapat dilihat pada tabel 2 4. DISKUSI Hidrograf satuan observasi yang dihasilkan dalam penelitian ini ditentukan berdasarkan event curah hujan tanggal 7 Oktober 2006. Pemilihan event curah hujan ini ditentukan secara acak untuk storm rainfall dengan kontrol dua curah hujan pada event yang lain yang menghasilkan hidrograf satuan observasi yang sangat mendekati. Kondisi musim yang berhubungan dengan kelembaban tanah sebelum terjadi curah hujan dalam hal ini tidak dianalisa, dan laju abstraksi diasumsikan konstan pada setiap musim. Dalam aplikasi hidrograf satuan hasil penelitian untuk menganalisa banjir Jakarta digunakan data penentuan tingkat siaga banjir dan rating curve Katulampa berdasarkan Ciliwung Cisadane Project. Manajemen banjir dalam hal ini adalah memberikan early warning banjir Jakarta dengan melihat tinggi curah hujan dari waktu ke waktu pada event curah hujan, terutama pada tinggi curah hujan maksimum yang menyebabkan daerah Jakarta dan sekitarnya dalam kondisi siaga 4 yaitu jika curah hujan total mulai di atas 93 mm. 5. KESIMPULAN Hidrograf satuan observasi di daerah hulu dapat digunakan untuk memprediksi tingkat siaga banjir di daerah hilirnya berdasarkan curah hujan total yang dapat dibaca pada stasiun curah hujan otomatis. Early warning terhadap banjir ini dapat dilakukan dengan lebih sederhana dan lebih informatif terhadap masyarakat. Hidrograf satuan observasi ini akan berubah berdasarkan perubahan DAS dan tata guna lahannya, karena itu perlu dievaluasi setiap periode tertentu sesuai dengan laju perubahan tata guna lahan. Evaluasi terus menerus juga perlu dilakukan pada pengukuran penampang sungai untuk menentukan rating curve. Manajemen dan Rekayasa Sumber Daya Air A-64

Penampang sungai dapat berubah sesuai dengan fungsi penggunaan sungai dan pola tataguna lahan. UCAPAN TERIMAKASIH Penulis mengucapkan terimakasih kepada Direktorat Jenderal Pendidikan Tinggi yang telah memberikan dana Penelitian Hibah Doktor yang penulis terima dan DAS Ciliwung Hulu adalah salah satu DAS yang menjadi lokasi studi dalam penelitian disertasi. REFERENCES [] Ariani Budi Safarina, Hang Tuah salim, Iwan K hadihardaja, M Syahril BK(2009), Validity Analysis of Synthetic Unit Hydrograph Methods for Accuracy Flood Discharge Estimation, Prosiding Seminar International SIBE "Sustainable Infrastructure and Built Environment in Developing Countries, Bandung, 2-3 November 2009, No. ISBN : 978-979- 98278-2-, Hal 63 sd 68Vol. 2, No.. [2] Sutan Haji Tunggul, (2005), Integrasi Model Hidrologi Sebar Keruangan Dan Sistem Informasi Geografis Untuk Prognosa Banjir Daerah Aliran Sungai, Disertasi, ITB Bandung [3] Chow VT, Maidment and Mays Larry W.,988 Applied Hidrologi, McGraw-Hill International Edition [4] Das Ghanshyam,2002, Hydrology and Soil Conservation Engineering,, Prentice-Hall of India, New Delhi [5] Gupta Ram S, 989, Hydrology and Hydraulic System, Prentice Hall New Jersey. [6] Gray, D.M., 96 : Interrelationships of watershed characteristics, J. Geophys. Res.66. [7] Ministry of Public Works (2005), Ciliwung-Cisadane Water Resources Project, Republic of Indonesia.. Debit Gambar. Peta Hidrologi DAS Ciliwung Hulu-Katulampa Gambar 2 Beberapa Cara Pemisahan Aliran Dasar outlet Gambar 3. Peta Isokhorn b Titik Belok t N (a) Metoda garis Lurus (b) Metoda Aliran Dasar Fixed t2 a Waktu Manajemen dan Rekayasa Sumber Daya Air A-65

Gambar 4. Hidrograf Satuan Observasi DAS Ciliwung Hulu-Katulampa Gambar 5 Rating Curve Katulampa Tabel Perhitungan Hidrograf Tabel 2 Benchmarking Total Rainfall Tingkat Siaga Y Katulampa (cm) Debit Katulampa (m 3 /s) Curah Hujan Total (mm) I 350 600 33 II 240 400 229 III 70-240 240-400 32-229 IV 80 sd 70 sd 240 93-32 Manajemen dan Rekayasa Sumber Daya Air A-66