PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50

dokumen-dokumen yang mirip
EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

BAB II TINJAUAN PUSTAKA

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

ANALISIS PENYUMBATAN PIPA-PIPA PENUKAR KALOR REAKTOR RSG-GAS

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks

Endiah Puji Hastuti dan Sukmanto Dibyo

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan

PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR

BAB II TINJAUAN PUSTAKA

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi

BAB II TINJAUAN PUSTAKA

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN

OPTIMASI KINERJA IHX UNTUK SISTEM KOGENERASI RGTT200K

Bab 1. PENDAHULUAN Latar Belakang

BAB II TINJAUAN PUSTAKA

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-198

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

HALAMAN PERSETUJUAN. Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

PENGGUNAAN FLUENT UNTUK SIMULASI DISTRIBUSI SUHU DAN KECEPATAN PADA ALAT PENUKAR KALOR

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

BAB III TUGAS KHUSUS

PERHITUNGAN KEBUTUHAN COOLING TOWER PADA RANCANG BANGUN UNTAI UJI SISTEM KENDALI REAKTOR RISET

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

BAB II LANDASAN TEORI

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

BAB II LANDASAN TEORI

PERANCANGAN ALAT PENUKAR KALOR (HEAT EXCHANGER) TIPE SHELL AND TUBE 2 PASS UNTUK PENDINGINAN AIR DEMIN KAPASITAS 3, 37 MW

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

Analisis Termal Alat Penukar Kalor Shell and Tube 1 2 Pass

STUDI EKSPERIMENTAL PENGARUH VARIASI PITCH COILED TUBE TERHADAP NILAI HEAT TRANSFER DAN PRESSURE DROP PADA HELICAL HEAT EXCHANGER ALIRAN SATU FASA

ANALISIS PERBANDINGAN DESAIN TERMAL PEMBANGKIT UAP PWR 1000 MWE MENGGUNAKAN METODE LMTD, NTU-EFEKTIVITAS DAN DIAGRAM T-H.

STUDI BAFFLE LEAKAGE FLOW PADA PENUKAR PANAS SHELL-TUBE (*)

BAB lll METODE PENELITIAN

PEREKAYASAAN ALAT PENUKAR PANAS TIPE PELAT UNTUK REAKTOR TRIGA PELAT DENGAN SOFTWARE APLIKASI CHEMCAD

ANALISIS PENGARUH EFEKTIVITAS PERPINDAHAN PANAS DAN TAHANAN TERMAL TERHADAP RANCANGAN TERMAL ALAT PENUKAR KALOR SHELL & TUBE

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

OPTIMASI SHELL AND TUBE KONDENSOR DAN PEMANFAATAN ENERGI PANAS TERBUANG PADA AC UNTUK PEMANAS AIR

OPTIMASI KONDENSOR SHELL AND TUBE BERPENDINGIN AIR PADA SISTEM REFRIGERASI NH 3

PRA PERANCANGAN HEAT EXCHANGER UNTUK MENAIKKAN KAPASITAS BEBAN SAMPAI 130% di PLANT VCM-2 SEKSI 3 PT ASAHIMAS CHEMICAL

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air

ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW

PERANCANGAN SHELL AND TUBE HEAT EXCHANGER TIPE FIXED HEAD DENGAN MENGGUNAKAN DESAIN 3D TEMPLATE SKRIPSI

BAB III SPESIFIKASI PERALATAN PROSES

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

STUDI EKSPERIMENTAL PENGARUH PITCH

PENGARUH KECEPATAN DAN SIFAT FLUIDA PENDINGIN TERHADAP KOEFISIEN PERPINDAHAN KALOR PADA PENUKAR KALOR SHELL AND TUBE

ANALISIS KARAKTERISTIK TERMAL INTERMEDIATE HEAT EXCHANGER PADA RGTT200K

RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES

BAB II LANDASAN TEORI

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow

UNIVERSITAS DIPONEGORO TUGAS SARJANA. Disusun oleh:

BAB I PENDAHULUAN I.1.

BAB II TINJAUAN PUSTAKA

BAB IV HASIL PENGAMATAN & ANALISA

CC-THERM (Heat exchanger design and rating) ChemCAD Training Jurusan Teknik Kimia Universitas Surabaya (UBAYA) Surabaya, Februari 2006

BAB 1 PENDAHULUAN. untuk proses-proses pendinginan dan pemanasan. Salah satu penggunaan di sektor

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi.

BAB IV ANALISA DAN PERHITUNGAN

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

BAB I. PENDAHULUAN...

EVALUASI KINERJA ALAT PENUKAR PANAS RSG-GAS PASCA INSPEKSI. Djunaidi, Aep Saepudin Catur, Syafrul *)

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

SKRIPSI ALAT PENUKAR KALOR

ANALISIS KINERJA COOLANT PADA RADIATOR

ANALISA DISAIN RANCANGAN SEBUAH ALAT PENUKAR KALOR JENIS SHELL AND TUBE SKALA LABORATORIUM

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA

BAB I PENDAHULUAN. ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan Heat Exchanger

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia.

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh)

APLIKASI PROGRAM CHEMCAD UNTUK DESAIN PEMBANGKIT UAP PWR. Sukmanto Dibyo

Analisa Pengaruh Laju Alir Fluida terhadap Laju Perpindahan Kalor pada Alat Penukar Panas Tipe Shell dan Tube

STUDI PERHITUNGAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE DENGAN PROGRAM HEAT TRANSFER RESEARCH INC. ( HTRI )

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

JURUSAN TEKNIK MESIN FAKULTAS TEKNIKUNIVERSITAS SEBELAS MARET SURAKARTA 2013

Perencanaan Heat Exchangers pada Sistem Pendinginan Minyak Bantalan Poros Turbin Generator PLTA PB. Soedirman

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT

EFEKTIFITAS PERPINDAHAN PANAS PADA DOUBLE PIPE HEAT EXCHANGER DENGAN GROOVE. Putu Wijaya Sunu*, Daud Simon Anakottapary dan Wayan G.

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang Masalah. dengan globalisasi perdagangan dunia. Industri pembuatan Resin sebagai

HEAT EXCHANGER ALOGARITAMA PERANCANGAN [ PENUKAR PANAS ]

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

Transkripsi:

PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50 Sukmanto Dibyo, Gregorius Bambang Heru, Pusat Teknologi Keselamatan Reaktor Nuklir sukdibyo@gmail.com ABSTRAK PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50. Desain proses aliran sistem pendingin RRI-50 telah dibuat. Makalah ini melengkapi dokumen untuk desain komponen unit penukar panas sistem pendingin reaktor. Dua unit penukar panas dipilih jenis shell-tube dan didesain dengan kapasitas masing-masing 25,1MWt. Desain dikerjakan dengan metoda penentuan koefisien transfer panas pada penukar panas. Dalam desain ini, rugi tekanan aliran merupakan salah satu faktor yang juga harus dipenuhi. Data masukan yang digunakan adalah temperatur dan laju aliran dari desain proses sistem pendingin RRI-50.Hasil desain telah diperoleh sebagai berikut: tipe shell-tube (1-2 pass) aliran lawan arah dilengkapi 6 baffle penyekat dengan koefisien transfer panas 1377,1W/m 2o C, luas permukaan transfer panas 1336,4m 2, beda temperatur air panas dan air pendingin 13,6 o C ( T Lmtd ), rugi tekanan desain 95,74kPa (sisi tube) dan 67,37kPa (sisi shell). Dari hasil perhitungan desain termal maka dapat digunakan penukar panas yang dimensinya mendekati data desain standar yang ada untuk tipe shell-tube. Kata Kunci : desain termal, penukar panas, RRI-50 ABSTRACT THERMAL DESIGN PRELIMINARY CALCULATION FOR HEAT EXCHANGER OF RRI-50 COOLING SYSTEM. The design of flow cooling system process RRI-50 has been made. This paper to complete the documents for the heat exchanger unit components of reactor coolant system. Two units of heat exchangers shell-tube type are selected and designed in which the capacity of each 25,1MWt. Design is done by the method of determining the heat transfer coefficient in the heat exchanger. The design, flow pressure loss is also one of the factor that must be accepted.thermal design of heat exchanger shell-tube type is selected that includes data operating parameters and specifications.the input data used are temperature and flow rate of the RRI-50 taken from the design of process cooling system. Design result obtained are as follows : shell-tube exchanger type (1-2 pass) counter-current flow provided by six baffle plates with the heat transfer coefficient of 1377,1W/m. 2o C, heat transfer area of 1336,4m 2, temperature difference between hot water and coolant water is 13,6 o C ( T Lmtd ), the pressure drop design are 95,74kPa (tube side) and 67,37kPa (shellside). From the result of thermal design calculation then the heat exchanger can be selected in which the dimension in closed with the existing data of shell-tube type. Keywords : thermal design, heat exchanger, RRI-50 1

PENDAHULUAN Desain proses sistem pendingin merupakan bagian desain pada konseptual desain Reaktor Riset Inovatif daya 50 MWt (RRI-50).Desain penukar panas merupakan salah satu desain pendukung dalam pelaksanaan desain reaktor RRI-50. Sistem proses pendinginan reaktor riset diantaranya meliputi komponen utama yaitu kolam reaktor di dalam bejana reaktor, pompa sirkulasi sistem pendingin primer dan sekunder, penukar panas, tangki tunda N-16 dan menara pendingin (cooling tower). Pembuatan diagram aliran proses (flow-sheet) merupakan langkah desain pada tahap awal untuk menetapkan kondisi terhadap parameter proses pendingin (neraca laju aliran pendingin dan neraca panas)[1]. Pengambilan panas dari reaktor didukung oleh sistem pendingin primer dan sekunder melalui media antarmuka penukar panas. Di dalam sistem proses pendinginan, unit penukar panas untuk mentransfer panas dari aliran pendingin primer ke aliran pendingin sekunder merupakan hal yang sangat penting. Sampai saat ini penukar panas yang banyak digunakan dalam industri besar dan yang memiliki banyak data dukung referensinya adalah jenis shelltube. Penukar panas jenis ini memiliki keunggulan diantaranya mudah perawatan, luas permukaan besar, turbulensi aliran yang cukup tinggi, dan rugi tekanan aliran yang rendah[2]. Setiap penukar panas selalu di desain untuk mampu mentransfer panas secara optimal, permukaan transfer panas yang minimum dan kondisi operasi yang efektif. Dari uraian tersebut maka tujuan makalah ini adalah menghitung desain termal unit penukar panas jenis shell-tube pada sistem pendingin RRI-50 untuk memenuhi ketentuan parameter operasi berdasarkan desain diagram proses pendingin RRI-50. Di dalam desain penukar panas, parameter yang harus dipenuhi adalah luas permukaan transfer panas yang diperlukan dan rugi tekanan aliran pendingin [3]. Disamping hal di atas, kriteria lain yang perlu dipertimbangkan terhadap persyaratan desain adalah kondisi operasi dari desain sistem proses pendingin yang harus dipenuhi. Dengan menggunakan metoda analitik yang tidak terlalu rumit melalui persamaan konstitutif dan persamaan empirik yang sudah baku maka hasil desain termal penukar panas dapat diperoleh. Disamping itu penggunaan fluida pendingin air pada kedua sisi penukar panas sistem pendingin reaktor menjadikan perhitungan awal desain termal ini mudah dikerjakan. TEORI Diskripsi Penukar Panas Penukar panas shell-tube adalah salah satu tipe penukar panas, yang mana penukar panas ini merupakan jenis yang paling umum dan cocok untuk aplikasi tekanan tinggi. Penukar panas terdiri dari shell (bejana silindris) dengan bundle tube di dalamnya. Air pendingin dilewatkan melalui tube, dan air panas dari reaktor mengalir melalui shell pada arah yang berlawanan atau bersilangan untuk mentransfer panas antara dua fluida tersebut. Untuk meningkatkan efisiensi transfer panas, maka penukar panas ini dapat dilengkapi dengan baffle [4]. Air pada sisi shell mengalir menyilang (crossflow) terhadap bundel tube. Adapun pada sisi tube, aliran masuk dan keluar melalui channel head yang dilengkapi dengan partisi aliran. Secara umum sketsa ilustrasi penukar panas ditunjukkan pada Gambar 1. 2

Gambar 1.Sketsa penukar panas tipeshelltube METODOLOGI Perhitungan Desain Langkah pertama yang harus dikerjakan dalam proses desain termal adalah mengidentifikasi input data operasi (laju aliran fluida, temperatur dan rugi tekanan aliran). Selanjutnya menentukan jenis atau tipe penukar panas yang dikehendaki dan kemudian melakukan perhitungan desain berdasarkan kondisi parameter operasi tersebut. Prosedur perhitungan desain penukar panas secara lengkap ditampilkan pada diagram Gambar 2. Langkah I diperoleh dari hasil desain proses sistem pendingin menggunakan ChemCad.6.4.1 [1]. Langkah II merupakan proses desain termal penukar panas yang pada dasarnya dalam perhitungan ini adalah menghitung koefisien transfer panas dari fluida panas ke fluida pendingin dan menghitung luasan transfer panas yang diperlukan. Diagram proses perhitungan ini dapat dengan mudah dikerjakan dengan pemrograman komputer. Meskipun penentuan hasil akhir desain penukar panas diputuskan pada langkah III (setelah garis kotak) namun harus dilakukan perhitungan pada langkah II dengan benar. Catatan bahwa faktor lain di luar perhitungan desain yang juga dipertimbangkan adalah perioda cleaning-up, ruang (space) yang tersedia, syarat standar ASME safety code harus dipenuhi. Disamping itu unit komponen penukar panas senantiasa memiliki spesifikasi dan ukuran standar tertentu. Gambar 2. Diagram perhitungan desain 3

Persamaan-persamaan penting dalam desain penukar panas disampaikan pada uraian berikut [3], Q = M C ( t in tout )...... (1) Q A =...(2) U o T LMTD Q A =...(3) U o T LMTD 1 U o =...(4) A i ( 1/ h shell ) + ( 1/ htube ) + R d Ao Keterangan Q = beban panas air, Joule/s A = luasan transfer panas, m 2 M = laju aliran massa pendingin, kg/s C = kapasitas panas spes.air, Joule/kg. o C t= temperatur air, o C U o = koefisien transfer panas, W/m 2 o C T L Lmtd=beda temperatur air panas-dingin, o C h = koefisien transfer panas bagian sisi tube dan shell, W/m 2 o C R d = koefisien fouling, m 2 o C/ W Dalam desain termal penukar panas, penggunaan korelasi rugi tekanan aliran merupakan salah satu faktor penentu. Rugi tekanan dapat disebabkan oleh beberapa bentuk hilangnya energi karena friksi dan perubahan luas penampang aliran. Rugi tekanan pada sisi tube dihitung dengan menggunakan persamaan (5) seperti pada aliran pipa berikut [5] : P = (4 f 2 L ρv )... D 2 gc......( 5) Keterangan : f= faktor friksi L= panj.kanal, m ρ= densitas air,kg/m 3 D= diameter kanal, m V=kecepatan.aliran,m/s..g c =konst.percepatan gravitasi, m/s 2 Lintasan pada aliran sisi shell lebih komplek, oleh karena itu digunakan korelasi dari Kern yang ditentukan oleh diameter ekivalen, kecepatan crossflow, faktor friksi, jumlah aliran menyilang (crosses), danfluid properties: Keterangan : G = kecepatan massa air, kg/m 2.s N = jumlah baffle D = diameter shell, m D eq = diameter ekivalen lintasan aliran, m HASIL DESAIN DAN PEMBAHASAN Data spesifikasi desain termal penukar panas pada sistem pendingin RRI-50 telah diperoleh yaitudata temperatur, tekanann dan laju aliran massa pendingin, kapasitas beban panas dan dimensi penukar panas. Adapun dataspesifikasii desain termal tersebut disampaikan pada Tabel 1, pada tabel tersebut tampak bahwa penukar panas didesain untuk kapasitas 25,1MWt yang dikutip dari data hasil desain proses sistem pendingin RRI-50 menggunakan paket ChemCad6.4.1 [1]. Dalam desain tersebut, terdapat 2 unit penukar panas untuk mengatasi beban panas 50 MWt dari reaktor RRI-50. Penukar panas ini tipe shell-tubee (1-2 pass) yang dikoneksikann dengan sistem pendingin primer dan sistem sekunder, air pendingin sekunder dari menara pendingin mengalir padaa sisi tube dan air pendingin primer tanpa mineral (demineralized water) dilewatkan pada sisi shell. Dengan penetapan ini maka aliran air yang mempunyai tingkat kandungan impurities besar dilewatkan pada sisi tube, hal ini dimaksudkan untuk memudahkan proses perawatan berkala cleaning-up. Selanjutnya, arah aliran yang digunakan antara sisi shell dan sisi tube adalah berlawanan (counter current flow). 4

Tabel 1. Spesifikasi Desain Penukar Panas Parameter shell Tube Catatan tipe shell-tube fluida sirkulasi Air demineral Air pendingin beban panas (MJoule/s) 25,03 - temperatur air panas masuk ( o C) 57,85 - temperatur air panas keluar ( o C) 44,60 - temperatur pendingin masuk ( o C) - 33,05 temperatur pendingin keluar ( o C) - 42,00 laju aliran air panas (kg/s) 451,0 - laju aliran pendingin (kg/s) - 665,6 T Lmtd ( o C) 13,6 Faktorfouling (m 2 o C/W) 0,00034 [5] angka Reynolds (-) 37077 38668 U overall (W/m 2 C) 1377,1 shell- tube pass (-) 1 2 diameter (mm) 1495,6 20 ID / 22 OD ID,OD:in,outdia. Ref std=1524 mm [6] Pitchtube / layout 1,25OD / square pitch jumlah tube (-) - 1342 Ref std = 1624 [6] jumlah baffle (-) 6 - Jarak baffle (mm) 1200,0 - luas transfer panas (m 2 ) - 1336,4 panjang tube(m) - 7,20 P (kpa) 67,37 95,74 103 *[6] * = maximum allowable T LMTD yang dihitung dari data desain proses menunjukkan bahwa angka ini cukup marjin untuk desain awal penukar panas dalam mengatasi degradasi alat selama dioperasikan. Semakin kecil angka T LMTD desain maka semakin baik kemampuan alat penukar panas karena perbedaan yang kecil antara temperatur air panas dan air pendinginnya. Gambar 3 menunjukkan kurva temperatur yang dipakai untuk menghitung temperatur T LMTD. Gambar 3 Kurva temperatur air panas dan air pendingin Pada bagian sisi shell penukar panas terdapat 6 baffles penyekat, hal ini 5 dimaksudkan untuk memperoleh efektivitas yang tinggi dalam mengambil panas dari sisi shell ke sisi tube. Dari tabel 1 terlihat pula bahwa Jarak baffle (baffle spacing) 1200mm dan diameter Shell 1495,6mm, ini berarti bahwa aliran pada sisi shell cukup baik karena mengalir secara menyilang (across) tegak lurus terhadap bundel tube. Penggunaan baffle tidak menghasilkan P yang cukup tinggi, hal ini tampak pada angka P sisi shell hasil perhitungan 67,37kPa yang masih memenuhi syarat karena kurang dari 103kPa [6]. Penukar panas ini ditentukan dengan bentuk konfigurasi tube square pitch, oleh karena itu aliran di sisi shell memiliki P lebih rendah dibanding bentuk triangular pitch. Perlu disampaikan di sini bahwa triangularpitch dapat memberikan turbulensi aliran yang tinggi namun berakibat P yang tinggi pula. Sementara itu hasil perhitungan koefisien transfer panas menunjukkan 1377,1W/m 2.o C, angka ini cukup memenuhi kriteria karena berada pada rentang besaran

nilai dalam desain penukar panas yang menggunakan media air fasa tunggal pada sisi shell dan sisi tube (800 1500 W/m 2 o C) [7]. Hasil perhitungan desain untuk diameter shell = 1495,6mm dan jumlah tube =1342, sehingga dari referensi dimensi standar penukar panas shell-tubedapat digunakan data dimensi yang mendekati angka tersebut yaitu untuk diameter shell adalah 1524mm dan jumlah tube 1624[6]. KESIMPULAN Desain awal penukar panas untuk sistem pendingin RRI-50 telah dapat diselesaikan, penggunaan baffle penyekat masih dapat mengatasi rugi tekanan karena masih dibawah kriteria yang disyaratkan. Begitu pula transfer panasnya dari perhitungan telah sesuai dengan kriteria rentang koefisien transfer panas untuk pendingin air. Dari hasil perhitungan maka dapat digunakan penukar panas yang dimensinya mendekati data desain standar yang ada untuk tipe shell-tube. DAFTAR PUSTAKA 1. SUKMANTO D. dkk, Desain Parameter Proses Operasi Sistem Pendingin Sekunder RRI, LAPTEK 2013, PTRKN Batan. 2. BELL K.J, Heat Exchanger Design Hand-Book (HEDH), Bab 3, 4 dan 5, HemispherePublish Corp, Washington DC, 1983. 3. KERN DQ, Process Heat Transfer, International Student Edition, Mc. Graw Hill Book Co, New York, 1965. 4. SUKMANTO D, Studi Leakage Baffle Pada Penukar Panas Shell-Tube, Presentasi Ilmiah Hasil Studi Doktor- Master BATAN, Jakarta, 9-11/12/1997. 5. COULSON JM RICHARDSON JF Chemical Engineering Design, p.548-553, Pergamon Press, New York. 6. M. KONTOPOULOU, Heat Transfer Analysis and Heat Exchanger Design Part 3, Department of Chemical Engineering, Queen's University Kingston, Ontario Canada. Site Up-date: January 3, 2014, http://www.chemeng.queensu.ca/courses/ CHEE331+ 332+333 7. EngineeringPage, Typical Overall Heat Transfer CoefficientU-Values, 09/ 2014http://www.engineeringpage.com/te chnology/thermal/transfer.html *** 6