PERHITUNGAN SIMPANGAN STRUKTUR BANGUNAN BERTINGKAT (STUDI KOMPARASI MODEL PEMBALOKAN ARAH RADIAL DAN GRID)

dokumen-dokumen yang mirip
PENGARUH PENEMPATAN DAN POSISI DINDING GESER TERHADAP SIMPANGAN BANGUNAN BETON BERTULANG BERTINGKAT BANYAK AKIBAT BEBAN GEMPA

STUDI KOMPARASI SIMPANGAN BANGUNAN BAJA BERTINGKAT BANYAK YANG MENGGUNAKAN BRACING-X DAN BRACING-K AKIBAT BEBAN GEMPA

RESPON DINAMIS STRUKTUR BANGUNAN BETON BERTULANG BERTINGKAT BANYAK DENGAN KOLOM BERBENTUK PIPIH

RESPON DINAMIS STRUKTUR BANGUNAN BETON BERTULANG BERTINGKAT BANYAK DENGAN VARIASI ORIENTASI SUMBU KOLOM

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP :

ANALISA SIMPANGAN PADA STRUKTUR GEDUNG 10 LANTAI MENGGUNAKAN SNI DAN RSNI X

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

STUDI PENEMPATAN DINDING GESER TERHADAP WAKTU GETAR ALAMI FUNDAMENTAL STRUKTUR GEDUNG

BAB III METODOLOGI PENELITIAN. menggunakan sistem struktur penahan gempa ganda, sistem pemikul momen dan sistem

ANALISIS STRUKTUR BETON BERTULANG KOLOM PIPIH PADA GEDUNG BERTINGKAT

BAB 1 PENDAHULUAN. di wilayah Sulawesi terutama bagian utara, Nusa Tenggara Timur, dan Papua.

BAB II TINJAUAN PUSTAKA

Modifikasi Perencanaan Struktur Rumah Susun Sederhana Sewa (Rusunawa) Kota Probolinggo Dengan Metode Sistem Rangka Gedung

PENGARUH PENEMPATAN CORE WALL DENGAN EKSENTRISITAS TERTENTU TERHADAP TITIK BERAT BANGUNAN PADA BANGUNAN TINGGI DI BAWAH PENGARUH BEBAN GEMPA

BAB III KONSEP PEMBEBANAN

BAB I PENDAHULUAN 1.1 Latar Belakang

PERHITUNGAN INTER STORY DRIFT PADA BANGUNAN TANPA SET-BACK DAN DENGAN SET-BACK AKIBAT GEMPA

BAB III LANDASAN TEORI. A. Gempa Bumi

BAB I PENDAHULUAN. adalah struktur portal beton bertulang dengan dinding bata. Pada umumnya

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

PENGARUH DINDING GESER TERHADAP PERENCANAAN KOLOM DAN BALOK BANGUNAN GEDUNG BETON BERTULANG

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

ANALISIS DINAMIK STRUKTUR GEDUNG DUA TOWER YANG TERHUBUNG OLEH BALOK SKYBRIDGE

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

BAB I PENDAHULUAN. ingin menempatkan jendela, pintu, lift, koridor, saluran-saluran mekanikal dan

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

PERHITUNGAN GAYA GESER PADA BANGUNAN BERTINGKAT YANG BERDIRI DI ATAS TANAH MIRING AKIBAT GEMPA DENGAN CARA DINAMIS

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA

BAB I PENDAHULUAN. syarat bangunan nyaman, maka deformasi bangunan tidak boleh besar. Untuk. memperoleh deformasi yang kecil, gedung harus kaku.

BAB II TINJAUAN PUSTAKA. Menurut Iswandi Imran (2014) konsep dasar perencanaan struktur

03. Semua komponen struktur diproporsikan untuk mendapatkan kekuatan yang. seimbang yang menggunakan unsur faktor beban dan faktor reduksi.

BAB I PENDAHULUAN. Ada beberapa hal yang menyebabkan banyaknya bangunan tinggi diberbagai

Analisis Dinamis Bangunan Bertingkat Banyak Dengan Variasi Persentase Coakan Pada Denah Struktur Bangunan

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

ANALISIS PENGHUBUNG GESER (SHEAR CONNECTOR) PADA BALOK BAJA DAN PELAT BETON

BAB II TINJAUAN PUSTAKA

Gambar 2.1 Spektrum respons percepatan RSNI X untuk Kota Yogyakarta

BAB II TINJAUAN PUSTAKA

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

BAB II TINJAUAN PUSTAKA

BAB VI KESIMPULAN DAN SARAN. dan perhitungan elemen struktur gedung Condotel Sahid Jogja Lifestyle City. sudah mampu menahan gaya geser.

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

PENGARUH EKSENTRISITAS PUSAT MASSA BANGUNAN BETON BERTULANG TERHADAP STABILITAS STRUKTUR YANG MENGALAMI BEBAN GEMPA ABSTRAK

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. Pada bangunan tinggi tahan gempa umumnya gaya-gaya pada kolom cukup besar untuk

STUDI PERBANDINGAN RESPONS DINAMIK BANGUNAN BERTINGKAT BANYAK DENGAN VARIASI TATA LETAK DINDING GESER

menggunakan ketebalan 300 mm.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. A. Sistem Rangka Bracing Tipe V Terbalik

BAB I PENDAHULUAN. bangunan memerlukan proses desain. Proses desain ini dapat dibedakan dalam

STUDI PERBANDINGAN DISTRIBUSI GAYA GESER PADA STRUKTUR DINDING GESER AKIBAT GAYA GEMPA DENGAN BERBAGAI METODE ANALISIS ABSTRAK

BAB I PENDAHULUAN. Sebagai salah satu perguruan tinggi negeri di Indonesia, Universitas

BAB III METODOLOGI PENELITIAN

TUGAS AKHIR ANALISA PEMBESARAN MOMEN PADA KOLOM (SRPMK) TERHADAP PENGARUH DRIFT GEDUNG ASRAMA MAHASISWI UNIVERSITAS TRUNOJOYO MADURA

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

Pada saat gempa terjadi, titik tangkap gaya gempa terhadap bangunan berada pada pusat massanya, sedangkan perlawanan yang dilakukan oleh bangunan berp

BAB I PENDAHULUAN A. LATAR BELAKANG

BAB I PENDAHULUAN. A. Latar Belakang

BABI PENDAHULUAN. Perancangan bangunan sipil terutama gedung tingkat tinggi harus

BAB I PENDAHULUAN. Beban-beban dinamik yang merusak struktur bangunan umumnya adalah bebanbeban

ANALISIS TORSI PADA BANGUNAN ASYMMETRI DENGAN MODEL STATIK 3D

Modifikasi Perencanaan Struktur Gedung Tower C Apartemen Aspen Admiralty Jakarta Selatan Dengan Menggunakan Baja Beton Komposit

BAB III METODOLOGI. 3.1 Dasar-dasar Perancangan

BAB I PENDAHULUAN. kombinasi dari beton dan baja dimana baja tulangan memberikan kuat tarik

DAFTAR ISI. 1.1 Latar Belakang Perumusan Masalah Tujuan Batasan Masalah Manfaat... 4 BAB II TINJAUAN PUSTAKA...

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

BAB I. penting. efek yang. tekan beton. lebih besar. Diilustrasikan I-1.

BAB III METODE PENELITIAN

BAB 1 PENDAHULUAN Latar Belakang

BAB II TINJAUAN PUSTAKA

EVALUASI DESAIN STRUKTUR GEDUNG UNIVERSITAS INTERNASIONAL BATAM TERHADAP GEMPA

Jurnal MITSU Media Informasi Teknik Sipil UNIJA Volume 3, No. 1, April ISSN :

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN

ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN

BAB VI KESIMPULAN DAN SARAN. Setelah dilakukan analisis dan perancangan pada Struktur Atas Gedung

BAB II TINJAUAN PUSTAKA

PERENCANAAN DINDING GESER (SHEAR WALL) PADA PORTAL GEDUNG UTAMA RUMAH SAKIT UNIVERSITAS MUHAMMADIYAH MALANG TUGAS AKHIR

BAB IV PEMODELAN STRUKTUR

PERHITUNGAN STRUKTUR BETON BERTULANG KANTOR KALIMANTAN SAWIT KUSUMA

PERANCANGAN STRUKTUR GEDUNG KUSUMA MULIA TOWER SOLO MENGGUNAKAN RANGKA BAJA

BAB III METODOLOGI PENELITIAN. untuk mencari ketinggian shear wall yang optimal untuk gedung perkantoran 22

BAB III ANALISA PERENCANAAN STRUKTUR

BAB 4 HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. I.1 Latar Belakang. Jakarta sebagai salah satu kota besar di Indonesia tidak dapat lepas dari

ANALISIS DAN DESAIN DINDING GESER GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

BAB I PENDAHULUAN. dua dari banyak faktor yang dapat memancing orang dari luar daerah untuk datang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Transkripsi:

PERHITUNGAN SIMPANGAN STRUKTUR BANGUNAN BERTINGKAT (STUDI KOMPARASI MODEL PEMBALOKAN ARAH RADIAL DAN GRID) Oryza Dewayanti E. J. Kumaat, S. O. Dapas, R. S. Windah Fakultas Teknik, Jurusan Teknik Sipil, Universitas Sam Ratulangi Manado email : oryzadewayanti@gmail.com ABSTRAK Sistem pembalokan pada bangunan berbentuk dasar lingkaran lebih variatif dibandingkan dengan bangunan dengan bentuk dasar lainnya. Contoh dari sistem pembalokan pada bangunan berbentuk dasar lingkaran adalah sistem pembalokan dengan arah radial dan arah grid. Kedua sistem pembalokan ini diaplikasikan pada struktur gedung beton bertulang dengan beban dinamis yang digunakan adalah beban akibat gempa. Penelitian dilakukan untuk membandingkan besarnya simpangan horizontal yang dihasilkan dari struktur bangunan bertingkat berbentuk lingkaran dengan pembalokan arah radial dan grid. Pemodelan struktur yang dianalisis berupa bangunan dengan diameter m, bertingkat lantai, dengan tinggi tiap lantai sebesar m. Analisa struktur dilakukan dengan menggunakan software ETABS. Penelitian menghasilkan kesimpulan bahwa struktur dengan pembalokan arah radial memiliki simpangan horizontal yang lebih kecil daripada simpangan horizontal yang dihasilkan oleh struktur dengan pembalokan arah grid. Kata kunci : bangunan lingkaran, pembalokan, beban gempa, simpangan, ETABS. PENDAHULUAN Latar Belakang Pemilihan bentuk dasar struktur pada bangunan bertingkat banyak, umumnya harus memberikan kontribusi bagi bangunan tersebut dalam menahan gaya lateral yang disebabkan oleh gempa bumi. Beban gempa diklasifikasikan sebagai beban dinamis, yakni beban yang besar dengan arah yang berubahubah menurut waktu. Pada saat terjadi gempa bumi, gedung akan mulai bergoyang bolakbalik secara cepat dengan tingkat-tingkat yang lebih tinggi akan mengalami goyangan terbesar. Goyangan yang disebut dengan simpangan ini tidaklah stabil dan dapat menyebabkan kegagalan struktur. Penelitian mengenai pengaruh bentuk dasar bangunan pada perilaku struktur bangunan bertingkat telah dilakukan oleh Surjamanto dkk (), hasil penelitian menunjukkan bahwa bangunan dengan bentuk dasar lingkaran adalah yang paling mampu menahan gaya lateral akibat beban statis dibandingkan dengan bentuk dasar segiempat dan segitiga. Dengan hasil penelitian tersebut, dapat dilihat bahwa bangunan berbentuk lingkaran memiliki sebuah keunggulan yang jarang diperhitungkan oleh perancang yang umumnya memilih bentuk segiempat sebagai bentuk dasar bangunan. Membahas mengenai bangunan berbentuk lingkaran, satu hal yang menarik untuk dianalisa adalah sistem pembalokannya yang lebih variatif dibandingkan dengan bentuk dasar lain. Berikut dua model sistem pembalokan yang dapat diaplikasikan pada bangunan berbentuk lingkaran: a. Pembalokan arah b. Pembalokan arah grid radial Gambar. Potongan Melintang Model Bangunan Dengan Bentuk Dasar Lingkaran

Rumusan Masalah Penelitian dilakukan pada bangunan bertingkat dengan bentuk dasar lingkaran. Dengan menggunakan beban gempa sebagai beban dinamis, akan dibandingkan simpangan horizontal yang dihasilkan dari kedua struktur dengan sistem pembalokan yang berbeda. Batasan Masalah Batasan masalah dalam penelitian ini adalah: a. Sistem pembalokan arah radial dan grid hanya akan diaplikasikan pada struktur gedung beton bertulang berbentuk lingkaran berdiameter m, dengan total tingkat sebanyak lantai. b. Pemodelan dan analisa struktur ditinjau dalam tiga dimensi dengan menggunakan software ETABS. c. Beban dinamis yang digunakan hanyalah beban akibat gempa. d. Tidak memasukkan perhitungan struktur bawah (pondasi). e. Gedung direncanakan berada pada wilayah gempa dengan jenis tanah sedang berdasarkan SNI --. f. Analisa gempa yang digunakan adalah analisa statis dan dinamis sesuai dengan SNI --. Tujuan Penelitian Tujuan penelitian ini adalah sebagai berikut: a. Menghitung simpangan horizontal yang terjadi pada gedung. b. Membandingkan simpangan horizontal pada struktur dengan pembalokan arah radial dan grid. TINJAUAN PUSTAKA Perbandingan Bentuk Dasar Bentuk dasar dari segala pemilihan bentuk seperti yang diketahui adalah segitiga, segiempat, dan lingkaran. Secara prinsip struktur, bangunan dengan ketiga bentuk dasar tersebut semestinya mampu menahan beban dari segala arah secara acak yang didistribusikan ke arah sumbu x, y, dan z. Surjamanto, dkk () menjelaskan setiap bangunan mempunyai kelebihan dan kekurangan masing-masing yang merupakan karakteristik bangun dasar tersebut. Hal ini sering dijadikan kriteria untuk menentukan pilihan bentuk struktur bangunan. Bentuk dasar segiempat lebih banyak dipilih dan dipraktekkan karena bentuk ini memiliki kemudahan penyusunan ke arah sumbu x, y, maupun z tanpa menyisakan area kosong. Bentuk segiempat dapat dengan mudah disesuaikan dengan bangunan yang sudah ada sebelumnya, serta kesesuaiannya dengan modul bahan bangunan yang umumnya banyak dikembangkan berdasarkan sifat bentuk dasar segiempat. Berbeda dengan bentuk dasar segitiga dan lingkaran yang lebih sulit untuk disusun tanpa menyisakan area kosong. Bentuk segitiga dapat disusun menjadi tabung segienam atau segidelapan, sedangkan lingkaran hanya mudah disusun menjadi sebuah tabung silinder. Namun demikian, bentuk lingkaran memiliki keunggulan yakni kemampuannya dalam menerima beban puntir. Ambrose () mengemukakan bahwa bentuk lingkaran memiliki kekuatan menahan puntir hampir dua kali lebih besar dibanding bentuk dasar segitiga dan segiempat. Sistem Tube in Tube Hampir semua bangunan bertingkat lebih dari lantai yang dibangun sejak tahun sampai sekarang menggunakan jenis struktur dengan sistem tabung. Sistem tabung adalah sebuah sistem dimana bangunan dirancang untuk bekerja layaknya sebuah tabung kosong yang terkantilever tegak lurus ke dalam tanah yang mampu menahan beban lateral (Schueller, ) Pada pemodelan sederhana, dinding eksterior tabung pada sistem tabung ini terdiri dari kolom-kolom berjarak rapat yang diikat oleh balok-balok tinggi. Ikatan ini membentuk sebuah rangka kaku dimana dinding struktural sepanjang sisi eksterior bangunan menjadi begitu padat dan kuat Dengan konsep yang telah dijelaskan sebelumnya, sistem tabung dikembangkan menjadi beberapa variasi untuk berbagai jenis rancangan struktur, salah satunya adalah sistem tabung dalam tabung (tube in tube). Pada sistem ini, inti struktural ditambahkan sebagai tabung interior dimana beban dipikul bersama-sama dengan tabung eksterior sehingga kekakuan bangunan dapat meningkat. Struktur lantai pada sistem ini juga berperan dalam mengikat tabung interior dan eksterior dan berlaku sebagai satu kesatuan terhadap gayagaya lateral.

Gambar. Sistem Tube in Tube Juwana () menunjukkan bahwa rangka kaku sebagai tabung eksterior menahan hampir semua beban lateral di bagian atas bangunan, sedangkan inti struktural sebagai tabung interior memikul sebagian besar beban lateral di bagian bawah bangunan. Kombinasi dari kedua komponen ini diharapkan dapat meningkatkan kekakuan dari bangunan dalam menerima beban lateral. Sistem tabung dikembangkan oleh Fazlur Khan pada tahun di Chicago, Amerika Serikat. Bangunan bersistem tabung dapat difungsikan sebagai kantor, apartemen, maupun gedung serba guna dan dapat dibangun dengan material baja, beton, maupun bahan komposit. Definisi Beban Gempa Gempa bumi dapat terjadi karena fenomena getaran dengan kejutan pada kerak bumi. Faktor utama adalah benturan pergesekan kerak bumi yang mempengaruhi permukaan bumi. Gempa bumi ini menjalar dalam bentuk gelombang. Gelombang ini mempunyai suatu energi yang dapat menyebabkan permukaan bumi dan bangunan di atasnya menjadi bergetar. Getaran ini nantinya akan menimbulkan gaya-gaya pada struktur bangunan karena struktur cenderung mempunyai gaya untuk mempertahankan dirinya dari gerakan. (Schodek, ). Hal yang perlu diperhatikan adalah kekuatan bangunan yang memadai untuk memberikan kenyamanan bagi penghuninya terutama lantai atas. Semakin tinggi bangunan, defleksi lateral yang terjadi juga semakin besar pada lantai atas. (Mc.Cormac, ). Analisis Gempa Statik dan Dinamik Dalam SNI -- dikatakan bahwa pada analisis respons dinamik terhadap pengaruh gempa, suatu struktur gedung dimodelkan sebagai suatu sistem Banyak Derajat Kebebasan (Multi Degrees of Freedom, MDOF). Dengan menetapkan metoda Analisis Ragam, persamaan-persamaan gerak sistem MDOF tersebut yang berupa persamaanpersamaan diferensial orde dua simultan yang saling terikat, dapat dilepaskan saling keterikatannya sehingga menjadi persamaanpersamaan terlepas, masing-masing berbentuk persamaan-persamaan gerak sistem SDOF (Single Degree of Freedom). Hal ini dilakukan melalui suatu transformasi koordinat dengan matriks eigenvektor sebagai matriks transformasinya. Respons dinamik total dari sistem SDOF tersebut selanjutnya menampilkan diri sebagai superposisi dari respons dinamik masingmasing ragamnya. Respons dinamik masingmasing ragamnya ini berbentuk respons dinamik suatu SDOF, dimana ragam yang semakin tinggi memberikan sumbangan respons dinamik yang semakin kecil dalam menghasilkan respons dinamik total. Dengan dua anggapan penyederhanaan tersebut, respons dinamik struktur dapat ditampilkan seolah-olah sebagai akibat dari suatu beban gempa statik ekuivalen. Beban gempa statik ekuivalen digunakan untuk menentukan beban geser dasar statik ekuivalen. Seperti terlihat dari penjabaran di atas, beban geser dasar statik ekuivalen ini dapat dinyatakan dalam respons dinamik SDOF yang berkaitan dengan ragam fundamentalnya saja, sehingga dapat ditetukan dengan perantaraan Spektrum Respons Gempa Rencana dengan memperhitungkan ketegori gedung yang dihadapi dan menjadikan beban gempa tersebut menjadi beban gempa nominal sesuai dengan faktor daktilitas yang dipilih untuk struktur gedung tersebut. PROSEDUR ANALISIS ETABS Metode penelitian dibagi dalam tiga tahap yaitu input, analisis dan output. Yang termasuk dalam tahap input antara lain adalah pemodelan struktur tiga dimensi serta penentuan jenis beban. Sedangkan tahap analisis yaitu analisis struktur tiga dimensi dengan memasukan analisis gempa statis dan dinamis pada ETABS untuk mengetahui respons struktur dari tiap

Jurnal Sipil Statik Vol. No., Oktober (-) ISSN: - pemodelan sistem pembalokan. Tahap yang terakhir yaitu tahap output yang membahas tentang hasil analisis dinamis pada tiap lantai gedung. Pada penelitian ini, variabel bebas/pembeda yang dipakai adalah arah pembalokannya. Tebal lantai, luas core, jumlah kolom, dimensi kolom, dan dimensi balok dibuat sama besar. Namun tak dapat dihindari, arah pembalokan ini akan mengakibatkan jumlah balok interior dari kedua model berbeda. Jumlah balok interior berbeda mengakibatkan massa balok interior pun berbeda. Untuk itu akan dibuat dua kasus dalam menganalisa kedua model arah pembalokan: Kasus A; dimana dimensi tiap elemen pada kedua model arah pembalokan dibuat sama besar, termasuk dimensi untuk balok interior, dan Kasus B; dimana massa dari kedua pemodelan struktur dibuat sama besar. HASIL PENELITIAN DAN PEMBAHASAN Hasil penelitian yang dianalisa dengan ETABS adalah berupa simpangan horizontal dari masing-masing tingkat/lantai. Berikut adalah hasil dari tiap pemodelan: (mm) Grafik. Maksimum Statik untuk Kasus A Tabel. Perbandingan Nilai akibat Beban Gempa Statik untuk Kasus A Pembalokan Pembalokan Arah Grid Arah Radial Statik Statik Statik Statik................................................................................ Tabel. Perbandingan Nilai akibat Beban Gempa Dinamik untuk Kasus A Pembalokan Arah Pembalokan Arah Grid Radial Dinamik Dinamik Dinamik Dinamik................................................................................

Jurnal Sipil Statik Vol. No., Oktober (-) ISSN: - (mm) (mm) Grafik. Maksimum Dinamik untuk Kasus A Grafik. Maksimum Statik untuk Kasus B Tabel. Perbandingan Nilai akibat Beban Gempa Statik untuk Kasus B Pembalokan Pembalokan Arah Grid Arah Radial Statik Statik Statik Statik................................................................................ Tabel. Perbandingan Nilai akibat Beban Gempa Dinamik untuk Kasus B Pembalokan Arah Pembalokan Arah Grid Radial Dinamik Dinamik Dinamik Dinamik................................................................................

Grafik. Maksimum Dinamik untuk Kasus B Dengan hasil penelitian yang didapatkan, selanjutnya dibuat perhitungan untuk mengetahui seberapa besar selisih nilai simpangan horizontal pada pembalokan arah grid dan radial. Tabel. Selisih Nilai Horizontal Max akibat Beban Gempa pada Kasus A (mm) Statik (mm) Dinamik (mm) Grid Radial Grid Radial........................................................................................................................ Selisih rata-rata.. Tabel. Selisih Nilai Horizontal Max akibat Beban Gempa pada Kasus B Statik (mm) Dinamik (mm) Grid Radial Grid Radial........................................................................................................................ Selisih rata-rata.. KESIMPULAN DAN SARAN Kesimpulan Berdasarkan analisis data dan pembahasan dari pemodelan struktur gedung beton bertulang bertingkat berbentuk lingkaran dengan sistem pembalokan arah radial dan grid, dapat diambil kesimpulan sebagai berikut: a. Untuk kasus A dimana dimensi elemen struktur dari kedua model dibuat sama besar, didapatkan struktur dengan pembalokan arah radial memiliki simpangan horizontal yang lebih kecil dibandingkan dengan struktur dengan pembalokan arah grid. Besarnya simpangan horizontal dari kedua sistem pembalokan ini menghasilkan selisih sebesar.% akibat beban gempa statik dan sebesar.% akibat beban gempa dinamik. b. Untuk kasus B, dimana massa struktur dari kedua model dibuat sama besar, didapatkan hasil yang sama dengan hasil untuk kasus A yakni struktur dengan pembalokan arah radial memiliki simpangan horizontal yang lebih kecil dibandingkan dengan struktur dengan pembalokan arah grid. Besarnya simpangan horizontal dari kedua sistem pembalokan ini menghasilkan selisih sebesar.% akibat beban gempa statik dan sebesar.% akibat beban gempa dinamik.

Saran Dapat dibuat lebih banyak variasi terhadap model struktur, contohnya model bangunan yang berbeda dan model inti struktural yang berbeda. Selain perilaku simpangan, dapat juga diteliti mengenai lendutan struktur dan juga perilaku torsi. DAFTAR PUSTAKA Ambrose, J. E.. Building Structures Third Edition. New Jersey: John Wiley & Sons, Inc. Badan Standarisasi Nasional.. Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung (SNI --). Bandung. Juwana, J. S.. Panduan Sistem Bangunan Tinggi. Jakarta: Erlangga. Mc Cormac, J.C.. Desain Beton Bertulang Jilid Edisi Kelima. Jakarta : Erlangga. Schodek, Daniel L.. Struktur Edisi kedua. Jakarta: Erlangga. Schueller, Wolfgang.. Struktur Bangunan Bertingkat Tinggi. Bandung: Eresco. Surjamanto, W; Kadaryono, A; Wijatnoko, A; dan Suryono.. Pengaruh Bentuk Dasar Pada Perilaku Struktur Selubung Bangunan Berlantai Banyak. Bandung: Institut Teknologi Bandung.