SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS*

dokumen-dokumen yang mirip
BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI. III, aspek keseluruhan dimulai dari Bab I hingga Bab III, maka dapat ditarik

pengendali Konvensional Time invariant P Proportional Kp

TUGAS AKHIR RESUME PID. Oleh: Nanda Perdana Putra MN / 2010 Teknik Elektro Industri Teknik Elektro. Fakultas Teknik. Universitas Negeri Padang

BAB IV PENGUJIAN DAN ANALISA HASIL SIMULASI

BAB 4 SIMULASI MODEL MATEMATIS CSTR BIODIESEL

Kontrol PID Pada Miniatur Plant Crane

SIMULATOR RESPON SISTEM UNTUK MENENTUKAN KONSTANTA KONTROLER PID PADA MEKANISME PENGENDALIAN TEKANAN

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

BAB II TINJAUAN PUSTAKA. Penelitian sebelumnya berjudul Feedforward Feedback Kontrol Sebagai

LAPORAN TUGAS AKHIR. Untuk Memenuhi Persyaratan Mencapai Pendidikan Diploma III (DIII) Disusun Oleh : Choiruzzad Fahri NIM.

UJI PERFORMANSI PADA SISTEM KONTROL LEVEL AIR DENGAN VARIASI BEBAN MENGGUNAKAN KONTROLER PID

BAB III DINAMIKA PROSES

Perancangan Sistem Kontrol Posisi Miniatur Plant Crane dengan Kontrol PID Menggunakan PLC

BAB II DASAR TEORI. kontrol, diantaranya yaitu aksi kontrol proporsional, aksi kontrol integral dan aksi

Desain PI Controller menggunakan Ziegler Nichols Tuning pada Proses Nonlinier Multivariabel

BAB II LANDASAN TEORI

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

Makalah Seminar Tugas Akhir

Sistem Redundant PLC (Studi Kasus Aplikasi Pengontrolan Plant Temperatur Air)

PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME

DESAIN DAN IMPELEMENTASI KENDALI PID PADA BEAM AND BALL SYSTEM

RESPON SISTEM DITINJAU DARI PARAMETER KONTROLER PID PADA KONTROL POSISI MOTOR DC

PEMODELAN SISTEM TUNGKU AUTOCLAVE ME-24

Syahrir Abdussamad, Simulasi Kendalian Flow Control Unit G.U.N.T Tipe 020 dengan Pengendali PID

Sidang Tugas Akhir - Juli 2013

Yogyakarta 55281, Indonesia. Yogyakarta 55281, Indonesia. Yogyakarta 55281, Indonesia

peralatan-peralatan industri maupun rumah tangga seperti pada fan, blower, pumps,

BAB 2 LANDASAN TEORI

IMPLEMENTASI SENSOR KAPASITIF DALAM SISTEM KONTROL KADAR ETANOL

BAB VII METODE OPTIMASI PROSES

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

ABSTRAK dan EXECUTIVE SUMMARY PENELITIAN DOSEN PEMULA

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

PERANCANGAN ATTEMPERATURE REHEAT SPRAY MENGGUNAKAN METODE ZIEGLER NICHOLS BERBASIS MATLAB SIMULINK DI PT. INDONESIA POWER UBP SURALAYA

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

Pengontrol PID pada Robot Beroda untuk Kontes Robot Cerdas Indonesia

Purwarupa Sistem Kendali PID: Studi Kasus Kendali Suhu Ruang

Perancangan SCADA pada Mini Plant Proses Pengendalian Level

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

PENGENDALI PID. Teori kendali PID. Nama Pengendali PID berasal dari tiga parameter yg secara matematis dinyatakan sebagai berikut : dengan

Perancangan Sistem Pengendalian Tekanan dan Laju Aliran Untuk Kebutuhan Refueling System Pada DPPU Juanda-Surabaya

Kendali Perancangan Kontroler PID dengan Metode Root Locus Mencari PD Kontroler Mencari PI dan PID kontroler...

Alat Penentu Parameter PID dengan Metode Ziegler-Nichols pada Sistem Pemanas Air

Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve

BAB 4 SIMULASI DAN ANALISA

Aplikasi Kendali PID Menggunakan Skema Gain Scheduling Untuk Pengendalian Suhu Cairan pada Plant Electric Water Heater

IMPLEMENTASI PENGONTROL PID PADA MODEL FISIS ELEKTRONIK

KONTROL PROPORSIONAL INTEGRAL DERIVATIF (PID) UNTUK MOTOR DC MENGGUNAKAN PERSONAL COMPUTER

JURNAL TEKNOLOGI INFORMASI & PENDIDIKAN ISSN : VOL. 4 NO. 1 SEPTEMBER 2011

TUNING PARAMETER PID DENGAN METODE CIANCONE PADA PLANT HEAT EXCHANGER

SIMULASI KONTROL PID UNTUK MENGATUR PUTARAN MOTOR AC

REALISASI PROTOTIPE KURSI RODA LISTRIK DENGAN PENGONTROL PID

PERANCANGAN SISTEM PENGENDALIAN PEMBAKARAN PADA DUCTBURNER WASTE HEAT BOILER (WHB) BERBASIS LOGIC SOLVER

III.11 Metode Tuning BAB IV PELAKSANAAN PENELITIAN IV.1 Alat Penelitian IV.2 Bahan Penelitian IV.3 Tata Laksana Penelitian...

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

yang dihasilkan sensor LM35 karena sangat kecil. Rangkaian ini adalah tipe noninverting

PENGENDALIAN LINGKUNGAN PERTANIAN

OTOMASI SISTEM DESTILASI MENGGUNAKAN PLC OMRON CP1H DAN KONTROL SUHU DENGAN KENDALI AUTO TUNING PID DALAM PENAMPIL SCADA

ISSN : e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 555

Simulasi Control System Design dengan Scilab dan Scicos

RANCANG BANGUN SISTEM KONTROL TEMPERATUR UNTUK PROSES PENDINGINAN MENGGUNAKAN TERMOELEKTRIK

ANALISIS PENERAPAN PID CONTROLLER PADA AVR (AUTOMATIC VOLTAGE REGULATOR)

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

BAB II TINJAUAN PUSTAKA

Perancangan dan Simulasi Autotuning PID Controller Menggunakan Metoda Relay Feedback pada PLC Modicon M340. Renzy Richie /

PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU. Jl. Prof. H. Soedarto, S.H.

ANALISIS PENGGUNAAN POWER SYSTEM STABILIZER (PSS) DALAM PERBAIKAN STABILITAS TRANSIEN GENERATOR SINKRON

PENGENDALI POSISI MOTOR DC DENGAN PID MENGGUNAKAN METODE ROOT LOCUS

PENGENDALIAN PROSES EVAPORASI PADA PABRIK UREA MENGGUNAKAN KENDALI JARINGAN SARAF TIRUAN

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

PEMODELAN SISTEM PENGENDALI PID DENGAN METODE CIANCONE BERBASIS MATLAB SIMULINK PADA SISTEM PRESSURE PROCESS RIG

PERANCANGAN SISTEM PEGENDALI SUHU PADA PROTOTYPE GREEN HOUSE DENGAN METODE TUNNING PID MENGGUNAKAN JARINGAN SARAF TIRUAN

Tuning Parameter Pengendali MIMO IMC pada Proses Quadruple Tank

Institut Teknologi Sepuluh Nopember PERANCANGAN SISTEM PENGENDALIAN TEKANAN DAN FLOW UNTUK KEBUTUHAN REFUELING SYSTEM PADA DPPU JUANDA SURABAYA

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

BAB I PENDAHULUAN. Motor listrik adalah mesin listrik yang mengubah energi listrik ke energi

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR

Diah Ayu Oktaviani et al., PID Ziegler Nicholz Untuk Pengendalian Load Frequency Control PLTU Paiton Baru

PERANCANGAN SISTEM PENGENDALIAN LEVEL DAN INTERLOCK STEAM DRUM DENGAN DUA ELEMEN KONTROL DI PT. INDONESIA POWER UBP SUB UNIT PERAK.

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

Moh. Khairudin, PhD. Lab. Kendali T. Elektro UNY. Bab 8 1

DAFTAR ISI. SKRIPSI... ii

DESAIN KONTROL PID UNTUK MENGATUR KECEPATAN MOTOR DC PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci:

BAB 2 DASAR TEORI. Universitas Indonesia. Pemodelan dan..., Yosi Aditya Sembada, FT UI

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. suatu lingkungan tertentu. Mobile-robot tidak seperti manipulator robot yang

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

Penerapan Sistem Kendali PID pada Antena Pendeteksi Koordinat Posisi UAV

Pembuatan Mesin Pengering Manisan Nanas Menggunakan Mikrokontroler Atmega16 sebagai Alat Bantu Praktikum Pengeringan pada Prodi TPHP di SMKN 1 Pujon

DESAIN PENGONTROL MULTI INPUT MULTI OUTPUT LINEAR QUADRATIK PADA KOLOM DISTILASI

IDENTIFIKASI DAN DESAIN CONTROLLER PADA TRAINER FEEDBACK PRESSURE PROCESS RIG Satryo Budi Utomo, Universitas Jember

PEMBELAJARAN SISTEM KONTROL DENGAN APLIKASI MATLAB

Oleh : Dia Putranto Harmay Dosen Pembimbing : Ir. Witantyo, M.Eng. Sc

Transkripsi:

Jurnal Natural Vol.16, No.2, 2016 ISSN 1141-8513 SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS* Muhammad Ikhwan *, Said Munzir, dan Nurmaulidar Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Syiah Kuala, Darussalam - Banda Aceh * Email: muhammad.ikhwan10@gmail.com Abstract. This research showed the application of Proportional, Integral, and Derivative (PID) control system on heat equations that has non-integer ordered solutions on Laplace domain. Zala tuning method and Ziegler-Nichols method; which is ultimate cycle and process reaction method, are used to determine the value of K p, T i and T d as constants in PID to maintain the temperature of 1 o C on the position of x = 3 m from the heat source with k = 0,042 m 2 s -1 diffusivity. Based on the results, there were ten systems that were closest in the desired criteria. With regards to overshoot and the time taken to reach the stable position, therefore the ten systems that are produced have not many differences in strengths and weaknesses. Keywords: PID, Persamaan Panas, Ziegler-Nichols, Ultimate Cylce, Process Reaction. I. PENDAHULUAN Persamaan panas dapat didefinisikan sebagai persamaan yang menggambarkan proses merambatnya panas, pengaruh fluks panas, atau temperatur terhadap medium. Persamaan panas dapat dipahami pada perambatan panas pada batang logam homogen, perambatan panas pada benda yang berupa luasan, misalnya lempeng logam, dan perambatan panas pada medium yang tidak berbentuk seperti air dan udara. Sebagian besar perlengkapan rumah tangga dengan sistem otomatis menggunakan energi listrik yang diubah menjadi panas. Selain hasil utama, panas juga berupa hasil sampingan dari aktivitas mesin. Difusi panas diatur oleh persamaan diferensial parsial linear dalam bentuk [1]: (1) Dimana k adalah difusivitas, t adalah waktu, u adalah suhu dan x adalah posisi i dalam koordinat Cartesian. Sistem ini melibatkan solusi persamaan diferensial parsial ( PDP) tipe parabola yang berdasarkan teori menjamin adanya solusi yang unik [2]: (2) dengan menerapkan invers transformasi Laplace, diperoleh solusi [3]: (3) Pengendalian persamaan panas memiliki karakteristik tersendiri yang disebabkan oleh solusi berorde tidak bulat pada domain Laplace [2]. Solusi persamaan panas didekati dengan metode Crank-Nicholson, sedangkan sistem kendali yang digunakan adalah proportional plus integral plus derivative (PID) pada posisi x = 3 dari sumber panas dan difusivitas k=0,042 m 2 s -1 untuk mencapai suhu 1 o C. Komponen yang menjadi pengontrol adalah konstanta proporsional K p, integral time constant T i, dan derivative time 10 *Judul ini telah dipresentasikan pada Seminar Nasional: Indonesian Students Conference on Science and Mathematics (ISCSM) 11-12 November 2015, Banda Aceh Indonesia

Sistem Kendali Proporsional, Integral, Dan Derivatif (Pid) Pada Persamaan Panas Gambar 1. Strategi sistem kendali persamaan panas dengan sistem kendali PID [4]: constant T d. Strategi sistem kendali persamaan panas dapat dilihat pada Gambar 1, dimana (4) dengan. (5) persamaan (4) diubah dalam domain Laplace, pengontrol memiliki fungsi transfer: (6) Bolton [5] mengatakan bahwaa metode empiris yang sering digunakan untuk penalaan adalah metode Ziegler dan Nichols. Metode ini beranggapan bahwa fungsi transfer siklus terbuka dapat didekati dengan sistem orde satu dengan waktu tunda dan dapat dikembangkan dua prosedur tala. Metode yang pertama disebut metode ultimate cycle berdasarkan pada hasil dari tes loop tertutup, dan yang kedua disebut metode process reaction berdasarkan pada hasil dari tes loop terbuka. Keduanya dirancang untuk memberikan pengaturan yang mengakibatkan teredam sementara berdasarkan respon/tanggapan dengan rasio peluruhan ¼. II. METODOLOGI PENELITIAN Ultimate cycle Prosedur tala dengan metode ultimate cycle [5] adalah sebagai berikut: 1. Pengontrol diatur ke operasi manual dekat dengan kondisi operasi normalnya. 2. Semua kontrol dimatikan kecuali proporsional. 3. K p diatur ke nilai yang kecil terlebih dahulu. 4. Pengontrol diatur kembali ke operasi otomatis, kemudian diperoleh set point yang berubah 5 s.d. 10%. 5. Respon diteliti. 6. K p diatur ke nilai yang lebih besar. 7. Set point yang diperoleh berubah 5 s.d. 10%. 8. Respon diteliti. 9. Prosedur 6, 7, dan 8 diulangi sampai respon menunjukkan osilasi berkelanjutan yang tidak tumbuh atau meluruh. Perhatikan nilai K p yang memberikan kondisi ini disebut K pu dan periode dari osilasi disebut T u. 10. Tabel berikut digunakan untuk menentukan pengontrol yang optimal. Tabel 1. Pengaturan berdasarkan metode ultimate cycle Tipe pengontrol K p T i T d P 0,5 K pu PI 0,45 K pu T u/1,2 PID 0,6 K pu T u/2 T u/8 Process reaction Prosedur tala dengan metode process reaction [2] adalah sebagai berikut: 1. Loop kontrol dibuka, elemen kontrol dan elemen koreksi dibentuk dalam bentuk umum. 2. Pengontrol diatur ke operasi manual dan plantdekat dengan kondisi operasi normalnya. 3. Perubahan step yang kecil digunakan untuk elemen koreksi dan catat respon sistem (Gambar 2). Penentuan K p, T i, dan T d yang Optimal K p,t i,dan T d yang diperoleh dari pengendalian menggunakan PID dengan metode tala ultimate cycle dan metode tala process reaction selanjutnya di analisa. Kriteria pengendalian yang 11

Sistem Kendali Proporsional, Integral, Dan Derivatif (Pid) Pada Persamaan Panas ingin dicapai adalah waktu delay yang cepat, overshoot < 30%, waktu yang dibutuhkan naik dari 10% ke 90% yang cepat, waktu yang dibutuhkan untuk mencapai puncak pertama yang cepat, dan waktu yang dibutuhkan respon sistem stabil di steady state yang cepat (Tabel 2). Gambar 2. Step respon system orde pertamadengan waktu tunda Tabel 2. Pengaturan berdasarkan metodee process reaction [6] Tipe pengontrol K p T i T d P 1/a PI 9/a 3T PID 1,2/a 2T T/2 Gambar 4. Diagram alir pengendalian persamaan panas III. HASIL DAN PEMBAHASAN Modifikasi strategi sistem kendali Modifikasi strategi sistem kendali persamaan panas berupa modifikasi domain frekuensi ke domain waktu. Berdasarkan modifikasi strategi diperoleh kerangka strategi sistem kendali persamaan panas dalam domain waktu dapat dilihat pada Gambar 3 dengan diagram alir penyelesaian pada Gambar 4. Gambar 5. Metode ultimate cycle, K p = 13 Pada tahap ini dapat diambil nilai K pu yaitu K pu = K p = 13. Nilai T u ditentukan dengan mengamati periode osilasi respon yaitu periode osilasi T u = 0,02 (Gambar 5). Gambar 3. Strategi sistem kendali PID pada persamaan panas hasil modifikasi Metode tala ultimate cycle Pada metode ini, penggunaan pengontrol proporsional dimulai dengan nilai yang kecil pada awal pengontrolan. Pada proses pengontrolan dengan K p = 13 diperoleh hasil yang memiliki osilasi berkelanjutan dan berpotensi menghasilkan nilai K pu dan T u. Tabel 3. Proses tala metode ultimate cycle Tipe K pengontrol p T i T d T 0.6 K u/2 T u/8 PID pu =0,02/2 =0,02/8 =7,8 =0,01 =0,0025 Berdasarkan hasil dari Tabel 3, sistem kendali PID pada persamaan panas menggunakan metode ultimate cycle menghasilkan kendali seperti Gambar 6. Gambar tersebut menunjukkan sistem membutuhkan waktu delay t d = 6,27 detik untuk naik 50% atau 0,5 o C. Waktu yang dibutuhkan sistem untuk naik dari 10% (0,1 o C) ke 90% (0,9 o C) adalah t r = 1,44 detik. 12

Sistem Kendali Proporsional, Integral, Dan Derivatif (Pid) Pada Persamaan Panas Gambar 6. Hasil sistem kendali menggunakan metode ultimate cycle Ditinjau dari grafik hubungan waktu dan suhu, sistem persamaan panas hanyaa mengalami satu kali overshoot. Sistem ini mengalami suhu tertinggi pada waktu t p = 8,95 detik yaitu sebesar 3,138 o C. Prosentase overshoot maksimum adalah 213,83%. Sistem persamaan panas dengan konstanta proporsional = 7,8, waktu konstan integral = 0,01, dan waktu konstan derivatif = 0,0025 menunjukkan respon yang menuju posisi yang stabil yaitu steady state 1 o C saat waktu t s = 16 detik. Metode tala process reaction Metode ini dimulai dengan membentuk elemen general untuk mendapatkan nilai pengontrol pada sistem kendali PID. Pembentukan dimulai dengan menggambarkan grafik persamaan panas pada kondisi normalnya seperti Gambar 7. Suhu tertinggi yang dapat dicapai persamaan panas ini adalah 0,0746 yang selanjutnya disebut k p = 0,0746. Proses selanjutnya adalah menentukan garis yang menyinggung gambar operasi normalnya. Titik yang diambil adalah A(45,0.0746) dan B(10,0). Selanjutnya dibuat garis dari titik A dan B yang menghasilkan persamaan garis. Gambar 7 menunjukkan persamaan garis tersebut dan dapat bersinggungan dengan respon operasi normalnya, dimana T = 10, = 35 dan = 0.0213 yang menghasilkan: (7) Gambar 7. Grafik pembentukan elemen general Tabel 4. Proses tala metode process reaction Tipe pengontrol PID K p T i T d 1.2/a =1.2/0.0213 2T =2 x 10 =20 T/2 =10/2=5 Berdasarkan hasil dari Tabel 4, sistem kendali PID pada persamaan panas menggunakan metode ultimate cycle menghasilkan kendali seperti Gambar 8. Berdasarkan gambar tersebut maka sistem persamaan panas memiliki delay dan overshoot. Suhu yang terus meningkat menunjukkan sistem tidak mampu mempertahankan suhu yang diinginkan. Sistem ini menunjukkan respon yang tidak stabil dan tidak sesuai dengan posisii yang diinginkan yaitu steady state = 1 o C. 13

Sistem Kendali Proporsional, Integral, Dan Derivatif (Pid) Pada Persamaan Panas derivatift d, sehingga sistem dapat berjalan dengan baik. Konstanta integral Ki optimum Gambar 8. Hasil sistem kendali menggunakan metode process reaction Konstanta proporsional K p optimum Metode tala ultimate cycle mampu mengendalikan persamaan panas menuju posisi masukan yang diinginkan yaitu steady state sebesar 1 o C. Perubahan konstanta proporsional K p dilakukan hingga puncak overshoot mendekati set point seperti yang ditunjukkan oleh Tabel 5. Tabel tersebut menunjukkan bahwa penurunan nilai konstanta proporsional menyebabkan penurunan prosentase overshoot, namun berbanding terbalik dengan parameter lain yang menunjukkan peningkatan nilai. Waktu yang dibutuhkan untuk mencapai 50% steady state, mencapai puncak pertama, dan mencapai kestabilan di steady state semakin meningkat. Hal yang sama juga ditunjukkan oleh rasio penurunan, namun berbeda dengan jumlah osilasi sebelum steady state. Parameter sistem pada K p = 7 menunjukkan waktu delay yang cepat, waktu naik yang pendek, waktu saat puncak pertama yang cepat dan waktu stabil yang cepat. Kelebihan yang terlihat dari waktu tidak dapat menjamin K p ini menjadi K p optimum, karena overshoot yang terbentuk masih sangat besar. Overshoot menunjukkan suhu tertinggi yang terjadi pada sistem. Hal ini juga dialami oleh sistem dengan K p = 5, K p = 1, K p = 0,5, K p = 0,1, dan K p = 0,05. Sistem persamaan panas pada a K p = 0,01 telah menunjukkan hasil yang baik. Hal ini telah memenuhi kriteria pengendaliann yaitu overshoot< 30% dan waktu parameter yang cepat. Sistem persamaan panas pada K p = 0,0075, K p = 0,005, dan K p = 0,0035 memiliki prosentase overshoot kurang dari 30%, namun sistem-sistem ini memiliki kelemahan pada parameter lain. Waktu delay yang melambat, waktu naik yang panjang, waktu mencapai puncak pertama yang lama, dan waktu stabil yang sangat lama merupakan kelemahan sistem ini. Kelemahan sistem dengan nilai parameter tersebut dapat diselesaikan dengan perubahan waktu integral T i dan perubahan waktu Sistem persamaan panas menggunakan proporsional, integral, dan derivatif (PID) yang telah diselesaikan dengann metode sebelumnya memiliki kelemahan padaa prosentase overshoot. Waktu integral mampu mereduksi waktu yang panjang pada parameter sistem sehingga menunjukkan hasil yang optimal. Sepuluh sistem yang memenuhi kriteria penelitian berdasarkan Tabel 6, kemudian dipilih sebagai sistem yang dapat dilanjutkan prosesnya. Sistem-sistem tersebut di pilih dengan memperhatikan overshoot dan waktu yang dibutuhkan menuju ke posisi stabil. Sistem-sistem tersebut disajikan pada Tabel 7. Sepuluh sistem yang terbentuk dapat dikategorikan ke dalam dua kategori keunggulan yaitu prosentase overshoot dan waktu mencapai posisi stabil. Kedua kategori ini saling bertolak belakang, dimana hasil yang dianggap paling baik berdasarkan overshoot belum tentu hasil terbaik pada waktu mencapai posisi stabil. Dengan memperhatikan kedua kategori tersebut, maka kesepuluh sistem yang dihasilkan memiliki keunggulan dan kelemahan yang tidak jauh berbeda. KESIMPULAN Metode ultimate cycle memberikan nilai = 7.8, = 0.02, dan = 0.005 yang menyebabkan sistem kendali PID berhasil mengendalikan persamaan panas sehingga suhu dapat dipertahankan 1 satuan suhu. Metode process reaction memberikan nilai = 56.338, = 20, dan = 5 yang menyebabkan sistem kendali PID tidak berhasil mengendalikan persamaan panas.proses penentuan konstanta proporsional K p optimum dan waktu integral T i optimum menunjukkan sistem dengan K p =0,01 T i =0,01, K p =0,0075 T i =0,009, K p =0,0075 T i =0,008, K p =0,0075 T i =0,007, K p =0,0075 T i =0,006,K p =0,005 T i =0,006, K p =0,005 T i =0,005, K p =0,005 T i =0,004, K p =0,0035 T i =0,004, dan K p =0,0035 T i =0,003 mampu mengendalikan sistem persamaan panas dengan overshoot kurang dari 30% dan waktu mencapai posisi stabil kurang dari 120 detik. Sepuluh sistem persamaan panas yang terbentuk, merupakan hasil yang optimal untuk mempertahankan suhu sebesar 1 o C pada posisi = 3 m dari sumber panas dengan difusivitas benda = 0,042 m 2 s -1. 14

Sistem Kendali Proporsional, Integral, Dan Derivatif (Pid) Pada Persamaan Panas Tabel 5. Perubahan parameter sistem berdasarkan perubahan konstanta proporsional K p om (%) t d (s) t r (s) t p (s) sr t s (s) Nos 7 210,45 6,34 1,48 9,08 0,32211 16,35 1 5 199,97 6,59 1,59 9,53 0,33337 17,53 1 1 150,78 8,11 2,36 12,37 0,39876 25,56 1 0,5 130,14 8,99 2,87 14,12 0,43452 30,81 1 0,1 83,94 11,97 4,94 20,56 0,54366 49,80 1 0,05 64,99 13,92 6,59 25,21 0,6061 61,88 1 0,01 24,30 22 15,99 48,12 0,80451 103,76 1 0,0075 17,70 24,45 19,76 56,35 0,84962 407,06 1 0,005 8,92 28,89 28,01 73,18 0,91811 1188,30 1 0,0035 1,83 34,21 40,90 97,49 0,98203 2564,71 1 Tabel 6. Perubahan parameter sistem berdasarkan perubahan konstanta integral. T i Kp om (%) t d (s) t r (s) t p (s) Sr t s (s) Nos 0,009 0,0075 20,09 23,50 18,24 53,07 0,83271 109,56 1 0,008 0,0075 22,80 22,51 16,72 49,78 0,81433 105,82 1 0,007 0,0075 25,92 21,48 15,24 46,46 0,79416 101,54 1 0,006 0,0075 29,59 20,40 13,76 43,08 0,77166 96,65 1 0,009 0,005 11,14 27,61 25,41 68,01 0,89977 933,21 1 0,008 0,005 13,68 26,28 22,92 62,96 0,87966 700,36 1 0,007 0,005 16,62 24,92 20,54 58,00 0,85749 482,30 1 0,006 0,005 20,09 23,50 18,24 53,07 0,83271 109,55 1 0,005 0,005 24,30 22,01 15,98 48,12 0,80451 103,75 1 0,004 0,005 29,59 20,40 13,76 43,08 0,77166 96,65 1 0,009 0,0035 3,85 32,46 36,22 88,90 0,96293 2053,61 1 0,008 0,0035 6,19 30,70 31,95 80,83 0,94171 1595,10 1 0,007 0,0035 8,92 28,90 28,01 73,18 0,91811 1188,30 1 0,006 0,0035 12,19 27,04 24,33 65,83 0,89135 830,90 1 0,005 0,0035 16,17 25,12 20,87 58,70 0,86081 513,36 1 0,004 0,0035 21,21 23,08 17,59 51,66 0,82501 108,01 1 0,003 0,0035 27,94 20,87 14,39 44,53 0,78162 98,82 1 Tabel 7. Sistem-sistem yang memenuhi kriteria penelitian No K p T i om (%) t d (s) t r (s) t p (s) sr t s (s) Nos 1 0,01 0,01 24,30 22 15,99 48,12 0,80451 103,76 1 2 0,0075 0,009 20,09 23,50 18,24 53,07 0,83271 109,56 1 3 0,0075 0,008 22,80 22,51 16,72 49,78 0,81433 105,82 1 4 0,0075 0,007 25,92 21,48 15,24 46,46 0,79416 101,54 1 5 0,0075 0,006 29,59 20,40 13,76 43,08 0,77166 96,65 1 6 0,005 0,006 20,09 23,50 18,24 53,07 0,83271 109,55 1 7 0,005 0,005 24,30 22,01 15,98 48,12 0,80451 103,75 1 8 0,005 0,004 29,59 20,40 13,76 43,08 0,77166 96,65 1 9 0,0035 0,004 21,21 23,08 17,59 51,66 0,82501 108,01 1 10 0,0035 0,003 27,94 20,87 14,39 44,53 0,78162 98,82 1 REFERENSI 1. Crank, J. 1975. The Mathematics of Diffusion. Oxford University Press, London. 2. Jesus, IS, dan Machado, JAT. 2007. Application of Fractional Calculus in the Control of Heat Systems. Journal of Advanced Computational Intelligence and Intelligent Informatics 11 (9) : p. 1086-1091. 3. Polyani, AD. 2002. Linear Partial Equations for Engineers and Scientists. CRC Press, USA. 4. Canete, JF, Galindo, C, dan Moral, IG. 2011. System Engineering and Automation. Springer, Verlag Berlin Heidelberg. 5. Bolton, W. 2002. Control Systems. Newnes Elsevier, UK. 6. Forrai, Alexandru. 2013. Embedded Control System Design. Springer, Verlag Berlin Heidelberg. 15