BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger, bagian-bagian shell and tube heat exchanger, perpindahan panas pada heat exchanger, dan pengukuran kinerja heat exchanger. 2.1 Penukar Panas (Heat Exchanger) Secara umum pengertian alat penukar panas atau heat exchanger (HE) adalah suatu alat yang digunakan untuk perpindahan panas dari suatu fluida yang suhunya lebih tinggi kepada fluida lain yang suhunya lebih rendah. Biasanya medium pemanas memakai uap panas (steam), sedangkan pendingin menggunakan air pendingin (cooling water) dan refrigerant. Pertukaran panas terjadi karena adanya kontak, baik antara fluida terdapat dinding yang memisahkannya (indirect contact) maupun kedua fluida bercampur langsung (direct contact). Penukar panas sangat luas dipakai dalam industri seperti kilang minyak, pabrik kimia maupun petrokimia, industri gas alam, refrigerasi, dan pembangkit listrik. 2.2 Mekanisme Perpindahan Panas pada Heat Exchanger Mekanisme perpindahan panas yang terjadi dalam heat exchanger, yaitu konduksi dan konveksi. Perpindahan panas yang terjadi pada fluida adalah proses konveksi, sedangkan proses konduksi terjadi pada dinding pipa

2 Bab II Tinjauan Pustaka 6 Gambar 2.1 Perpindahan Panas pada Heat Exchanger (Sumber : Za Tendra heat exchanger, 2012) 2.3 Konfigurasi Aliran Fluida Berdasarkan arah aliran fluida, heat exchanger dapat digolongkan menjadi dua, yaitu: 1) Heat Exchanger dengan aliran searah (co-current flow) Pada heat exchanger jenis ini, kedua fluida (dingin dan panas) masuk pada sisi heat exchanger yang sama, mengalir dengan arah yang sama dan keluar pada sisi yang sama. Suhu fluida dingin yang keluar (Tcb) tidak dapat melebihi suhu fluida panas yang keluar (Thb), sehingga diperlukan media pendingin atau media pemanas yang banyak. Profil suhu pada aliran co-current flow dapat dilihat pada Gambar 2.2. Gambar 2.2 Profil Suhu pada Aliran Co-Current Flow (Sumber : Ariana, 2009) 2) Heat Exchanger dengan aliran berlawanan arah (counter-current flow) Pada heat exchanger jenis ini, kedua fluida (panas dan dingin) masuk ke dalam heat exchanger dengan arah berlawanan, mengalir dengan arah berlawanan, dan keluar pada sisi yang berlawanan. Suhu fluida dingin yang keluar (Tcb) lebih

3 Bab II Tinjauan Pustaka 7 tinggi dibandingkan dengan suhu fluida panas yang keluar (Thb), sehingga dianggap lebih baik dari alat penukar panas aliran searah (co- current flow). Gambar 2.3 Profil Suhu pada Aliran Counter-Current Flow (Sumber : Ariana, 2009) Menghitung dapat di hitung dengan menggunakan persamaan 2.1 : (2.1) T1 = Thi Tco T2 = Tho Tci 2.4 Shell and Tube Heat Exchanger Salah satu jenis HE yang banyak ditemui pada industri kimia adalah jenis Shell & Tube heat Exchanger ( STHE ). Heat Exchanger jenis shell & tube terdiri atas suatu bundel pipa yang dihubungkan secara paralel dan ditempatkan dalam sebuah pipa mantel (cangkang). Fluida yang satu mengalir di dalam bundel pipa, sedangkan fluida yang lain dengan suhu berbeda mengalir di luar pipa pada arah yang sama, berlawanan, atau bersilangan. Kedua ujung pipa tersebut dilas pada penunjang pipa yang menempel pada mantel. Efisiensi pertukaran panas dapat ditingkatkan dengan cara pemasangan sekat (baffle) untuk menghasilkan turbulensi pada aliran fluida dan menambah waktu tinggal (residence time), namun pemasangan sekat akan memperbesar pressure drop dan menambah beban kerja pada pompa, sehingga laju alir fluida pada proses perpindahan panas harus diatur. Heat exchanger jenis shell and tube dapat dilihat pada Gambar 2.4 :

4 Bab II Tinjauan Pustaka 8 Gambar 2.4 Alat Penukar Panas Jenis Shell and Tube Heat Exchanger (Sumber : washington university, 2010) Kelebihan shell and tube heat exchanger, yaitu : a) Luas permukaan kontak lebih besar b) Layout mekanik lebih baik dan dapat dipakai untuk operasi yang bertekanan c) Bahan atau material dipilih sesuai dengan kondisi operasi yang dibutuhkan d) Mudah dibersihkan e) Konstruksi sederhana sehingga kebutuhan ruangan relatif kecil, dapat dipisahkan serta relatif mudah dalam transformasi dan pemasangan. Berdasarkan kondisi kerja, heat exchanger mempunyai standar dalam pemakaiannya. Standarisasi ini dikeluarkan oleh asosiasi pembuat heat exchanger yang dikenal dengan Tubular Exchanger Manufactures Association (TEMA). TEMA telah menetapkan standar heat exchanger jenis shell and tube dalam tiga klasifikasi: a) Kelas R, yaitu kelas untuk alat yang dioperasikan pada kondisi berat, biasanya digunakan pada industri petroleum b) Kelas C, yaitu alat yang dirancang untuk beban dan persyaratan yang sedang serta didasarkan pada segi ekonomis, biasanya digunakan untuk proses umum industri c) Kelas B, yaitu kelas untuk alat yang dioperasikan pada kondisi ringan, biasanya dirancang untuk jasa pelayanan umum

5 Bab II Tinjauan Pustaka Bagian-bagian Shell and Tube Heat Exchanger, antara lain : 1) Shell Kontruksi shell sangat ditentukan oleh keadaan tubes yang akan ditempatkan di dalamnya. Shell ini dapat dibuat dari pipa yang berukuran besar atau pelat logam yang dirol. Shell merupakan badan dari heat exchanger yang di dalamnya terdapat tube bundle. 2) Tube (pipa) Tube atau pipa merupakan bidang pemisah antara kedua jenis fluida yang mengalir di dalamnya dan sekaligus sebagai bidang perpindahan panas. Ketebalan dan bahan pipa harus dipilih pada tekanan operasi fluida kerjanya. Bahan pipa harus tidak mudah terkorosi oleh fluida kerja. Adapun beberapa tipe susunan tube dapat dilihat pada gambar 2.5 : Gambar 2.5 Tipe susunan tube (Sumber : Third Edition: Design of Oil Handling Systems by Maurice Stewart and Ken E, 2009) Susunan dari tube ini dibuat berdasarkan pertimbangan untuk mendapatkan jumlah pipa yang banyak atau untuk kemudahan perawatan (pembersihan permukaan pipa). 3) Tube Sheet Tempat untuk merangkai ujung-ujung tube sehingga menjadi satu yang disebut tube bundle. HE dengan tube lurus pada umumnya menggunakan 2 buah tube sheet. Sedangkan pada tube tipe U menggunakan satu buah tube sheet yang berfungsi untuk menyatukan tube-tube menjadi tube bundle dan sebagai pemisah antara tube side dengan shell side.

6 Bab II Tinjauan Pustaka 10 4) Sekat (Baffle) Adapun fungsi dari pemasangan sekat (baffle) pada heat exchanger ini antara lain adalah: a) Sebagai penahan dari tube bundle b) Untuk mengurangi atau menambah terjadinya getaran c) Sebagai alat untuk mengarahkan aliran fluida yang berada di dalam tubes 2.5 Perpindahan Panas pada Heat Exchanger Jumlah panas yang dipindahkan fluida pada heat exchanger dapat diketahui dari persamaan 2.2 yaitu sebagai berikut: = T h T c (2.2) Dimana : Q = panas yang dipindahkan per satuan waktu (kcal/h) U = koefisien perpindahan panas overall (kcal/m 2 h o C) A = luas permukaan perpindahan panas overall (m 2 ) Tlmtd= beda suhu rata-rata ( o C) Cp(h) = kalor jenis fluida panas (kcal/kgºc) Cp(c) = kalor jenis fluida dingin (kcal/kgºc) T h = Selisih nilai suhu pada fluida panas ( ºC ) T c = Selisih nilai suhu pada fluida dingin ( ºC ) m h m c = laju alir fluida panas (kg/h) = laju alir fluida dingin (kg/h)

7 Bab II Tinjauan Pustaka Pengukuran Kinerja Heat Exchanger Kinerja dari suatu heat exchanger dapat dilihat dari parameter-parameter berikut: 1) Pengaruh Pengotor (Fouling Factor) Fouling pada heat exchanger dapat menimbulkan kehilangan energi. Gambar 2.5 menunjukkan adanya kehilangan energi dalam bentuk tahanan gesekan fluida atau tahanan transfer panas yang meningkat. Hal ini menyebabkan kemampuan kerja heat exchanger menjadi turun, sehingga heat exchanger perlu dibersihkan. Pengaruh tersebut dapat dinyatakan dengan fouling factor (faktor pengotor) yang harus diperhitungkan dalam menentukan koefisien perpindahan panas overall (U). Gambar 2.6 Kurva Hubungan antara Waktu Pengoperasian Heat Exchanger terhadap Indikasi Fouling (Sumber : Za Tendra heat exchanger, 2012) 2) Koefisien Perpindahan Panas Semakin baik sistem maka semakin tinggi pula koefisien panas (U) yang dimilikinya. Koefisien perpindahan panas (U) terdiri dari dua macam, yaitu: (a) U C (Uclean) adalah koefisien perpindahan panas keseluruhan pada saat alat penukar panas masih baru, masih dalam kondisi bersih. (b) U (service) adalah koefisien perpindahan panas keseluruhan yang dibutuhkan.

8 Bab II Tinjauan Pustaka 12 (c) U D (Udirty) adalah koefisien perpindahan panas keseluruhan pada saat alat penukar panas sudah kotor (pada saat dipakai) atau dapat dikatakan pula sebagai Uactual. Nilai dari koefisien perpindahan panas ini dapat digunakan untuk melihat kinerja atau performansi dari suatu heat exchanger, yang dinyatakan dengan Persamaan 2.3. (2.3) dengan: Uactual Uservice = koefisien perpindahan panas overall nyata (available) = koefisien perpindahan panas overall yang dibutuhkan 3) Penurunan Tekanan (Pressure Drop) Pada setiap aliran dalam heat exchanger akan terjadi penurunan tekanan karena adanya gaya gesek yang terjadi antara fluida dan dinding pipa. Hal ini dapat terjadi pada sambungan pipa, fitting, atau pada heat exchanger itu sendiri. Penurunan tekanan dapat mengakibatkan kehilangan energi sehingga perubahan suhu tidak konstan. 4) Konduktivitas Termal (k) Daya hantar panas yang dimiliki fluida maupun dinding pipa heat exchanger sangat berpengaruh pada kemampuan panas tersebut berpindah. 2.7 Perhitungan koefisien perpindahan panas secara keseluruhan (U actual ) Koefisien perpindahan panas keseluruhan (menurut Coulson,2005) dapat dihitung dengan persamaan 2.4 : (2.4)

9 Bab II Tinjauan Pustaka 13 Dimana : U = Koefisien perpindahan panas keseluruhan, W/m 2 o C h i = koefisien peripindahan panas tube ( inside tube ) W/m 2 o C h o = koefisien peripindahan panas tube (outside tube) W/m 2 o C h id = koefisien peripindahan panas pengotor atau flouling factor tube ( inside tube ) W/m 2 o C h od = koefisien peripindahan panas pengotor atau flouling factor ( outside tube ) W/m 2 o C do = diameter luar tube, m di = diameter dalam tube, m Kw = konduktivitas panas pada material dinding tube, W/m o C Untuk Diameter Shell, Ds, dapat dihitung dengan persamaan berikut Ds = tube Bundle diameter + clearance clearance ( jarak sempit antara tube bundle dengan shell ). Tube bundle, Db, bergantung pada jumlah tube serta jumlah pass tube. Db dapat dihitung dengan persamaan (2.5) : (2.5) Dimana, N t = jumlah dari tube D b = diameter bundle, mm d o = diameter luar tube, mm Nilai K1 dan n1 dapat dilihat pada tabel 2.1. Nilai K1 dan n1 tergantung pada jumlah pass tube.

10 Bab II Tinjauan Pustaka 14 Tabel.2.1 Nilai K1 dan n1 Tringular pitch, pt = 1,25 do No. Passses K1 0,319 0,249 0,175 0,0743 0,0365 n1 2,142 2,207 2,285 2,499 2,675 Square pitch, pt = 1,25 do No. Passses K1 0,215 0,156 0,158 0,0402 0,0331 n1 2,207 2,291 2,263 2,617 2,643 (Sumber : Coulson & Richardson Chemical Engineering Design, 2005) Perhitungan h i secara single phase pada bagian tube Menghitung koefisien perpindahan panas pada tube (h i ) dengan menggunakan persamaan 2.6 yaitu; (2.6) Dimana ; hi = koefisien perpindahan panas pada tube, W/m 2 o C, di (diameter dalam tube) = diameter ekuivalen (de), m ut = kecepatan fluida, m/s, k f = konduktivitas panas pada fluida, W/m 0 C, µ = viskositas fluida pada suhu cairan massal, Ns/m 2, µ w = viskositas fluida pada dinding, C p = Spesifik panas fluida, J/kg o C. Dalam menghitung bilangan reynolds menggunakan persamaan 2.7. (2.7) Dimana ; Re = bilangan reynolds Ρ = densitas, kg/m 3 di = diameter dalam tube, m µ = viskositas fluida, Ns/m 2 v = kecepatan fluida, m/s

11 Bab II Tinjauan Pustaka 15 Dalam menghitung bilangan prandtl menggunakan persamaan 2.8. (2.8) Dimana ; Pr = bilangan prandtl k f = konduktivitas panas pada fluida, W/m 0 C, C p = Spesifik panas fluida, J/kg o C µ = viskositas fluida, Ns/m 2 Dalam melakukan perhitungan diameter dalam tube (menurut coulson,2005) sama dengan menghitung de (diameter ekuivalen) dengan menggunakan persamaan 2.9 atau 2.10 a) jenis square pitch b) jenis tringular pitch (2.9) (2.10) Dimana, p t = tube pitch, m d o = diameter luar tube, m Untuk nilai J h (heat transfer factor) akan di dapatkan setelah di plotkan pada gambar 2.7

12 Bab II Tinjauan Pustaka 16 Gambar 2.7 Heat transfer factor (Sumber : Coulson & Richardson Chemical Engineering Design, 2005) Untuk air ( aplikasi pada cooler, dimana water sebagai media pendinginnya ) nilai h i dapat dihitung langsung dengan persamaan 2.11 ; (2.11) Dimana : h i d i v t = koefisien perpindahan panas pada tube, W/m 0 C = diameter dalam tube, m = kecepatan alir dalam tube, m/s = temperature air, 0 C Perhitungan h s secara single phase pada bagian luar tube Langkah untuk menghitung koefisien perpindahan panas bagian luar tube, yaitu; 1) Menghitung luas area,(menurut coulson,2005) menggunakan persamaan 2.12, (2.12)

13 Bab II Tinjauan Pustaka 17 Di mana : p t = tube pitch, m d o = diameter luar tube, m D s = diameter dalam shell m, l B = jarak baffle, m. 2) Menghitung kecepatan aliran pada shell (G s ), dengan menggunakan persamaan (2.13) Dimana, Ws = laju alir fluida pada bagian shell, kg/s, As = luas area pada shell, m 2. 3) Menghitung diameter equivalen pada bagian shell (d e ), dengan menggunakan persamaan 2.14 atau 2.15 ; (a) Untuk square pitch adalah (2.14) (b) Untuk tringular pitch adalah (2.15) Dimana, p t = tube pitch, m d o = diameter luar tube, m 4) Menghitung bilangan reynold pada shell side, (2.16) Dimana, de = diameter ekuivalen pada bagian shell, m G s = kecepatan aliran pada shell, m/s µ = viskositas fluida, Ns/m 2

14 Bab II Tinjauan Pustaka 18 5) Menghitung nilai koefisien perpindahan panas pada bagian outside tube (h s ), dengan menggunakan persamaan 2.17 (2.17) Dimana ; h s = koefisien perpindahan panas pada tube, W/m 2 o C, de = diameter ekuivalen, m ut = kecepatan fluida, m/s, k f = konduktivitas panas pada fluida, W/m 0 C, µ = viskositas fluida, Ns/m 2, µ w = viskositas fluida pada dinding, C p = Spesifik panas fluida, J/kg o C Kondenser Kondenser merupakan alat penukar kalo yang digunakan untuk mendinginkan atau mengembunkan uap/campuran uap, sehingga berubah fasa menjadi cairan. Media pendingin yang dipakai biasanya air. Ada empat bentuk/jenis kondenser, menurut coulson yaitu a) Horizontal, dengan kondensasi pada shell dan pendingin pada tube. b) Horizontal, dengan kondensasi pada tube c) Vertical, dengan kondensasi pada shell d) Vertical, denga kondensasi pada tube Dengan menggunakan metode Kern`s, nilai koefisien kondensasi pada tube bundle dapat dihitung dengan menggunakan persamaan 2.18 yaitu, (2.18) (2.19)

15 Bab II Tinjauan Pustaka 19 Dimana, L = panjang tube, m Wc = jumlah aliran kondensat, kg/s Nt = jumlah tube, Nr = jumlah rata-rata tube dalam baris vertical, k L = konduktivitas panas kondensat, W/m o C Ρ L = densitas kondensat, kg/m 3 Ρ v = densitas uap, kg/m 3 Г h = laju kondensat per satuan panjang tube, kg/m s µ L = viskositas kondensat, Ns/m 2 Untuk menghitung koefisien kondensasi dalam dan luar pada vertical tubes, dengan menggunakan persamaan Nusselt yaitu, (2.20) Dimana, (hc) v = Koefisien kondensasi, W/m 2 o C, Г v = beban vertikal tube, laju kondensat per satuan tube, kg/m s Dalam menghitung Г v, menggunakan persamaan 2.21, yaitu or (2.21) Dimana, Wc = jumlah aliran kondensat, kg/s Nt = jumlah tube, do = diamter luar tube, m di = diameter dalam tube, m Dalam menghitung bilangan reynold, menggunakan persamaan 2.22,yaitu (2.22)

16 Bab II Tinjauan Pustaka 20 Dimana, Г v = laju kondensat per satuan tube, kg/m s µ L = viskositas kondensat, Ns/m 2 Dalam menghitung bilangan Prandtl, menggunakan persamaan 2.23, yaitu (2.23) Dimana, k L = konduktivitas panas kondensat, W/m o C Dari gambar 2.8, dengan me-plotkan nilai Rec akan memperoleh nilai koefisien kondensasi untuk vertical tube, Gambar 2.8 Koefisien kondensasi untuk vertikal tube (Sumber : Coulson & Richardson Chemical Engineering Design, 2005) Dalam memperoleh koefisien kondensasi (hc) untuk vertical tube dengan persamaan 2.24, yaitu (2.24) Dimana, k L = konduktivitas panas kondensat, W/m o C Ρ L = densitas kondensat, kg/m 3 Ρ v = densitas uap, kg/m 3 µ L = viskositas kondensat, Ns/m 2

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar kalor, mekanisme perpindahan kalor pada penukar kalor, konfigurasi aliran fluida, shell and tube heat exchanger, bagian-bagian shell

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Perpindahan kalor meliputu proses pelepasan maupun penyerapan kalor, untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 HE Shell and tube Penukar panas atau dalam industri populer dengan istilah bahasa inggrisnya, heat exchanger (HE), adalah suatu alat yang memungkinkan perpindahan dan bisa berfungsi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip dan Teori Dasar Perpindahan Panas Panas adalah salah satu bentuk energi yang dapat dipindahkan dari suatu tempat ke tempat lain, tetapi tidak dapat diciptakan atau dimusnahkan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan BAB I PENDAHULUAN 1.1. Latar belakang Salah satu proses dalam sistem pembangkit tenaga adalah proses pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan ini memerlukan beberapa kebutuhan

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB lll METODE PENELITIAN

BAB lll METODE PENELITIAN BAB lll METODE PENELITIAN 3.1 Tujuan Proses ini bertujuan untuk menentukan hasil design oil cooler pada mesin diesel penggerak kapal laut untuk jenis Heat Exchager Sheel and Tube. Design ini bertujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Perpindahan kalor adalah ilmu yang mempelajari perpindahan energi karena perbedaan temperatur diantara benda atau material. Apabila dua benda yang berbeda

Lebih terperinci

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding Tugas Akhir Perancangan Hydraulic Oil Cooler bagi Mesin Injection Stretch Blow Molding Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan panas adalah Ilmu termodinamika yang membahas tentang transisi kuantitatif dan penyusunan ulang energi panas dalam suatu tubuh materi. perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

Bab 1. PENDAHULUAN Latar Belakang

Bab 1. PENDAHULUAN Latar Belakang 1 Bab 1. PENDAHULUAN 1.1. Latar Belakang Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Nylon yang merupakan salah satu industri

Lebih terperinci

BAB III TUGAS KHUSUS

BAB III TUGAS KHUSUS BAB III TUGAS KHUSUS 3.1 Judul Menghitung Efisiensi Heat Exchanger E-108 A Crude Distiller III di Unit CD & GP PT. Pertamina (Persero) RU III Plaju Palembang. 3.2 Latar Belakang Heat Exchanger E-108 A

Lebih terperinci

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air DOUBLE PIPE HEAT EXCHANGER I. TUJUAN - Mengetahui unjuk kerja alat penukar kalor jenis pipa ganda (Double Pipe Heat Exchanger). - Menghitung koefisien perpindahan panas, faktor kekotoran, efektivitas dan

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan kalor atau panas (heat transfer) merupakan ilmu yang berkaitan dengan perpindahan energi karena adanya perbedaan suhu diantara benda atau material.

Lebih terperinci

BAB 1 PENDAHULUAN. untuk proses-proses pendinginan dan pemanasan. Salah satu penggunaan di sektor

BAB 1 PENDAHULUAN. untuk proses-proses pendinginan dan pemanasan. Salah satu penggunaan di sektor BAB 1 PENDAHULUAN 1.1. Latar Belakang Alat penukar kalor (APK) adalah alat yang umumnya dipakai di dunia industri untuk proses-proses pendinginan dan pemanasan. Salah satu penggunaan di sektor industri

Lebih terperinci

KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE

KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE B.9. Kajian eksperimental kelayakan dan performa... (Sri U. Handayani, dkk.) KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE Sri

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

BAB III TUGAS KHUSUS. Evaluasi Performance Hot gas Oil Heat Exchanger 6-2 Crude Distiller III Di Unit CD & GP PT. Pertamina (Persero) Ru III Plaju

BAB III TUGAS KHUSUS. Evaluasi Performance Hot gas Oil Heat Exchanger 6-2 Crude Distiller III Di Unit CD & GP PT. Pertamina (Persero) Ru III Plaju BAB III TUGAS KHUSUS 3.1 Judul Tugas Khusus Evaluasi Performance Hot gas Oil Heat Exchanger 6-2 Crude Distiller III Di Unit CD & GP PT. Pertamina (Persero) Ru III Plaju 3.2 Latar Belakang Heat Exchanger

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 06005225 / Teknik Kimia TUGAS. MENJAWAB SOAL 9.6 DAN 9.8 9.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past.5 cm-od tubes through which water is flowing

Lebih terperinci

HALAMAN PERSETUJUAN. Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk

HALAMAN PERSETUJUAN. Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk HALAMAN PERSETUJUAN Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk dipertahankan di depan Dewan Penguji sebagai syarat untuk memperoleh gelar Sarjana Teknik (S-1) di Jurusan

Lebih terperinci

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR Sugiyanto 1, Cokorda Prapti Mahandari 2, Dita Satyadarma 3. Jurusan Teknik Mesin Universitas Gunadarma Jln Margonda Raya 100 Depok.

Lebih terperinci

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi.

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi. Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi. Nama : Ria Mahmudah NRP : 2109100703 Dosen pembimbing : Prof.Dr.Ir.Djatmiko Ichsani, M.Eng 1 Latar

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB IV PEMILIHAN SISTEM PEMANASAN AIR 27 BAB IV PEMILIHAN SISTEM PEMANASAN AIR 4.1 Pemilihan Sistem Pemanasan Air Terdapat beberapa alternatif sistem pemanasan air yang dapat dilakukan, seperti yang telah dijelaskan dalam subbab 2.2.1 mengenai

Lebih terperinci

SKRIPSI ALAT PENUKAR KALOR

SKRIPSI ALAT PENUKAR KALOR SKRIPSI ALAT PENUKAR KALOR PERANCANGAN HEAT EXCHANGER TYPE SHELL AND TUBE UNTUK AFTERCOOLER KOMPRESSOR DENGAN KAPASITAS 8000 m 3 /hr PADA TEKANAN 26,5 BAR OLEH : FRANKY S SIREGAR NIM : 080421005 PROGRAM

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE PADA ALAT PENUKAR KALOR TABUNG CANGKANG DENGAN SUSUNAN TABUNG SEGITIGA SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks Arif Budiman 1,a*, Sri Poernomo Sari 2,b*. 1,2) Jurusan Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengelolaan Minyak Mentah (Crude oil) Minyak bumi biasanya berada 3-4 km di bawah permukaan. Minyak bumi diperoleh dengan membuat sumur bor. Di Indonesia penambangan minyak terdapat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

Pipa pada umumnya digunakan sebagai sarana untuk mengantarkan fluida baik berupa gas maupun cairan dari suatu tempat ke tempat lain. Adapun sistem pen

Pipa pada umumnya digunakan sebagai sarana untuk mengantarkan fluida baik berupa gas maupun cairan dari suatu tempat ke tempat lain. Adapun sistem pen BAB I PENDAHULUAN 1.1. Latar Belakang Unit penukar kalor adalah suatu alat untuk memindahkan panas dari suatu fluida ke fluida yang banyak di gunakan untuk operasi dan produksi dalam industri proses, seperti:

Lebih terperinci

EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2

EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2 EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2 Harlan S. F. Egeten 1), Frans P. Sappu 2), Benny Maluegha 3) Jurusan Teknik Mesin Universitas Sam Ratulangi 2014 ABSTRACT One way

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 1106005225 / Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 19.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past 1.5 cm-od tubes through which water

Lebih terperinci

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR Afdhal Kurniawan Mainil, Rahmat Syahyadi Putra, Yovan Witanto Program Studi Teknik

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

PRA PERANCANGAN HEAT EXCHANGER UNTUK MENAIKKAN KAPASITAS BEBAN SAMPAI 130% di PLANT VCM-2 SEKSI 3 PT ASAHIMAS CHEMICAL

PRA PERANCANGAN HEAT EXCHANGER UNTUK MENAIKKAN KAPASITAS BEBAN SAMPAI 130% di PLANT VCM-2 SEKSI 3 PT ASAHIMAS CHEMICAL PRA PERANCANGAN HEAT EXCHANGER UNTUK MENAIKKAN KAPASITAS BEBAN SAMPAI 130% di PLANT VCM-2 SEKSI 3 PT ASAHIMAS CHEMICAL Preliminary Design Of Heat Exchangers To Rise Capacity Up To 130% Load In Plant VCM-2

Lebih terperinci

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Keluatan Institut Teknolgi Sepuluh Nopember Surabaya 2011

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-192 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe Shell and Tube terhadap Aliran Fluida dan Perpindahan

Lebih terperinci

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015 UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS SISTEM PENURUNAN TEMPERATUR JUS BUAH DENGAN COIL HEAT EXCHANGER Nama Disusun Oleh : : Alrasyid Muhammad Harun Npm : 20411527 Jurusan : Teknik

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

KATA PENGANTAR Puji dan syukur penulis ucapkan kepada Tuhan Yang Maha Esa, karena berkat rahmat dan karunia-nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul UJI EKSPERIMENTAL OPTIMASI PERPINDAHAN

Lebih terperinci

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh)

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) Aznam Barun, Eko Rukmana Universitas Muhammadiyah Jakarta, Jurusan

Lebih terperinci

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Dwi Arif Santoso Fakultas Teknologi Industri, Universitas Gunadarma

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT DISUSUNOLEH : NAMA : AMRIH WIBOWO NIM : 41310110003 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK JAKARTA

Lebih terperinci

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA BAB I PENDAHULUAN I.1. Latar Belakang Alat penukar kalor (Heat Exchanger) merupakan suatu peralatan yang digunakan untuk menukarkan energi dalam bentuk panas antara fluida yang berbeda temperatur yang

Lebih terperinci

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Mustaza Ma a 1) Ary Bachtiar Krishna Putra 2) 1) Mahasiswa Program Pasca Sarjana Teknik Mesin

Lebih terperinci

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA Oleh Audri Deacy Cappenberg Program Studi Teknik Mesin Universitas 17 Agustus 1945 Jakarta ABSTRAK Pengujian Alat Penukar Panas Jenis Pipa Ganda Dan

Lebih terperinci

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES Tugas Akhir Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG

RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG i RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG SKRIPSI Skripsi Yang DiajukanUntukMelengkapi SyaratMemperolehGelarSarjanaTeknik FERRY SIANTURI NIM. 120401033

Lebih terperinci

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE Diajukan untuk Memenuhi Persyaratan Kurikulum Sarjana Strata Satu (S-1)

Lebih terperinci

PENGARUH BILANGAN REYNOLDS TERHADAP KARAKTERISTIK KONDENSOR VERTIKAL TUNGGAL TIPE CONCENTRIC TUBE COUNTER CURRENT

PENGARUH BILANGAN REYNOLDS TERHADAP KARAKTERISTIK KONDENSOR VERTIKAL TUNGGAL TIPE CONCENTRIC TUBE COUNTER CURRENT TUGAS AKHIR PENGARUH BILANGAN REYNOLDS TERHADAP KARAKTERISTIK KONDENSOR VERTIKAL TUNGGAL TIPE CONCENTRIC TUBE COUNTER CURRENT DENGAN PENAMBAHAN LILITAN KAWAT SPIRAL Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat

Lebih terperinci

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger JURNAL TEKNIK MESIN Vol. 2, No. 2, Oktober 2: 86 9 Pengaruh Kecepatan Aliran Terhadap Shell-and-Tube Heat Exchanger Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi Industri Jurusan Teknik Mesin Universitas

Lebih terperinci

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi I. PENDAHULUAN A. Latar Belakang Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi Tulen yang berperan dalam proses pengeringan biji kopi untuk menghasilkan kopi bubuk TULEN. Biji

Lebih terperinci

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-132 Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin Anson Elian dan

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI ANALISA KINERJA PENUKAR PANAS AKIBAT PERUBAHAN DIAMETER TABUNG DARI 9 mm MENJADI 13 mm PADA BANTALAN OLI PENDUKUNG UNIT 1 PT. PJB UP PLTA CIRATA PURWAKARTA Bono Program Studi Teknik Konversi Energi, Jurusan

Lebih terperinci

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN Saut Mangihut Tua Naibaho 1), Steven Darmawan 1) dan Suroso 2) 1) Program Studi Teknik Mesin Universitas

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

LAPORAN TUGAS AKHIR RANCANG BANGUN DAN PENGUJIAN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA VERTIKAL

LAPORAN TUGAS AKHIR RANCANG BANGUN DAN PENGUJIAN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA VERTIKAL LAPORAN TUGAS AKHIR RANCANG BANGUN DAN PENGUJIAN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA VERTIKAL Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Air Panglima Besar Soedirman mempunyai tiga unit turbin air tipe Francis poros vertikal, yang digunakan sebagai penggerak mula dari generator

Lebih terperinci

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA PERANCANGAN DAN ANALISA PERFORMANSI SISTEM KOMPRESI PENDINGIN ABSORPSI DENGAN MEMANFAATKAN PANAS GAS BUANG MESIN DIESEL PADA KAPAL NELAYAN IKAN MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) DOSEN

Lebih terperinci

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES Tugas Akhir Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Panas adalah salah satu bentuk energi yang dapat dipindahkan dari suatu tempat ke tempat lain, tetapi tidak dapat diciptakan atau dimusnahkan sama sekali. Dalam suatu proses, panas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Panas atau kalor merupakan salah satu bentuk energi. Panas dapat berpindah dari suatu zat ke zat lain. Panas dapat berpndah melalui tiga cara yaitu : 2.1.1

Lebih terperinci

RANCANG BANGUN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA HORISONTAL

RANCANG BANGUN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA HORISONTAL i LAPORAN TUGAS AKHIR RANCANG BANGUN MODEL KONDENSOR TIPE CONCENTRIC TUBE COUNTER CURRENT TUNGGAL DIPASANG SECARA HORISONTAL Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB III TUGAS KHUSUS. 3.1 Judul Evaluasi kinerja Reboiler LS-E6 pada Unit RFCCU di PT. Pertamina (Persero) RU III Plaju - Sungai Gerong.

BAB III TUGAS KHUSUS. 3.1 Judul Evaluasi kinerja Reboiler LS-E6 pada Unit RFCCU di PT. Pertamina (Persero) RU III Plaju - Sungai Gerong. 55 BAB III TUGAS KHUSUS 3.1 Judul Evaluasi kinerja Reboiler LS-E6 pada Unit RFCCU di PT. Pertamina (Persero) RU III Plaju - Sungai Gerong. 3.2 Latar Belakang Dalam suatu industri perminyakan, banyak ditemukan

Lebih terperinci

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN 0 o, 30 o, 45 o, 60 o, 90 o I Wayan Sugita Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta e-mail : wayan_su@yahoo.com ABSTRAK Pipa kalor

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE AES

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE AES DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE AES Tugas Akhir Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger (Ekadewi Anggraini Handoyo Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PITCH

STUDI EKSPERIMENTAL PENGARUH PITCH STUDI EKSPERIMENTAL PENGARUH PITCH TERHADAP PENINGKATAN PERPINDAHAN PANAS PADA PENUKAR KALOR PIPA KONSENTRIK DENGAN LOUVERED STRIP INSERT SUSUNAN BACKWARD SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-198

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-198 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-198 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe U Tube terhadap Aliran Fluida dan Perpindahan Panas

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) Mirza Quanta Ahady Husainiy 2408100023 Dosen Pembimbing

Lebih terperinci

PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50

PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50 PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50 Sukmanto Dibyo, Gregorius Bambang Heru, Pusat Teknologi Keselamatan Reaktor Nuklir sukdibyo@gmail.com ABSTRAK PERHITUNGAN AWAL DESAIN

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

OPTIMASI KONDENSOR SHELL AND TUBE BERPENDINGIN AIR PADA SISTEM REFRIGERASI NH 3

OPTIMASI KONDENSOR SHELL AND TUBE BERPENDINGIN AIR PADA SISTEM REFRIGERASI NH 3 OPTIMASI KONDENSOR SHELL AND TUBE BERPENDINGIN AIR PADA SISTEM REFRIGERASI NH 3 Sobar Ihsan Program Studi Teknik Mesin Universitas Islam Kalimantan MAAB Banjarmasin sobar.uniska@gmail.com ABSTRAK Jenis

Lebih terperinci

II. TINJAUAN PUSTAKA. Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang

II. TINJAUAN PUSTAKA. Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang II. TINJAUAN PUSTAKA 2.1. Pembangkit Listrik Tenaga Panas Bumi (PLTP) Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang menggunakan panas bumi (geothermal) sebagai energi penggeraknya.

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PADA KAPAL PENANGKAP IKAN DENGAN CHILLER WATER REFRIGERASI ABSORPSI MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) Nama Mahasiswa : Radityo Dwi Atmojo

Lebih terperinci

PERANCANGAN HEAT EXCHANGER

PERANCANGAN HEAT EXCHANGER One Shell Pass and One Tube Pass PERANCANGAN HEAT EXCHANGER Abdul Wahid Surhim Pengertian HE adalah alat yang berfungsi sebagai alat penukar panas (kalor) Dilihat dari fungsinya dapat dinamakan : Pemanas

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 4 HEAT ECHANGER

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 4 HEAT ECHANGER PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 4 HEAT ECHANGER LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA HEAT EXCHANGER

Lebih terperinci

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia.

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia. Desain Rancang Heat Exchanger Stage III pada Pressure Reduction System pada Daughter Station CNG Granary Global Energy dengan Tekanan Kerja 20 ke 5 Bar Taufik Ramuli (0639866) Departemen Teknik Mesin,

Lebih terperinci

BAB I PENDAHULUAN. ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan Heat Exchanger

BAB I PENDAHULUAN. ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan Heat Exchanger BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam proses produksi Asam Sulfat banyak menimbulkan panas. Untuk mengambil panas yang ditimbulkan oleh proses reaksi dalam pabrik asam sulfat tersebut digunakan

Lebih terperinci