OPTIMASI PENJADWALAN UNIT PEMBANGKIT THERMAL DENGAN DINAMICS PROGRAMMING

dokumen-dokumen yang mirip
I. PENDAHULUAN. dalam melakukan kehidupan sehari-hari. Besar kecilnya beban serta perubahannya

2.1 PEMBATASAN MASALAH

SISTEM TENAGA LISTRIK

OPTIMASI PENAMBAHAN PASOKAN GAS DAN PEMANFAATAN PEMBANGKIT PLTU BATUBARA UNTUK MEMINIMALISASI BIAYA PRODUKSI LISTRIK DI SISTEM JAWA BALI ABSTRAK

Operasi Sistem Tenaga Listrik

Sistem Tenaga Listrik. 4 sks

Optimalisasi Penjadwalan Pembangkit Listrik di Sistem Sorong

PERBANDINGAN BIAYA PEMBANGKITAN PEMBANGKIT LISTRIK DI INDONESIA

BAB 1 PENDAHULUAN. sumber daya alam tersebut adalah batubara. Selama beberapa dasawarsa terakhir. kini persediaan minyak bumi sudah mulai menipis.

ANALISA ALIRAN DAYA OPTIMAL PADA SISTEM KELISTRIKAN BALI

PERENCANAAN SISTEM TENAGA LISTRIK. Oleh : Bambang Trisno, MSIE

BAB III METODE STUDI SEKURITI SISTEM KETERSEDIAAN DAYA DKI JAKARTA & TANGERANG

Perbandingan Biaya Pembangkitan Pembangkit Listrik di Indonesia

Session 11 Interconnection System

PENGOPERASIAN OPTIMUM SISTEM TENAGA LISTRIK

Optimasi Operasi Pembangkit Termis Dengan Metode Pemrograman Dinamik di Sub-Regional Bali

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015

PLN Dari 1973 Sampai 2005

Memahami sistem pembangkitan tenaga listrik sesuai dengan sumber energi yang tersedia

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

Vol.13 No.2. Agustus 2012 Jurnal Momentum ISSN : X

BAB I PENDAHULUAN 1.1 Latar Belakang

PERENCANAAN OPERASI PEMBANGKIT LISTRIK TENAGA AIR (PLTA) JELOK

I. PENDAHULUAN. tertentu, pada periode tertentu, dan pada tingkat harga tertentu. Demand adalah

OPTIMASI ECONOMIC DISPATCH PEMBANGKIT SISTEM 150 KV JAWA TIMUR MENGGUNAKAN METODE MERIT ORDER

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

STUDI OPTIMASI OPERASI PEMBANGKIT TENAGA LISTRIK DENGAN METODE PEMROGRAMAN DINAMIK. Ahmad Rosyid Idris 1

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

BAB I PENDAHULUAN. jumlah ketersediaan yang semakin menipis dan semakin mahal, membuat biaya

TINJAUAN PUSTAKA. terbentuklah suatu sistem tenaga listrik. Setiap GI sesungguhnya merupakan pusat

PEMELIHARAAN CB DAN ROTATING DIODA, SERTA SISTEM OPERASI PADA PLTU UNIT 3 PT INDONESIA POWER UBP SEMARANG

STUDI PERHITUNGAN PEMBEBANAN EKONOMIS PADA PEMBANGKIT LISTRIK TENAGA GAS DAN UAP DI PT. PJB UNIT PEMBANGKITAN GRESIK

OPTIMASI PEMBAGIAN BEBAN PADA SEKTOR PEMBANGKITAN PEKANBARU PLTD/G TELUK LEMBU PADA BUS 20 kv DENGAN METODE NEWTON

Analisis Potensi Pembangkit Listrik Tenaga GAS Batubara di Kabupaten Sintang

BAB I PENDAHULUAN Latar Belakang Penelitian Arief Hario Prambudi, 2014

OPTIMASI UNIT PEMBANGKIT LISTRIK DENGAN PENAMBAHAN PASOKAN GAS DAN PEMANFAATAN PEMBANGKIT PLTU BATUBARA DI SISTEM JAWA BALI

Sistem Tenaga Listrik

SENSITIVITAS ANALISIS POTENSI PRODUKSI PEMBANGKIT LISTRIK RENEWABLE UNTUK PENYEDIAAN LISTRIK INDONESIA

PROYEKSI KEBUTUHAN DAYA LISTRIK DI PROPINSI SULAWESI TENGAH TAHUN

BAB III METODE PENELITIAN. fenomena serta hubungan-hubunganya. Tujuan penelitian kuantitatif adalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB IV PERHITUNGAN DAN ANALISIS

Kebijakan Pemerintah Di Sektor Energi & Ketenagalistrikan

Jurnal Media Elektro, Vol. 1, No. 1, April 2012 ISSN

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

BAB I PENDAHULUAN. Salah satu bagian penting dari sistem tenaga listrik adalah operasi sistem

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

ANALISA HEAT RATE DENGAN VARIASI BEBAN PADA PLTU PAITON BARU (UNIT 9)

Generation Of Electricity

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. mulai dari Pembangkit Listrik Tenaga Panas Bumi (PLTP), Pembangkit Listrik

SUMBER DAYA PANAS BUMI: ENERGI ANDALAN YANG MASIH TERTINGGALKAN

BAB I PENDAHULUAN. Energi listrik merupakan energi yang dihasilkan dari sumber energi lain

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK

SESSION 12 POWER PLANT OPERATION

KOORDINASI HIDRO THERMAL UNIT PEMBANGKITAN JAWA BALI MENGGUNAKAN METODE DYNAMIC PROGRAMMING

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

Politeknik Negeri Sriwijaya BAB I PENDAHULUAN

Scheduling Energi Pembangkitan di PT. PJB Unit Pembangkitan Brantas PLTA Siman

1 BAB I PENDAHULUAN. energi yang memproduksi minyak bumi dan produksi sampingan berupa gas alam

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. Energi saat ini merupakan kunci semua kegiatan dalam peradaban umat

BAB IV STUDI KETERJAMINAN ALIRAN DAYA DAN BIAYA PRODUKSI PLN SUB REGION BALI TAHUN

BAB III METODE PENELITIAN. 3.1 Flow Chart Flow chart diagram alir digunakan untuk menggambarkan alur proses atau langkah-langkah secara berurutan.

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Politeknik Negeri Sriwijaya BAB I PENDAHULUAN

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

I. PENDAHULUAN. Ketergantungan akan energi bahan bakar fosil seperti batu bara, minyak

COURSE CR302 POWER AND STEAM GENERATION. Tangerang, September 2008 DSS HO

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar

PENENTUAN KAPASITAS TRANSFORMATOR DAYA PADA PERENCANAAN GARDU INDUK (GI) SISTEM 70 KV (STUDI KASUS PEMBANGUNAN GARDU INDUK ENDE - ROPA MAUMERE)

OPTIMASI SUPLAI ENERGI DALAM MEMENUHI KEBUTUHAN TENAGA LISTRIK JANGKA PANJANG DI INDONESIA

ANALISIS DAMPAK KENAIKAN HARGA MINYAK MENTAH DAN BATUBARA TERHADAP SISTEM PEMBANGKIT DI INDONESIA

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN. kehidupan manusia saat ini, dimana hampir semua aktivitas manusia berhubungan

Analisa Energi, Exergi dan Optimasi pada Pembangkit Listrik Tenaga Uap Super Kritikal 660 MW Nasruddin*, Pujo Satrio

BAB IV HASIL DAN ANALISIS

UNIVERSITAS INDONESIA STUDI ANALISIS PROGRAM PERCEPATAN MW TAHAP I PADA OPERASI SISTEM TENAGA LISTRIK JAWA BALI TESIS

Kebijakan. Manajemen Energi Listrik. Oleh: Dr. Giri Wiyono, M.T. Jurusan Pendidikan Teknik Elektro, Fakultas Teknik Universitas Negeri Yogyakarta

BAB 1 PENDAHULUAN. energi perlu dilaksanakan secara berdayaguna dan berhasilguna. Dilihat dari

BAB II TINJAUAN PUSTAKA

OPTIMASI PENEMPATAN KAPASITOR PADA SALURAN DISTRIBUSI 20 kv DENGAN MENGGUNAKAN METODE KOMBINASI FUZZY DAN ALGORITMA GENETIKA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

BAB I PENDAHULUAN. 1.1 Latar Belakang. Energi adalah salah satu kebutuhan yang paling mendasar bagi umat manusia

ANALISIS PERENCANAAN KETERJAMINAN ALIRAN DAYA DAN BIAYA PRODUKSI PLN SUB REGION BALI TAHUN TESIS

Evaluasi Operasi Pembangkitan Tenaga Listrik Pada PT. Cikarang Listrindo Menggunakan Metode Lagrange Multipliers

KEANDALAN PEMBANGKIT TENAGA LISTRIK

IMPLEMENTASI METODA TAGUCHI UNTUK ECONOMIC DISPATCH PADA SISTEM IEEE 26 BUS

BAB I PENDAHULUAN. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di

Penggunaan Pemrograman Dinamik dalam Menyelesaikan Masalah Distributed Generation Allocation

BAB 1 PENDAHULUAN. transportasi. Selama ini sumber energi pada sektor transportasi didominasi oleh

ANALISIS SISTEM PEMBANGKIT LISTRIK DI JAWA TERHADAP PENYEDIAAN BATUBARA YANG TIDAK TERBATAS ( )

BAB IV ANALISIS DATA LAPANGAN. Ananlisi ini menjadi salah satu sarana untuk mencari ilmu yang tidak

ANALISIS KONSUMSI BAHAN BAKAR PADA PEMBANGKIT LISTRIK TENAGA UAP STUDI KASUS PT. PLN PEMBANGKITAN TANJUNG JATI

1. PENDAHULUAN. Universitas Indonesia

Rencana Pengembangan Energi Baru Terbarukan dan Biaya Pokok Penyediaan Tenaga Listrik Dialog Energi Tahun 2017

BAB II TINJAUAN PUSTAKA. penambahan unit pembangkit. (Zein dkk, 2008), (Subekti dkk, 2008) meneliti

Reka Integra ISSN: Jurusan Teknik Industri Itenas No. 02 Vol. 02 Jurnal Online Institut Teknologi Nasional April 2014

PERANCANGAN DAN PEMBUATAN PEMBANGKIT LISTRIK TENAGA SURYA

Transkripsi:

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 OPTIMASI PENJADWALAN UNIT PEMBANGKIT THERMAL DENGAN DINAMICS PROGRAMMING Anizar Indriani Jurusan Teknik Elektro, Fakultas Teknik, Universitas Bengkulu E-mail: anizar_te@yahoo.com ABSTRAKSI Makalah ini membahas operasi sistem tenaga dengan total biaya operasi pembangkit yang optimal dengan metode dinamics programming. Pembangunan yang sangat pesat pada saat ini menyebabkan dibutuhkannya pembangunan unit-unit pembangkit guna menunjang kebutuhan akan ksumsi energi listrik. Penyaluran daya listrik dari pusat pembangkit melalui saluran transmisi ke pusat beban harus berlangsung dengan baik, dapat menghindari dan mengatasi segala yang dapat menjadikan sistem tenaga beroperasi pada kdisi operasi abnormal. Gangguan yang terjadi pada sistem tenaga ini dapat disebabkan oleh beberapa faktor seperti pembebanan, petir, proses switching dan lainya. Perubahan beban secara tiba-tiba dapat menyebabkan terjadinya penurunan frekuensi pada generator. Penelitian ini membahas tentang penjadwalan unit pembangkit thermal dengan metode dinamics programming pada sistem interkeksi Sumbar dengan biaya yang optimal. Kata kunci: optimal, pembangkit, dinamics programming 1. PENDAHULUAN Dalam mengoperasikan sistem tenaga listrik ditemui berbagai persoalan yang dapat menimbulkan penurunan kualitas serta kelangsungan supply daya listrik ke beban. Hal ini muncul sebagai akibat dari pemakaian tenaga listrik ke ksumen yang selalu berubah sepanjang waktu, biaya bahan bakar untuk memproduksilistrik (khususnya untuk pembangkit thermal) dan kdisi alam dan lingkungan yang selalu mengganggu kelancaran operasi sistem. Persoalan yang harus dihadapi dalam pengoperasian sistem tenaga listrik adalah: a. Pengaturan frekuensi Untuk memenuhi kebutuhan ksumen terhadap tenaga listrik maka daya yang dibangkitkan dalam sistem tenaga listrik harus selalu sama dengan beban sistem. Hal ini dapat diamati melalui frekuensi sistem, apabila daya yang dibangkitkan dalam sistem lebih kecil daripada beban sistem maka frekuensi turun dan sebaliknya frekuensi akan naik jika daya yang dibangkitkan lebih besar dari pada beban. b. Biaya Operasi Pembangkit thermal membutuhkan bahan bakar sehingga sumber pembangkitan, dimana biaya operasi pembangkit ini merupakan biaya terbesar dari suatu perusahan listrik sehingga diperlukan teknik-teknik optimisasi untuk menekan biaya operasi. Tenaga listrik yang dibangkitkan dalam pusat-pusat pembangkit seperti PLTA, PLTU,, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi setelah terlebih dahulu dinaikkan tegangannya oleh transformator penaik tegangan yang ada dipusat pembangkit. 2. PEMBANGKIT LISTRIK TENAGA THERMAL (PLTT) Pembangkit listrik tenaga thermal (PLTT) adalah pembangkit listrik yang mengubah energi panas menjadi energi listrik, dengan memanfaatkan energi dari pembakaran dari suatu zat, dimana zattersebut menghasilkan energi dalam bentuk aliran tekanan untuk menggerakan turbin generator untuk menghasilkan energi listrik. Energi panas dihasilkan dari proses pembakaran terhadap bahan bakar fosil (minyak,gas, batubara dll). Berikut ini adalah beberapa jenis pembangkit listrik tenaga thermal yang dibagi berdasarkan bahan bakar digunakan: a. Pembangkit Listrik Tenaga Uap (PLTU) b. Pembangkit Listrik Tenaga Gas () c. Pembangkit Listrik Tenaga Minyak (PLTD) d. Pembangkit Listrik Tenaga Nuklir (PLTN) e. Pembangkit Listrik Tenaga Panas Bumi (PLTPB). Biaya produksi menggunakan bahan bakar panas bumi (PLTPB) ini mahal karena pengeluaran dana yangbesar untuk memperoleh bahan fosil. Oleh karena itu, untuk mengoperasikan sebuah unit-unit pembangkit thermal perlu dilakukan penjadwalan terhadap operasi unit pembangkit dimana biaya operasinya ekomis. Hal yang mendasar dalam masalah operasi ekomis adalah bagaimana mengatur karaktersitik-karakteristik masukan dan keluaran dari pembangkit daya pada unit pembangkit thermal. Adapun karakteristik dari unit turbin uap sebagai berikut: H = Masukan Panaspada unit uap dalam Mbtu perjam (Mbtu / jam) F = Biaya bahan bakar unit uap saat H dalam rupiah per jam (Rp/ jam). I-27

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 3. BEBAN Beban adalah pemakaian tenaga listrik dari pelanggan listrik. Karakteristik juga mempengaruhi keputusan dalam operasi ekomis. Pola beban tersebut ditentukan oleh: a. Kuva beban b. Kurva lama Beban. Besarnya beban sistem pada suatu unit hanya dapat diperkirakan dengan acuan beban sistem dimasa yang lalu yaitu kemampuan untuk melayani beban secara berkala. dinamics programming sebagai berikut: bila n = 1 maka beban sistem akan dibatasi oleh satu-satunya unit yang ada. Tetapi jika ada dua unit yang masing-masing kurva biayanya diketahui, untuk melayani beban sistem yang tertentu besarnya dapat dicari kombinasi dari dua unit yang ada agar biaya bahan bakar yang minimum. Dari sini bisa disusun kurva biaya minimum untuk dua unit dalam menghadapi berbagai nilai beban sistem. 4. OPTIMISASI UNIT PEMBANGKIT Dalam sistem tenaga listrik yang terdiri dari sejumlah PLTA dan sejumlah Pusat Listrik Thermis, perlu dicari jalur pembagian beban antara subsistem Hidro (kelompok PLTA) dan subsistem Thermis (kelompok pusat-pusat Listrik Thermis) agar didapat operasi yang optimum bagi sistem tenaga listrik secara keseluruhan, dalam arti dicapai biaya bahan bakar yang minimum. Untuk memecahkan persoalan ini, dalam penelitian ini ditinjau pemakaian metode Dinamics Programming yang tujuannya untuk mencari objective functi dari suatu unit pembangkit. Objective Functi disini adalah biaya bahan bakar atau biaya pembangkitan yang akan dicari minimumnya. 5. OPTIMISASI PEMBANGKIT THERMAL MENGUNAKAN PROGRAMMING DINAMICS Metode Dinamics Programming merupakan suatu metoda untuk mencari pilihan yang optimum diantara beberapa alternatif yang bisa ditempuh. Dalam bagian ini akan dibahas penggunaan metoda dinamics programming yang berupa kombinasi untuk pembangkit thermis yang terbaik untuk melayani beban tertentu agar didapat biaya bahan bakar yang minimal. Fn (x) = Min { G n (Y) + Fn 1(X Y) } F = F (P ). t (1) t j = n j = 1 j tj F = Biaya bahan bakar dalam sistem t n = jumlah unit termis j = indeks nomor unit-unit pembangkit F (P ) = Biaya bahan bakar unit termis ke j j tj P tj = Beban unit termis ke j Jika dalam sistem terdapat n unit pembangkit thermis yang siap operasi dan n unit ini akan dioperasikan menurut jalur subsistem thermis yang telah diatur sesuai uraian dalam persaman (1), biaya start-stop unit pembangkit termis untuk sementara tidak diperhitungkan dulu, maka formulasi optimisasi biaya bahan bakar dengan Gambar 1. Kurva biaya minimun Bila ada unit ke-3 dengan kurva biaya bahan bakar diketahui, maka cara seperti tersebut diatas, kurva biaya minimum dua unit yang sudah didapat digabungkan dengan biaya unit ke-3 untuk mendapatkan kurva biaya minimum dengan 3 unit dalam sistem untuk mendapatkan kurva biaya minimum dengan 3 unit dalam sistem untuk menghadapi nilai beban sistem. Begitu seterusnya dapat dilakukan hal yang serupa untuk unit ke 4 dan seterusnya dapat dilakukan hal yang serupa untuk unit ke-4 dan seterusnya sampai dengan unit ke n. Secara matematis hal ini dinyatakan sebagai berikut: (x) F n = biaya bahan bakar yang minimum dalam satuan biaya persatuan waktu (rupiah per jam) untuk n buah unit pembangkit dengan beban X MW. G n (Y) = Biaya bahan bakar rupiah perjam untuk unit ke-n beban Y MW. F 1 (X Y) = Biaya bahan bakar yang minimum n dari (n-1) unit pembangkit lainnya dengan beban (X-Y) MW. n = 2,3,4,...n dengan batasan-batasan: Y Y n min Y n maks I-28

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 X n 1 min X X n 1 maks Y n min dan Y n maks masing-masing adalah batas minimum batas maksimum dari beban (n-1) unit pembangkit yang lain. Untuk bisa menyelesaikan persamaan (2) perlu diketahui kurva biaya bahan bakar masingmasing unit pembangkit. Kurva biaya bahan bakar setiap unit pembangkit dinyatakan oleh persamaan: 2 G n Y ) = ap + bp + c dimana a,b dan c merupakan kstanta-kstanta. Dengan menggunakan persamaan (3) maka biaya bahan bakar unit pembangkit untuk beban tertentu Y MW dapat dihitung. Dengan menggunakan data kurva biaya tersebut diatas dilakukan langkah-langkah perhiitungan sebagai berikut: 1. Dimulai dengan n=1, yaitu apabila unit pembangkit berjumlah satu buah, tidak ada pilihan lain maka beban sistem hanya dapat dilayani oleh satu-satunya unit pembangkit yang ada, sehingga biaya minimum dapat ditulis sebagai: (X) G (X) 3. Untuk n = 3. F X ) = Min{ G ( Y ) + F ( X ) 3( 3 2 Y 4. Untuk n = 4,5 dan seterusnya perhitungan dilakukan dengan cara berupa seperti tersebut dalam butir (2) dan butir (3), sehingga akhirnya perhitungan dapat diperluas untuk sistem yang terdiri dari n unit pembangkit. Langkah-langkah dalam melakukan perhitungan dengan dinamics programming: ( 1. Batasan pembebanan minimum dan maksimum (3) untuk setiap jumlah unit pembangkit. 2. Mulai perhitungan dengan unit pembangkit yang kecil terlebih dahulu dan kemudian tentukan besarnya langkah kenaikan nilai X seperti pada butir 2.b, dengan memperhatikan kemampuan minimum dan kemampuan maksimum dari unit pembangkit terkecil ini. 3. Biaya start-stop unit thermis seperti telah disebutkan dalam pers. dibawah ini: j= 168 j= n 168 jam = Fj (Ptj). t i i = 1 j= 1 F1 = t 1 i = satu jam (4) i = indeks nomor selang waktu Dengan X n 1 min X X n 1 maks ditambahkan setelah perhitungan biaya bahan bakar yang minimum ditemukan berdasarkan Dimana X 1 min dan X 1 maks masing-masing program jadwal operasi unit pembangkit. Biaya adalah batas beban minimum dan batas beban start-stop ini relatif kecil jika dibandingkan maksimum dari satu-satunya unit pembangkit dengan biaya bahan bakarnya sehingga yang ada. penambahan biaya start-stop umumnya tidak 2. Kemudian diteruskan dengan n=2. memberi pengaruh terhadap jumlah biaya F2 (X) = Min G 2 (X) + (X - Y) operasi. (5) F } Persamaan (5) dipecahkan dengan urutan sebagai berikut: a. Dipilih beban sistem X mulai dari nilai yang kecil mungkin. Bagilah beban X untuk unit pembangkit ke 1 sebesar (X-Y) MW dan untuk unit-unit pembangkit ke 2 sebesar Y MW. Rubahlah nilai Y sehingga didapat nilai F 2 (X) persamaan (5) yang minimum. Setelah nilai minimum ini ditemukan catatlah nilai (X-Y) dan Y masingmasing sebagai beban unit ke-1 dan unit ke-2 untuk menghadapai beban sistem sebesar X MW yang memberikan bahan bakar minimum. b. Pilihlah beban sistem X yang lebih besar dan ulangilah proses perhitungan tersebut dalam butir 2a. c. Dengan melakukan proses perhitungan seperti tersebut dalam butir 2a. dan 2b. akhirnya pers. (5) dapat dipecahkan, artinya komposisi beban unit 1 dan unit 2 yang menghasilkan biaya bahan bakar minimum untuk berbagai nilai beban sistem dapat ditemukan sebagai F 2 (X). Gambar 2. Kurva Biaya bahan bakar dari unit Pembangkit sebagai fungsi beban Langkah-langkah Optimasi Penjadwalan unit pembangkit Hydo-Thermal menggunakan Dinamics Programming adalah sebagai berikut: 1. Tentukan besarnya t, misalnya 1 jam sehingga mulai dari i = 0 sampai i = 168 jam. I-29

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 2. Sebagai masukan data perkiraan beban untuk setiap jam sebanyak 168 jam, data jadwal pemeliharaan untuk jangka waktu 168 jam. F( PT ) 3. Cari Nilai tertentu dari PT F( PT ) 4. Pilih nilai terkecil dari unit PT pembangkit termal. 6. PERHITUNGAN DAN ANALISIS Data yang digunakan untuk melakukan perhitungan adalah sebagai berikut: Karakteristik Unit Pembangkit (PLTU) Tabel 1. Data test performance unit 2 PLTU Ombilin (kw) Ksumsi batu bara (kg/h) SCC (kg/kwh) 60,622 22,320 0,3681649 76,267 27,360 0,3587397 102,155 36,166 0,3540306 Tabel 2. Data pemakaian batu bara unit 2 PLTUOmbilin (kw) Ksumsi batu bara (t/jam) Harga batu bara (Rp/t) Biaya (Rp/Jam) 60,622 22,320 150.000,00 3.348.000,00 76,267 27,360 150.000,00 4.104.000,00 102,155 36,166 150.000,00 5.424.900,00 Biaya Bahan Bakar (Rp/Jam) 6,000,000 5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 0 0 20 40 60 80 100 120 (MW) Gambar 3. Kurva karakteristik Unit Pembangkit (PLTU) Karakteristik Unit Pembangkit () Tabel 3. Data test performance unit pembangkit (kw) Ksumsi BBM (L/Jam) SCC (L/kWH) 5.600 4.984 0.89 11.000 6.303 0.573 16.000 7.600 0.475 Tabel 4. Data pemakaian BBM unit pembangkit Ksumsi Harga BBM Biaya (kw) BBM (Rp/L) (Rp/Jam) (L/jam) 5.600 4.984 1.780,00 8.871.520,00 11.000 6.303 1.780,00 11.219.340,00 16.000 7.600 1.780,00 13.520.000,00 Biaya (Rp/jam) 17 15 13 11 9 7 5 3 0 5 10 15 20 P (MW) Gambar 4. Karakteristik Unit pembangkit Adapun kombinasi unit pembangkit yang mungkin dari 4 unit pembangkit yang dapat dilihat pada tabel berikut: Tabel 5. Kombinasi dari 4 unit pembangkit thermal State PLTU Unit 1 PLTU Unit 2 Unit 2 Unit 3 (MW) 85 MW 85 MW 16 MW 18 MW (MW) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 On 204 186 188 170 119 101 103 85 119 101 103 85 34 16 18 0 Jika ditinjau batas maksimum beban unit pembangkit adalah sebesar 85% dari kapasitas pembangkit, maka yang paling ekomis adalah mengoperasikan unit 1dan 2 PLTU masing-masing 85 MW dari jam 00.00 sampai jam 19.00, dengan biaya pembangkitan total 9.344.900.000,- apabila beban melebihi 170 MW maka lakukan penambahan kapasitas dengan mengoperasikan unit 3 karena biayanya lebih murah dari unit 2. 7. KESIMPULAN Dari hasil analisa unit pembangkit Hydothermal mengunakan Dinamics Programming dapat ditarik beberapa kesimpulan: a. Pada perhitungan optimisasi unit pembangkit thermal didapat biaya yang ekomis berdasarkan analisa pada kdisi 12 yaitu PLTU 1 dan PLTU 2 dengan biaya bahan bakar sebesar Rp 7.813.796,8617 dibandingkan I-30

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 dengan 2 dengan biaya bahan bakar Rp 9.783.873 b. Pada unit thermal yang paling berperan dalam menentukan biaya pembangkitan energi listrik adalah biaya bahan bakar, hampir 60 % biaya pembangkitan adalah biaya bahan bakar. c. Dari hasil analisa optimisasi unit pembangkit mengunakan programming dinamis didapat bahwa biaya yang paling minimal dengan pembangkitan yang maksimal adalah pada kdisi 12 dengan biaya Rp 7.813.796 dengan mengoperasikan unit 1 dan unit 2 PLTU. 6. William D.S, Power System Analysis. Mc Graw Hill. Inc. Singapore. 1994. 7. Zuhal. Dasar Tenaga Listrik. ITB Bandung. 1977. Tabel 6. Data Beban Harian Unit Thermal PLTU Total Jam Unit 1 Unit 2 Unit 2 Unit 3 Beban 1.00 85.00 60.00 145.00 2.00 85.00 60.00 145.00 3.00 85.00 60.00 145.00 4.00 85.00 60.00 145.00 5.00 85.00 60.00 145.00 6.00 85.00 60.00 145.00 7.00 85.00 60.00 145.00 8.00 70.00 60.00 10.00 140.00 9.00 70.00 60.00 10.00 140.00 10.00 70.00 60.00 10.00 140.00 11.00 70.00 60.00 10.00 140.00 12.00 70.00 60.00 10.00 140.00 13.00 70.00 60.00 10.00 140.00 14.00 70.00 60.00 10.00 140.00 15.00 70.00 60.00 8.00 138.00 16.00 75.00 60.00 8.00 143.00 17.00 80.00 60.00 10.00 150.00 18.00 80.00 60.00 10.00 10.00 160.00 19.00 85.00 60.00 13.00 13.00 165.00 20.00 85.00 60.00 15.00 15.00 173.00 21.00 85.00 60.00 15.00 15.00 173.00 22.00 85.00 60.00 15.00 10.00 165.00 23.00 85.00 60.00 15.00 155.00 24.00 85.00 60.00 13.00 155.00 1900,0 1440,0 177,0 63,0 3579,0 DAFTAR PUSTAKA 1. Gupta, BR, Generati of Electrical Energy, Ram Nagar New Delhi, India. 1996. 2. Marsudi Djiteng, Operasi Sistem Tenaga Listrik, ISTN. Jakarta. 1999. 3. P. M. Anders, Power System Ctrol and Stability. Iowa State University. USA. 4. Pabla. AS. Sistem Distribusi Listrik. PT. Gramedia Pustaka Utama. Jakarta. 1995. 5. Turan Gen, Eletric Power Distributi System Engineering, Mc Graw Hill. 1976. I-31

Seminar Nasial Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 I-32