PENGARUH PENAMBAHAN SURFAKTAN TERHADAP KELARUTAN LIMBAH PLASTIK JENIS POLIPROPILEN DALAM HIGH SPEED DIESEL

dokumen-dokumen yang mirip
Bahan Bakar Alternatif dari Campuran Sampah Plastik Polipropilen dan Minyak Solar

BAB I PENDAHULUAN. poly chloro dibenzzodioxins dan lain lainnya (Ermawati, 2011).

BAB I PENDAHULUAN. Konsumsi plastik dalam kehidupan sehari-hari semakin meningkat selama

BAB III METODE PENELITIAN

PEMBUATAN DIETIL ETER DENGAN BAHAN BAKU ETANOL DAN KATALIS ZEOLIT DENGAN METODE ADSORBSI REAKSI

3.1 Alat dan Bahan Alat

BAB IV HASIL DAN PEMBAHASAN. No Jenis Pengujian Alat Kondisi Pengujian

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. paling sering ditemui diantaranya adalah sampah plastik, baik itu jenis

BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Universitas Sumatera Utara

ARTIKEL ANALISA HASIL PRODUK CAIR PIROLISIS DARI BAN DALAM BEKAS DAN PLASTIK JENIS LDPE (LOW DENSITY POLYETHYLENE)

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. berubah; dan harganya yang sangat murah (InSWA). Keunggulan yang dimiliki

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. plastik relatif murah, praktis dan fleksibel. Plastik memiliki daya kelebihan

BAB IV HASIL DAN PEMBAHASAN

Gambar 1.1 Produksi plastik di dunia tahun 2012 dalam Million tones (PEMRG, 2013)

Pengaruh Penggunaan Limbah Plastiksebagai Campuran Bahan Bakar Premium terhadap Prestasi Mesin Sepeda Motor Merk-X

BAB IV HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

Oleh : Wahyu Jayanto Dosen Pembimbing : Dr. Rr. Sri Poernomo Sari ST., MT.

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi

KALORIMETER PF. 8 A. Tujuan Percobaan 1. Mempelajari cara kerja kalorimeter 2. Menentukan kalor lebur es 3. Menentukan panas jenis berbagai logam B.

BAB I PENDAHULUAN. Tabel 1.1 Ketersediaan Minyak Bumi Di Indonesia. Cadangan (proven+posibble) Produksi per tahun Ketersediaan (tanpa eksplorasi)

BAB I PENDAHULUAN. Minyak bumi merupakan bahan bakar fosil yang bersifat tidak dapat

III. METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

MODIFIKASI PROSES IN-SITU DUA TAHAP UNTUK PRODUKSI BIODIESEL DARI DEDAK PADI LOGO

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboraturium Riset Kimia Lingkungan,

BAB I PENDAHULUAN. Populasi dunia meningkat dan dengan perkiraan terbaru akan

PRODUKSI BIOFUEL DARI MINYAK KELAPA SAWIT DENGAN KATALIS PADAT CaO/γ-Al 2 O 3 dan CoMo/γ-Al 2 O 3

Lampiran 1. Perbandingan nilai kalor beberapa jenis bahan bakar

PERANCANGAN DAN PENGUJIAN ALAT DESTILASI MINYAK DARI LIMBAH SAMPAH PLASTIK. : Judhid Adi Mursito. : I Gusti Ketut Sukadana, ST. MT.

PENGARUH TEMPERATUR PADA PROSES PEMBUATAN ASAM OKSALAT DARI AMPAS TEBU. Oleh : Dra. ZULTINIAR,MSi Nip : DIBIAYAI OLEH

BAB III METODE PENELITIAN. Proses polimerisasi stirena dilakukan dengan sistem seeding. Bejana

PENGOLAHAN LIMBAH KANTONG PLASTIK JENIS KRESEK MENJADI BAHAN BAKAR MENGGUNAKAN PROSES PIROLISIS

BAB III METODE PENELITIAN

Gambar 3.1. Plastik LDPE ukuran 5x5 cm

PENGGUNAAN KARBONDIOKSIDA SUPERKRITIS UNTUK PEMBUATAN KOMPOSIT OBAT KETOPROFEN POLIETILEN GLIKOL 6000

BAB I PENDAHULUAN. kasus tersebut akan dialami oleh TPA dengan metode pengelolaan open dumping

BAB III METODOLOGI PENELITIAN

METODOLOGI PENELITIAN

BAB III RANCANGAN PENELITIAN

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

APLIKASI PENGGUNAAN BIODIESEL ( B15 ) PADA MOTOR DIESEL TIPE RD-65 MENGGUNAKAN BAHAN BAKU MINYAK JELANTAH DENGAN KATALIS NaOH 0,6 %

BAB I PENDAHULUAN. Berdasarkan permasalahan yang ada, maka tujuan dari percobaan ini adalah untuk menentukan kesetaraan kalor lebur es.

BAB III METODA PENELITIAN. yang umum digunakan di laboratorium kimia, set alat refluks (labu leher tiga,

Pengolahan Kantong Plastik Jenis Kresek Menjadi Bahan Bakar Menggunakan Proses Pirolisis

BAB IV HASIL DAN PEMBAHASAN. 4.1 Hasil pengujian dan analisa limbah plastik PP (Polypropyline).

Bab III Metodologi Penelitian

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 2 EQUILIBRIUM STILL

III. METODE PENELITIAN

SEMINAR TUGAS AKHIR KAJIAN PEMAKAIAN SAMPAH ORGANIK RUMAH TANGGA UNTUK MASYARAKAT BERPENGHASILAN RENDAH SEBAGAI BAHAN BAKU PEMBUATAN BIOGAS

FISIKA TERMAL Bagian I

BAB I PENDAHULUAN 1.1. Latar Belakang

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan April September 2013 bertempat di

DATA PENGAMATAN. Volume titran ( ml ) ,5 0,4 0,5 6

BAB IV PROSEDUR KERJA

LAPORAN PRAKTIKUM KIMIA FISIKA KELARUTAN TIMBAL BALIK SISTEM BINER FENOL AIR

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

BAB I PENDAHULUAN. Jalan sebagai salah satu prasarana transportasi merupakan unsur penting

Gambar 7 Desain peralatan penelitian

KESETIMBANGAN UAP-CAIR SISTEM ETHANOL + 2-PROPANOL + ISOOCTANE PADA TEKANAN ATMOSFERIK

BAB III METODE PENELITIAN. Preparasi selulosa bakterial dari limbah cair tahu dan sintesis kopolimer

3 Metodologi penelitian

ANALISIS PERAN LIMBAH SAYURAN DAN LIMBAH CAIR TAHU PADA PRODUKSI BIOGAS BERBASIS KOTORAN SAPI

LAPORAN SKRIPSI PEMBUATAN BIODIESEL DARI MINYAK KELAPA SAWIT DENGAN KATALIS PADAT BERPROMOTOR GANDA DALAM REAKTOR FIXED BED

Gambar 1.1. Penggunaan plastik di dunia tahun 2007dalam Million tones

PERCOBAAN I PENENTUAN BERAT MOLEKUL BERDASARKAN PENGUKURAN MASSA JENIS GAS

Gambar 3.1 Diagram alir penelitian

BAB III METODE PENELITIAN

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto

BAB I PENDAHULUAN. Krisis energi yang terjadi beberapa dekade akhir ini mengakibatkan bahan

BAB I PENDAHULUAN. alternatif lain yang dapat dijadikan sebagai solusi. Pada umumnya sumber energi

Kesetimbangan Fasa Cair-Cair dan Cair Uap

PENGUKURAN KESETIMBANGAN UAP-CAIR SISTEM BINER ETANOL+ETIL ASETAT DAN ETANOL+ ISOAMIL ALKOHOL PADA TEKANAN 101,33 kpa, 79,99 kpa dan 26,67 kpa

BAB II TINJAUAN PUSTAKA

Sistem tiga komponen

BAB III METODOLOGI PENELITIAN

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

BAB V METODELOGI. 5.1 Pengujian Kinerja Alat. Produk yang dihasilkan dari alat pres hidrolik, dilakukan analisa kualitas hasil meliputi:

PENGENALAN DAUR BAHAN BAKAR NUKLIR

METODE PENELITIAN. Waktu pelaksanaan penelitian dilakukan pada bulan Juli-Desember 2012 bertempat di

Recovery Logam Ag Menggunakan Resin Penukar Ion

III. METODA PENELITIAN

3 Percobaan. Peralatan yang digunakan untuk sintesis, karakterisasi, dan uji aktivitas katalis beserta spesifikasinya ditampilkan pada Tabel 3.1.

PENENTUAN BERAT MOLEKUL MELALUI METODE PENURUNAN TITIK BEKU (CRYOSCOPIC)

I. PENDAHULUAN. tanpa disadari pengembangan mesin tersebut berdampak buruk terhadap

I. PENDAHULUAN Latar Belakang. kapasitas atau jumlah tonnasenya. Plastik adalah bahan non-biodegradable atau tidak

BAB III METODE PENELITIAN

Fugasitas. Oleh : Samuel Edo Pratama

BAB V EKSTRAKSI CAIR-CAIR

BAB I PENDAHULUAN. Gambar 1.1 Jumlah produksi, konsumsi dan impor bahan bakar minyak di Indonesia [1]

BAB II LANDASAN TEORI

BAB III METODOLOGI PENELITIAN. Untuk mendapatkan jawaban dari permasalahan penelitian ini maka dipilih

Transkripsi:

PKMP-3-11-1 PENGARUH PENAMBAHAN SURFAKTAN TERHADAP KELARUTAN LIMBAH PLASTIK JENIS POLIPROPILEN DALAM HIGH SPEED DIESEL Ernia Novika Dewi, Nessia Irwanti, Mariana Novita R, Ika Sufariyanti PS Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember, Surabaya ABSTRAK Penggunaan plastik yang semakin meluas dan meningkat tiap tahunnya menyebabkan semakin menumpuknya limbah plastik terutama dari jenis polipropilen. Di sisi lain, kekhawatiran akan terjadinya krisis energi menimbulkan upaya daur ulang limbah plastik untuk menghasilkan bahan bakar alternatif baru sebagai pengganti bahan bakar diesel. Dengan melarutkan plastik jenis polipropilen (PP) dalam High Speed Diesel (HSD), dilanjutkan dengan menambahkan air dan surfaktan untuk mencegah bahan bakar yang dihasilkan membeku pada suhu kamar, diharapkan akan diperoleh bahan bakar baru dari recycle limbah plastik. Pada penelitian ini akan dipelajari pengaruh yang ditimbulkan oleh penambahan surfaktan terhadap kesetimbangan solid-liquid sistem solar-pp-surfaktan-air secara eksperimen. Penelitian ini dibagi menjadi tiga tahap, yaitu tahap pelarutan PP dalam HSD, tahap penambahan air dan surfaktan dan tahap pengamatan dan analisa. Analisa dilakukan dengan metode analisa penurunan suhu maupun dengan metode Differential Scanning Calorimetry (DSC). Dari eksperimen yang telah dilakukan, diperoleh hasil yang sangat signifikan, yaitu bahwa pertama larutan PP-HSD yang membeku pada suhu kamar dan memisah menjadi dua fase dapat teremulsi dengan baik dengan penambahan surfaktan dan air. Sedangkan kontribusi hasil yang kedua adalah pencampuran antara PEG dan SLES dengan komposisi perbandingan 4 :1 akan menghasilkan emulsi yang baik dan stabil. Kata kunci : recycle limbah plastik,bahan bakar alternatif,surfaktan PENDAHULUAN Petroleum merupakan sumber daya alam yang tidak terbarukan. Sedangkan konsumsi petroleum pertahunnya selalu meningkat [1]. Akibatnya telah banyak timbul kekhawatiran akan terjadi krisis energi saat persediaan BBM di kerak bumi menipis. Hal ini memicu perkembangan ilmu pengetahuan untuk mencari alternatif energi lain yang dapat terbarukan sekaligus dapat menghemat penggunaan minyak dan gas bumi. Di sisi lain, saat ini dunia juga telah disibukkan dengan masalah menumpuknya sampah plastik. Dengan adanya konsumsi plastik yang cukup besar, maka mengakibatkan sampah plastik semakin meningkat. Menurut data Dinas Kebersihan DKI Jakarta, saat ini sampah plastik di Indonesia mencapai 1,6 juta ton setiap tahunnya. sampah untuk tiga kota besar di Indonesia yang dikutip dari Data Kebersihan tahun 1997-1998 dapat dilihat bahwa sampah plastik memiliki persentase yang cukup besar diantara jenis sampah anorganik lainnya [3]. Di banyak negara, hanya 7% dari sampah plastik yang dihasilkan oleh industri dan masyarakat berhasil di daur ulang [2]. Analisis menunjukkan bahwa

PKMP-3-11-2 perbandingan plastik di dalam sampah mencapai 10% dari berat keseluruhan, dan mayoritas berasal dari bekas kemasan [4]. Polietilen dan polipropilen yang merupakan plastik paling digemari untuk dijadikan bahan dasar kemasan menempati presentase terbesar dari sampah plastik dibandingkan jenis plastik lainnya yaitu sekitar 44%, diikuti Polistirene 25%, dan Polivinilklorida (PVC) 15%. Penimbunan sampah akan menyebabkan kesuburan tanah berkurang. Hal ini dikarenakan bahan plastik tidak terdegradasi, dapat menghalangi mikroorganisme untuk mendegradasi senyawa lain. Selain itu penimbunan sampah dapat menyebabkan polusi air bawah tanah. Sedangkan tindakan pembakaran sampah plastik dapat menghasilkan senyawa kimia berbahaya dan beracun, yaitu senyawa dioksin yang berakibat pada perubahan hormon reproduksi hewan dan manusia serta menyebabkan kanker [1]. Sampah plastik mempunyai nilai kalori tinggi yang setara dengan batu bara atau minyak bumi, dan dapat dimanfaatkan dengan jalan pembakaran untuk menghasilkan panas atau tenaga [5]. Oleh sebab itu sampah plastik dapat pula dipergunakan sebagai bahan bakar alternatif pengganti bahan bakar fosil yang tidak terbarukan [2]. Penelitian sebelumnya menunjukkan bahwa sistem 1% PP dalam HSD memiliki cloud point pada 341,15 K [7]. Hal ini berarti pada suhu ruangan, kedua sistem Bahan Bakar Polimer (BBP) tersebut akan membeku dan tidak dapat melewati nozzle fuel injector dalam mesin diesel yang akan menyemprotkan BBP tersebut sehingga BBP dapat terbakar secara bertahap. Oleh sebab itu BBP yang mempunyai cloid point yang lebih rendah perlu dikembangkan. Mitsuhara et al. [8] melakukan penelitian dan menemukan bahwa dengan penambahan surfaktan pada pengemulsian bahan bakar polimer dengan air dapat menurunkan viskositas dan mencegah PP/PE yang ditambahkan akan membeku kembali. Berdasarkan penelitian-penelitian tersebut, perlu diteliti komposisi surfaktan yang tepat untuk ditambahkan pada sistem PP pada bahan bakar diesel, sehingga akan diperoleh bahan bakar yang dapat digunakan untuk mesin diesel. Penelitian-penelitian tersebut di atas belum mendiskusikan mengenai kesetimbangan solid-liquid polimer dalam sistem solar-pp-surfaktan-air secara termodinamika. Oleh sebab itu, maka penelitian ini ditekankan pada pengembangan metode eksperimen untuk memperoleh pendekatan kesetimbangan solid-liquid polimer pada sistem solar- PP-surfaktan-air menggunakan cloud point sistem yang lebih rendah. Berdasarkan pada fakta di atas, tujuan dari penelitian ini adalah untuk mempelajari pengaruh yang ditimbulkan oleh penambahan surfaktan terhadap kesetimbangan solid-liquid sistem solar-pp-surfaktan-air secara eksperimen. Manfaat dari penelitian ini adalah terciptanya bahan bakar alternatif baru yang dapat menghemat penggunaan HSD dalam mesin diesel serta dapat mendaur ulang sampah plastik jenis Polipropilen. METODE PENDEKATAN Metodologi penelitian yang dilakukan mengacu pada metode yang dilakukan oleh Soloiu dkk [6], dan Mitsuhara dkk [8] yaitu : Peralatan Peralatan eksperimen yang digunakan pada percobaan ini yaitu bejana kaca berukuran 1 liter, motor pengaduk, pemanas listrik, termokopel dan

PKMP-3-11-3 termocontroller, kondensor dan dilengkapi dengan tabung N 2 serta homogenizer. Diagram skematis dari peralatan percobaan ditunjukkan pada Gambar 1. 9 8 TC 5 N 2 2 10 Keterangan : 1. Reaktor 2. Pengaduk 3. Pemanas Elektrik 11 4. Tabung N 2 5. N 2 inlet 6 6. N 2 outlet 7. Inlet Solar dan PP/ PE 7 8. Perangkat pengatur suhu 9. Motor pengaduk 10. Kondensor 11. Statif dan Klem condensor 3 4 1 Gambar 1. Rangkaian Peralatan Pelarutan PP dalam HSD Gambar 2. Alat Pengamatan Cloud Point Bahan yang Digunakan Penelitian ini menggunakan bahan bakar solar (High Speed Diesel), limbah plastik polipropilen (PP), surfaktan, dan aquades. Pemilihan HSD sebagai solven didasarkan pada aplikasi dan konsumsi HSD adalah paling besar diantara konsumsi bahan bakar minyak lainnya, dan titik didih HSD lebih tinggi dari titik leleh PP. Sedangkan limbah plastik polipropilen yang digunakan berasal dari bekas kemasan air mineral. Pertimbangan utama pada pemilihan limbah plastik bekas kemasan air mineral tersebut karena limbah tersebut banyak terdapat di sekitar kita sehingga mudah didapat, dan warnanya bening dengan asumsi sedikit mengandung bahan aditif. Untuk surfaktan yang digunakan adalah surfaktan non ionik yang larut dalam air.

PKMP-3-11-4 Prosedur Eksperimen Tahapan eksperimen yang akan dilakukan terdiri dari tiga tahap yaitu tahap pelarutan polipropilen dalam HSD, tahap penambahan air dan surfaktan, dan tahap pengamatan dan analisa. Pada tahap pelarutan polipropilen dalam HSD, peralatan yang digunakan dapat dilihat pada Gambar 1, dimana limbah polipropilen (bekas gelas air mineral) di cuci dengan air bersih untuk menghilangkan kotoran yang menempel pada permukaannya, setelah itu dikeringkan dan dipotong-potong dengan ukuran 0.5 x 0.5 cm 2. Solar dan potongan PP dengan fraksi massa tertentu (1%, 3%, 5%, 10%, 15%, 20%, dan 25%) dimasukkan ke dalam labu leher empat yang dilengkapi kondensor dan pengaduk. Labu leher empat yang sudah berisi solar dan potongan limbah PP tersebut dipanaskan menggunakan pemanas listrik dan diaduk dengan kecepatan konstan 200 rpm untuk menjaga homogenitas campuran. Agar PP dapat larut sempurna dalam HSD maka larutan harus dipanaskan hingga melebihi titik leleh PP yaitu 162.85 C. Setelah tercapai suhu tersebut, pemanas dimatikan dan larutan didinginkan. Selama eksperimen, air pendingin dialirkan ke dalam kondensor untuk mencegah penguapan solar dan gas N 2 dialirkan ke dalam labu untuk mencegah pembakaran. Selanjutnya campuran tersebut didinginkan hingga suhu kamar. Pada tahap kedua, campuran PP dan HSD dimasukkan ke dalam bejana berisi aquades dengan massa tertentu untuk diaduk dalam homogenizer sehingga didapatkan campuran yang homogen. Kemudian surfaktan dengan jumlah tertentu dimasukkan ke dalam bejana tersebut, untuk selanjutnya campuran tersebut dianalisa propertinya. Tahap pengamatan dan analisa dapat dilakukan dengan dua cara,yakni dengan metode analisa penurunan temperatur dan dengan metode DSC. Untuk mengamati cloud point BBP dengan menggunakan metode analisa penurunan temperatur dapat dilihat pada Gambar 2, dimana sampel diambil dari campuran BBP, dan dimasukkan ke dalam tabung reaksi yang dilengkapi termokopel. Sampel tersebut didinginkan dalam beaker glass berisi air pendingin yang dilengkapi dengan magnetic stirrer. Ke dalam beaker glass tersebut dialirkan air dingin dengan rate massa yang dibuat konstan. Penurunan suhu sampel dicatat dengan menggunakan data taker. Temperatur pada saat terjadi dikontiniuitas pada kurva dicatat sebagai temperatur kesetimbangan solid-liquid karena pada saat terjadinya perubahan fase, properti thermodinamika suatu campuran akan mengalami perubahan. Pada pengamatan cloud point dengan menggunakan metode DSC, sampel diambil sebesar 20 gram, kemudian didinginkan hingga (-20 o C). Setelah didinginkan, sampel tersebut dipanaskan dengan laju pemanasan yang konstan, yaitu 10 o C/menit hingga mencapai 200 o C. Sebagai purge gas digunakan gas nitrogen dengan kecepatan aliran 50 ml/menit. Dari metode ini akan diketahui T m (Melting Temperature) dan T g (Glass Temperature). Dalam hal ini T g digunakan sebagai pendekatan temperatur pada saat terjadinya solid-liquid equilibrium. T g merupakan suhu dimana leburan polimer akan menjadi glass. Kemudian akan dibuat grafik antara T g dengan fraksi massa PP. HASIL DAN PEMBAHASAN Hasil Pemilihan Surfaktan : Jenis surfaktan yang telah digunakan adalah PEG 4000, PEG 6000, PPG 3000, PPG 6000, dan campuran PEG 6000 dengan SLES dengan perbandingan massa 4:1 seperti yang terlihat pada Gambar 3 dan Gambar 4.

PKMP-3-11-5 Pada Gambar 4 dapat dilihat emulsi yang dihasilkan dengan komposisi PP- HSD lebih banyak dari air dan komposisi surfaktan 18% didapatkan hasil emulsi yang tidak tercampur dan tidak stabil. Gambar 3. Emulsi dengan surfaktan campuran PEG dan SLES (a) (b) (c) (d) Gambar 4. Emulsi dengan berbagai jenis surfaktan: (a) emulsi dengan menggunakan surfaktan PEG 4000, (b) emulsi dengan menggunakan surfaktan PEG 6000, (c) emulsi dengan menggunakan surfaktan PPG 3000, (d) emulsi dengan menggunakan surfaktan PPG 6000. Emulsi yang dihasilkan dapat tercampur dengan baik dan lebih stabil ketika menggunakan surfaktan campuran PEG 6000 dengan SLES seperti yang dapat dilihat pada Gambar 3. Dari gambar tersebut terlihat bahwa emulsi yang dihasilkan tidak memisah menjadi 2 fase. Oleh karena itu digunakan surfaktan PEG dan SLES dengan perbandingan PEG : SLES = 4 : 1 dan perbandingan PP-HSD : Air = 2 : 1. Pembahasan Metode Analisa Manual Karena cloud point dari emulsi yang dihasilkan tidak dapat diamati secara visual, maka analisa solid liquid equilibrium dilakukan dengan memanaskan hingga suhu tertentu dan mendinginkan secara perlahan hingga suhu tertentu. Untuk menurunkan suhu emulsi pada percobaan ini digunakan bantuan air pendingin. Pada saat terjadi perubahan fase, properti termodinamika suatu campuran berubah secara signifikan. Dengan mencatat suhu emulsi ketika

PKMP-3-11-6 pendinginan, diharapkan dapat terdeteksi suhu pada saat terjadi perubahan fase tersebut. Berdasarkan hasil yang didapat, dibuat grafik antara suhu (T) dan waktu (t) seperti yang terlihat pada Gambar 5. Dari grafik terlihat bahwa tidak terdapat diskontinuitas baik pada grafik sistem PP-HSD dan grafik sistem PP-HSD-Air- Surfaktan. Diskontinuitas tersebut tidak terdeteksi dapat dikarenakan rate pendinginan yang cepat dan tidak konstan atau memang tidak terjadi solid liquid equilibrium pada sistem tersebut. Oleh karena itu, dilakukan validasi metode ini pada sistem PP-HSD dengan menggunakan data hasil penelitian yang terdahulu[7]. Metode Analisa dengan DSC Karena analisa dengan metode manual tidak dapat digunakan, dilakukan analisa dengan DSC agar hasil yang diperoleh lebih akurat. Hasil dari analisa DSC ini dapat dilihat pada Gambar 6. Dari analisa DSC, T g tidak dapat terdeteksi. Pada analisa ini yang dapat terdeteksi hanya T m untuk masing-masing komponen. Hal ini berarti emulsi tersebut tidak memiliki T g sehingga emulsi tersebut tidak mengalami glass transition pada range -20 o C hingga 200 o C. Untuk lebih memperjelas, dilakukan perhitungan solubility parameter PP dan komponen selain PP. Pada metode ini diambil sampel, yaitu untuk komposisi PP dalam HSD = 10% dan komposisi surfaktan = 5% dan didapatkan dua T m yaitu 59,95 o C dan 126,93 o C. Metode Analisa dengan Solubility Parameter Kelima komponen dipisahkan menjadi komponen PP(1) dan selain PP atau HSD-Air-PEG-SLES(2) karena akan dianalisa apakah PP dan keempat komponen yang lain dapat saling melarut. Perhitungan solubility parameter yang digunakan sesuai metode perhitungan yang digunakan Hoftyzer dan Van Krevelen [9]. Solubility Parameter PP (δ 1 ) didapatkan dari data pada tabel 7.5 [9] yaitu sebesar 17 J 1/2 cm 3/2 mol -1. Solubility Parameter untuk komponen selain PP (δ 2 ) dihitung dengan menggunakan solubility parameter. Dari hasil perhitungan didapatkan δ 2 untuk masing-masing komposisi PP dan surfaktan yang berbeda yang ditunjukkan pada tabel 1.

T( o C) PKMP-3-11-7 100 90 80 70 60 1%5% 1%10% 50 1%15% 1%20% 1%murni 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 t(detik) Gambar 5.Grafik hubungan antara temperatur dan waktu untuk komposisi PP 1% dengan komposisi surfaktan 5-20% Gambar 6. Hasil analisa DSC untuk PP 10% dan Surfaktan 5%

PKMP-3-11-8 Tabel 1. Hasil Perhitungan δ 2 PP 1% 3% 5% 10% Surfaktan δ 2 J 1/2 cm 3/2 5% 27.786 PP Surfaktan δ 2 J 1/2 cm 3/2 5% 26.986 10% 27.790 10% 27.032 15% 15% 27.801 15% 27.086 20% 27.813 20% 27.139 5% 27.671 5% 26.700 10% 27.682 10% 26.762 20% 15% 27.699 15% 26.830 20% 27.717 20% 26.899 5% 27.557 5% 26.414 10% 27.573 10% 26.491 25% 15% 27.597 15% 26.575 20% 27.621 20% 26.658 5% 27.271 10% 27.303 15% 27.341 20% 27.380 Dapat dilihat harga δ 1 dan δ 2 untuk tiap-tiap komposisi yang berbeda, saling berdekatan. Sehingga dapat disimpulkan komponen emulsi yang dihasilkan saling melarut. Ini dapat berarti karena saling melarut maka pada sistem tersebut tidak terdapat solid liquid equilibrium. Dengan menggunakan perhitungan solubility parameter, tidak terlihat adanya pengaruh perbedaan penambahan komposisi surfaktan terhadap kelarutan PP dalam HSD. KESIMPULAN Berdasarkan eksperimen yang telah dilakukan, dapat disimpulkan bahwa surfaktan yang terbaik untuk menghasilkan emulsi yang tercampur dengan baik dan stabil ialah campuran antara PEG dan SLES dengan perbandingan komposisi 4:1. Dari perhitungan solubility parameter tidak terlihat adanya pengaruh perbedaan penambahan komposisi surfaktan terhadap kelarutan PP dalam HSD. DAFTAR PUSTAKA 1. www.pertamina.com 2. www.wasteonline.org 3. Data kebersihan 1997-1998. Proyek Pengembangan Pemulung. Jakarta: Dinas Kebersihan DKI; 1998. 4. Sovrlic M dan Lecic R. Proceeding Sardinia 99, 7 th International Waste Management dan Landfill Symposium; 1999.

PKMP-3-11-9 5. Association of Plastics Manufacturers in Europe (APME), www.apme.org. 6. Soloiu V.A, Yosihara Y, Hiraoka M dan Nishiwaki K. Proceeding of the 10 th Annual Conference of the Japan Society of Waste Management Expert; 1999. Vol III hlm 37-40. 7. Fitriyadi M dan Susanti E. Kelarutan Limbah Plastik jenis PP dan PE dalam High Speed Diesel. Surabaya: Skripsi Jurusan Teknik Kimia ITS; 2005. 8. Mitsuhara Y, Yoshihara Y, Nakanishi Y, dan Hiraoka M. Kyoto : CIMAC Congress; 2004. 9. Hoftyzer PJ dan Van Krevlen DW. Properties of Polymer,2 nd edition. Chapter 7; 1976.