BAB 3 METODOLOGI PENELITIAN. yang berdasarkan pada metode baji (wedge method), dan kalkulasi dari program

dokumen-dokumen yang mirip
BAB 3 METODOLOGI ANALISA

Bab 3 METODOLOGI. penyelidikan tanah di lapangan dan pengujian tanah di laboratorium. Untuk memperoleh

BAB III METODOLOGI PENELITIAN. Objek penulisan tugas akhir ini adalah Perencanaan kemantapan lereng (Slope

BAB III LANDASAN TEORI. yang ujungnya berbentuk kerucut dengan sudut 60 0 dan dengan luasan ujung 10

METODE PENYELIDIKAN DAN PENGUJIAN TANAH

BAB III METODOLOGI PENELITIAN. dalam pelaksanaan penelitian tersebut. Adapun langkah penelitian adalah:

BAB III METODOLOGI PENELITIAN

BAB 1 PENDAHULUAN. ataupun galian, salah satunya adalah soil nailing. Dalam soil nailing, perkuatan

BAB III METODOLOGI PRA RENCANA STRUKTUR BAWAH

BAB III DATA PERENCANAAN

KLASIFIKASI TANAH SI-2222 MEKANIKA TANAH I

KARAKTERISITIK KUAT GESER TANAH MERAH

BAB III STUDI KASUS. 3.1 Data Teknis

BAB III DATA DAN TINJAUAN DESAIN AWAL

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Dalam mendesain bangunan geoteknik salah satunya konstruksi Basement, diperlukan

BAB VII KESIMPULAN DAN SARAN GEDUNG APARTEMEN MALIOBORO CITY YOGYAKARTA (TOWER B) terpisah dari kesatuan dengan keseluruhan struktur dengan dilatasi.


BAB III DATA PERENCANAAN

DESAIN DINDING DIAFRAGMA PADA BASEMENT APARTEMEN THE EAST TOWER ESSENCE ON DARMAWANGSA JAKARTA OLEH : NURFRIDA NASHIRA R.

2.5.1 Pengujian Lapangan Pengujian Laboratorium... 24

Karakterisasi Sifat Fisis dan Mekanis Tanah Lunak di Gedebage

PERENCANAAN PERKUATAN PONDASI JEMBATAN CABLE STAYED MENADO DENGAN MENGGUNAKAN PROGRAM GROUP 5.0 DAN PLAXIS 3 DIMENSI

TOPIK BAHASAN 8 KEKUATAN GESER TANAH PERTEMUAN 20 21

TUGAS AKHIR. Diajukan sebagai syarat untuk meraih gelar Sarjana Teknik Strata 1 (S-1) Disusun Oleh : Maulana Abidin ( )

BAB III METODOLOGI PERENCANAAN. lapisan tanah dan menentukan jenis pondasi yang paling memadai untuk mendukung

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH

BAB 4 HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

III. METODE PENELITIAN. yang berasal dari daerah Karang Anyar, Lampung Selatan yang berada pada

PENGARUH GRADASI PASIR DAN KADAR LEMPUNG TERHADAP KUAT GESER TANAH

BAB I PENDAHULUAN. serta penurunan pondasi yang berlebihan. Dengan demikian, perencanaan pondasi

KORELASI NILAI N-SPT TERHADAP SIFAT SIFAT FISIK DAN MEKANIS TANAH

TANYA JAWAB SOAL-SOAL MEKANIKA TANAH DAN TEKNIK PONDASI. 1. Soal : sebutkan 3 bagian yang ada dalam tanah.? Jawab : butiran tanah, air, dan udara.

BAB III METODE PENELITIAN

DAFTAR ISI. Agus Saputra,2014 PENGARUH ABU SEKAM PADI TERHADAP KARAKTERISTIK TANAH LUNAK

BAB IV STUDI KASUS 4.1 UMUM

ANALISIS STABILITAS TANAH TIMBUNAN DENGAN PERKUATAN SABUT KELAPA

STABILISASI TANAH LEMPUNG DENGAN PASIR BERMACAM GRADASI DAN CAMPURAN KAPUR

PENGARUH PENAMBAHAN PASIR PADA TANAH LEMPUNG TERHADAP KUAT GESER TANAH

III. KUAT GESER TANAH

BAB II TINJAUAN PUSTAKA. metode statis seperti Total stress Analysis (TSA) atau Effective stress

KUAT GESER 5/26/2015 NORMA PUSPITA, ST. MT. 2

PENGARUH KEPADATAN DAN KADAR AIR TERHADAP HAMBATAN PENETRASI SONDIR PADA TANAH PASIR (Studi kasus: Pasir Sungai Palu)

BAB III METODOLOGI PENELITIAN

BAB III LANDASAN TEORI

ANALISIS PENGARUH KETINGGIAN TIMBUNAN TERHADAP KESTABILAN LERENG

BAGIAN 3-2 KLASIFIKASI TANAH

PENGARUH KEPADATAN DAN KADAR AIR TERHADAP HAMBATAN PENETRASI SONDIR PADA TANAU LANAU (Studi kasus: Lanau di Tondo Kota Palu)

ANALISA DEFORMASI PONDASI TIANG BOR DENGAN MODEL ELEMEN HINGGA PADA TANAH STIFF CLAY

Oleh: Dewinta Maharani P. ( ) Agusti Nilasari ( ) Bebby Idhiani Nikita ( )

BAB I PENDAHULUAN. mempunyai sifat yang sangat kurang menguntungkan dalam konstruksi teknik sipil yaitu

BAB I PENDAHULUAN. pijakan terakhir untuk menerima pembebanan yang ada diatasmya. Peran tanah

Analisis Perilaku Timbunan Tanah Pasir Menggunakan Uji Model Fisik

PROGRAM STUDI TEKNIK SIPIL

HALAMAN PENGESAHAN BERITA ACARA BIMBINGAN TUGAS AKHIR MOTTO PERSEMBAHAN


2. Kekuatan Geser Tanah ( Shear Strength of Soil ), parameternya dapat diperoleh dari pengujian : a. Geser Langsung ( Direct Shear Test ) b.

KECENDERUNGAN RUMPUN KURVA UNTUK TANAH PASIR KELANAUAN KELEMPUNGAN DAN TANAH LANAU KELEMPUNGAN

DAFTAR ISI HALAMAN JUDUL

BAB 3. METODOLOGI PENELITIAN

Gambar 3.1 Lokasi pembangunan Apartemen Sudirman One Tang-City

Analisis Stabilitas Lereng Tanah Berbutir Kasar dengan Uji Model Fisik

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

BAB III LANDASAN TEORI

BAB 4 HASIL DAN PEMBAHASAN

d. Apa Yang Jawaban : pembebanan keamanan. KEPADATAN Φ( o ) Dr (%) RELATIF TANAH

PENGARUH PENAMBAHAN TANAH GADONG PADA STABILISASI TANAH LEMPUNG TANON DENGAN SEMEN (Studi Kasus Kerusakan Jalan Desa Jono, Tanon, Sragen)

Perilaku Tiang Pancang Tunggal pada Tanah Lempung Lunak di Gedebage

BAB III METODE DAN PROSEDUR PENELITIAN

BAB I PENDAHULUAN. khususnya di daerah kota yang padat dan sekaligus daerah dimana

ANALISIS TINGGI MUKA AIR PADA PERKUATAN TANAH DAS NIMANGA

STUDI EFEKTIFITAS TIANG PANCANG KELOMPOK MIRING PADA PERKUATAN TANAH LUNAK

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

PENYELIDIKAN GEOTEKNIK DI JEMBATAN S. CIMADUR BAYAH BANTEN. Program Studi Teknik Sipil Fakultas Teknik Universitas Borobudur

PENYELIDIKAN TANAH (SOIL INVESTIGATION)

BAB III METODOLOGI PENELITIAN. Mulai

BAB IV HASIL DAN PEMBAHASAN

MEKANIKA TANAH (SIL211) KUAT GESER TANAH. Departemen Teknik Sipil dan Lingkungan Fakultas Teknolog Pertanian Institut Pertanian Bogor

BAB IV PERENCANAAN LERENG GALIAN

IV. HASIL DAN PEMBAHASAN. Pengujian sampel tanah asli di laboratorium didapatkan hasil :

BAB I PENDAHULUAN. pembersihan lahan dan pengupasan overburden. Tujuan utama dari kegiatan

DAFTAR ISI. SARI... i. KATA PENGANTAR... iii. DAFTAR ISI... vi. DAFTAR TABEL... xi. DAFTAR GAMBAR... xii. DAFTAR LAMPIRAN... xiv

BAB III KOMPILASI DATA

SIMULASI HASIL UJI PLATE LOADING TEST STUDI KASUS HOTEL 10 LANTAI DI BANDUNG

BAB III PROSEDUR ANALISIS

Agus Susanto 1), Puput Adi Putro 2) Jl. A. Yani Tromol Pos I Pabelan Kartasura Surakarta 57102,

ANALISA PENGGUNAAN TANAH KERIKIL TERHADAP PENINGKATAN DAYA DUKUNG TANAH UNTUK LAPISAN KONSTRUKSI PERKERASAN JALAN RAYA

BAB III METODOLOGI PENELITIAN

BAB 1 PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang semakin pesat

KORELASI PARAMETER KEKUATAN GESER TANAH DENGAN MENGGUNAKAN UJI TRIAKSIAL DAN UJI GESER LANGSUNG PADA TANAH LEMPUNG SUBSTITUSI PASIR

PENGARUH GEOTEKSTIL TERHADAP KUAT GESER PADA TANAH LEMPUNG LUNAK DENGAN UJI TRIAKSIAL TERKONSOLIDASI TAK TERDRAINASI SKRIPSI. Oleh

BAB 1 PEMERIKSAAN KEKUATAN TANAH DENGAN SONDIR. Das, Braja M. Mekanika Tanah Prinsip Rekayasa Geoteknis Jilid 2 : Bab 13 hal Erlangga

LAMPIRAN 1 DIAGRAM PENGARUH R. E. FADUM (1948) UNTUK NAVFAC KASUS 1. Universitas Kristen Maranatha

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

Himpunan mineral, bahan organik, dan endapan-endapan yg relatif lepas (loose) yg terletak di atas batuan dasar (bedrock) Proses pelapukan batuan atau

Pengaruh Perkuatan Sheetpile terhadap Deformasi Area Sekitar Timbunan pada Tanah Lunak Menggunakan Metode Partial Floating Sheetpile (PFS)

PENGARUH TINGGI GALIAN TERHADAP STABILITAS LERENG TANAH LUNAK ABSTRAK

BAB III LANDASAN TEORI. saringan nomor 200. Selanjutnya, tanah diklasifikan dalam sejumlah kelompok

1. Dosen Jurusan Teknik Sipil Universitas Hasanuddin, Makassar Mahasiswa Jurusan Teknik Sipil Universitas Hasanuddin, Makassar 90245

Transkripsi:

BAB 3 METODOLOGI PENELITIAN 3.1 Pendekatan Penelitian Pendekatan dalam penelitian ini dilakukan untuk menguji nilai faktor keamanan dari pemodelan soil nailing dengan elemen pelat (plate) dan elemen node to node anchor dalam program PLAXIS, dengan hasil kalkulasi manual yang berdasarkan pada metode baji (wedge method), dan kalkulasi dari program SLOPE/W sebagai acuan. Tahapan-tahapan dalam penelitian ini adalah: Identifikasi permasalahan, Pengumpulan dan pengolahan data, Perhitungan Faktor Keamanan (manual, SLOPE/W, dan PLAXIS), Evaluasi,

Identifikasi Masalah Pengumpulan Data Tanah, dan Data Nail Pengolahan Data Perhitungan Faktor Keamanan Lereng Kalkulasi Manual (Wedge Method) PLAXIS SLOPE/W Output Evaluasi Kesimpulan Selesai Gambar 3.1 Diagram Alir Tahapan Penelitian

3.2 Pengumpulan Data Pengujian lapangan, dan pengujian laboratorium adalah dua aspek kritis dalam proyek rekayasa geoteknik manapun, dan berdampak langsung terhadap teknik dan keefektifan biaya konstruksi. Berikut penjelasan dari pengujian lapangan dan pengujian laboratorium yang umum dilakukan: 3.2.1 Pengamatan Lapangan Pengamatan lapangan dilakukan sebagai penyelidikan awal untuk mendapatkan informasi seperti: Peta topografi, peta geologi, dan site plan, Data geologi, pola erosi, dan sistem drainase yang ada, Data mengenai struktur yang ada di sekitar proyek, Aksesbilitas lapangan, kondisi lalu lintas, Bukti yang menunjukkan adanya penurunan permukaan tanah, atau terjadinya rangkak (creep) pada lereng. Dan informasi lain yang dapat digunakan sebagai referensi dalam perencanaan. 3.2.2 Uji Lapangan (Insitu Test), dan Pengambilan Sampel (Sampling) Uji lapangan umum dilakukan dengan pengeboran, dengan tujuan mendapatkan nilai N-SPT, sampel tanah baik disturbed maupun undisturbed, serta observasi muka air tanah.

Pengeboran perlu dilakukan di depan dan di belakang dari dinding tanah yang akan dibangun. Pengeboran di belakang dinding dilakukan pada jarak sekitar 1 sampai 1,5 kali dari tinggi dinding, dan spasi antar lubang bor 45 m sepanjang dinding. Kemudian, pengeboran di depan dinding dilakukan pada jarak 0,75 kali tinggi dinding, dan spasi antar lubang bor sejauh 60 m sepanjang dinding. Kedalaman pengeboran minimal satu kali tinggi dinding di bawah elevasi dasar galian tanah. Berikut skema pengeboran untuk uji lapangan dalam konstruksi dinding soil nailing. Gambar 3.2 Skema Pengeboran Untuk Uji Lapangan (Sumber: Cheney (1988), dan Sabatini et al. (1999))

Uji Penetrasi Standar (Standard Penetration Test) Uji SPT adalah teknik yang banyak digunakan untuk meneliti kondisi tanah di lapangan. Uji penetrasi standar (SPT) dilakukan dengan memukul sebuah tabung standar ke dasar lubang bor sedalam 45 cm dengan menggunakan sebuah palu seberat 63,5 kg yang jatuh bebas dengan ketinggian 76 cm. Jumlah pukulan yang dibutuhkan untuk penetrasi setiap 15 dicatat, tapi untuk penetrasi 15 cm awal diabaikan karena properti tanahnya mungkin terganggu pada saat pengeboran. Jumlah penetrasi pada 30 cm terakhir dicatat sebagai nilai N (N-value) yang sering dikorelasikan dengan sifat-sifat tanah, seperti kepadatan tanah, kuat geser tanah dan modulus elastisitas tanah. Gambar 3.2 Uji Penetrasi Standar (SPT) (Sumber: http://geosystems.ce.gatech.edu/faculty/mayne/research/devices/spt.htm)

Uji Sondir (Cone Penetration Test) Uji sondir (CPT) yang sering dilakukan di Indonesia merupakan uji sondir mekanis. Uji sondir dilakukan dengan mendorong sebuah konus yang mempunyai luas proyeksi sebesar 10 cm 2 dan bersudut kemiringan 60, dengan kecepatan penetrasi 20 mm/detik. Tekanan yang dibutukan untuk mendorong konus dicatat sebagai tekanan konus (cone ressistance, q c ), dan tekanan terhadap selubung konus yang mempunyai luas permukaan 150 cm 2 disebut tekanan friksi (local friction, fs). Pengukuran tekanan konus dan tekanan friksi dilakukan setiap 20 cm. Gambar 3.3 Uji Sondir (CPT) (Sumber: http://geosystems.ce.gatech.edu/faculty/mayne/research/devices/cpt.htm)

3.2.3 Uji Laboratorium Pengujian sampel tanah di laboratorium dilakukan untuk mendapatkan klasifikasi tanah, berat jenis, daya dukung, dan kompresibilitas, serta beberapa parameter dasar lainnya. Tabel 3.1 menunjukkan uji laboratorium yang umum dilakukan untuk mendapatkan parameter yang dibutuhkan dalam pekerjaan geoteknik. Tabel tersebut juga mengacu pada standar pengujian ASTM, dan AASHTO. Tabel 3.1 Prosedur Umum dan Uji Laboratorium Untuk Tanah PROCEDURE Classification Index Parameters Strength Hydraulic Conductivity Compressibility Other TEST NAME STANDARD ASTM (1) AASHTO (2) APPLICABILITY Visual and Manual Description and Indentification of Soils D2488-00 - All soils Classification of Soils according to USCS (3) D2487-00 M145 All soils Particle-Size Analysis (with sieves) D422-63 (1998) T88 Granular soils Soil Fraction finer than No. 200 Sieve D1140-00 T11 Fine-grained and granular materials boundary Moisture Content D2216-98 T265 All soils Atterberg Limits D4318-00 T89, T90 Fine-grained soil Organic Contents D2974-00 T194 Fine-grained soil fraction Specific Gravity of Soil Solids D854-00 T100 All soils Unconfined Compressive Strength (UCS) D2166-00 T208 Fine-grained soil Unconsolidated Undrained Triaxial D2850-95 Compression (UU) (1999) T296 Fine-grained soil Consolidated Undrained Triaxial Compression (CU) D4767-95 T234 Fine-grained soil Direct Shear (Consolidated) D3080-98 T236 Sand and Fine-grained soils Permeability (Constant Head) D2434-68 (2000) T215 Granular soils One-Dimensional Consolidatiion D2435-96 T216 Fine-grained soil One-Dimensional Consolidatiion (Controlled-Strain Loading) Frost Heave and Thraw Weakening Susceptibility Collapse Potential D2434-68 el (1998) D5918-96 (2001) D5333-92 (1996) - Fine-grained soil - Silts - Loess, Silt Swelling Potential D4546-96 T258 Fine-grained soil Catatan: (1) Standar ASTM individual dapat dilihat pada ASTM (2002). (2) Standar AASHTO individual dapat dilihat pada AASHTO (1992). (3) USCS: Unified Soil Classification System.

3.2.4 Parameter Tanah Untuk Desain Klasifikasi Tanah, dan Indeks Properti Seperti yang telah dibahas pada bab sebelumnya, bahwa soil nailing dapat dilakukan untuk berbagai jenis tanah, namun lebih ekonomis untuk jenis tanah tertentu. Oleh karena itu, klasifikasi tanah yang tepat sangat penting, untuk mengantisipasi jenis tanah yang kurang cocok untuk soil nailing. Pengklasifikasian tanah dapat dilakukan mengacu kepada Unified Soil Classification System (USCS), dalam sistem ini memerlukan Atterberg limit, dan gradasi tanah yang bisa didapatkan dari uji saringan. Kadar air alamiah yang diperoleh dari tanah berbutir halus dapat membantu mendeteksi kondisi yang kurang menguntungkan, misalnya kadar air yang sangat tinggi dalam tanah berbutir halus bisa menjadi masalah, karena biasanya akan disertai dengan kuat geser rendah, kompresibilitas tinggi, dan berdeformasi rangkak besar. Sebaliknya tanah dengan kadar air rendah pada tanah granular tidak memungkinkan tanah galian berdiri vertikal tanpa perkuatan. Atterberg limit pada tanah berbutir halus digunakan dalam mengklasifikasikan tanah, dan dapat juga digunakan untuk mengestimasi parameter lain dengan korelasi yang tepat.

Berat Isi Tanah Berat isi tanah merupakan parameter yang penting, karena secara langsung berpengaruh pada gaya pendorong yang membuat lereng tidak stabil. Berat isi tanah granular, beberapa jenis tanah berbutir halus dapat diestimasi dari parameter kepadatan relatif, D r, seperti pada Gambar 3.4. Pada gambar tersebut, (γ d /γ w ) merupakan rasio dari berat isi kering tanah terhadap berat isi air, dan pada tanah yang jenuh air diperlukan parameter kadar air (ω) untuk menentukan berat isi jenuh air (γ sat ) tanah tersebut (dihitung dengan persamaan, γ sat = γ d (1+ω)). Gambar 3.4 Korelasi Antara Sudut Geser Dalam Efektif (φ ), Kepadatan Relatif (D r ), dan Berat Isi Kering (γ d ). (Sumber: Soil Nail Walls, Report FHWA-IF-03-017) Sudut Geser Dalam (φ) Sudut geser dalam tanah (φ) umumnya diestimasi dari korelasi dengan hasil uji lapangan, seperti CPT, dan SPT. Korelasi sudut geser

dalam pada tanah non-kohesif terhadap hasil uji CPT dan SPT dapat dilihat pada tabel di bawah ini. Tabel 3.2 Korelasi Antara Hasil Uji CPT dan Sudut Geser Dalam Efektif Pada Tanah non-kohesif (Sumber: Kulhawy dan Maine, 1990) In-Situ Test Results Relative Density φ (degrees) (a) (3) (b) (4) 0 4 Very loose < 28 < 30 SPT N-Value (1) 4 10 Loose 28 30 30 35 (blows/300 mm 10 30 Medium 30 36 35 40 or blows/ft) 30 50 Dense 36 41 40 45 > 50 Very Dense > 41 > 45 <20 Very loose < 30 Normalized CPT 20 40 Loose 30 35 cone bearing 40 120 Medium 35 40 ressistance. (q 120 200 Dense 40 45 c /P a ) (1), (4) > 200 Very Dense > 45 Catatan: (1) Nilai N-SPT adalah hasil uji lapangan, tanpa dikoreksi. (2) P a adalah tekanan atmosfir normal = 1 atm 100 kn/m 2 1 tsf. (3) Nilai pada kolom (a) dari Peck, Hanson, dan Thornburn (1974). (4) Nilai pada kolom (b) dan nilai CPT dari Meyerhof (1956). Bowles juga mengemukakan korelasi antara nilai N-SPT terhadap berat isi (γ), sudut geser dalam (φ), dan kepadatan relatif, pada tanah kohesif (Tabel 3.3.a), dan non-kohesif (Tabel 3.3.b). Tabel 3.3.a Korelasi Nilai N-SPT Terhadap Berat Isi, Sudut Geser Dalam, dan Kepadatan Relatif Pada Tanah non-kohesif (Sumber: Bowles, 1991) N 0 10 11 30 31 50 > 50 Berat isi, γ (kn/m 3 ) 12 16 14 18 16 20 18 23 Sudut geser dalam, φ ( ) 25 32 28 36 30 40 > 35 Kepadatan relatif Lepas Sedang Padat Sangat Padat

Tabel 3.3.b Korelasi Nilai N-SPT Terhadap Berat Isi, Unconfined Compressive Strength (UCS), dan Kepadatan Relatif Pada Tanah Kohesif (Sumber: Bowles, 1991) N < 4 4 6 6 15 6 15 > 25 Berat isi, γ (kn/m 3 ) 14 18 16 18 16 18 16 18 > 20 UCS, Qu, (kpa) < 25 20 50 30 60 40 200 > 100 Kepadatan relatif Sangat lunak Lunak Sedang Keras Sangat keras Modulus Elastisitas (E) Nilai modulus elastisitas tanah dapat diperoleh melalui tabel yang dikemukakan oleh Braja M. Das, yaitu: Tabel 3.4 Nilai Modulus Deformasi, E, Untuk Berbagai Jenis Tanah (Sumber: Braja M. Das, 1990) Soil types E(kg/cm 2 ) Poisson Ratio Loose sand 103-241 0,2-0,4 Medium Sand 172-276 0,25-0,4 Dense sand 345-552 0,3-0,45 Silty sand 103-172 0,2-0,4 Sand & Gravel 690-1725 0,15-0,35 Soft clay 20-52 Hard clay 52-104 0,2-0,5 Stiff clay 104-242