ANALISA SISTEM PNEUMATIK UNTUK PENGGERAK ALAT PANEN KELAPA SAWIT ( TEMBILANG DAN SABIT ) Legisnal Hakim ABSTRACT

dokumen-dokumen yang mirip
Penggunaan sistem Pneumatik antara lain sebagai berikut :

BAB II LANDASAN TEORI

Komponen Sistem Pneumatik

BAB II PNEUMATIK. - sekitar 78 % dari volum adalah Nitrogen. - sekitar 21 % dari volum adalah Oksigen

BAB III PERANCANGAN SISTEM

Elektro Hidrolik Aplikasi sitem hidraulik sangat luas diberbagai bidang indutri saat ini. Kemampuannya untuk menghasilkan gaya yang besar, keakuratan

Mekatronika Modul 13 Praktikum Pneumatik

DAFTAR ISI Prinsip Kerja Kegunaan Macam-macam Silinder Kerja Tunggal. 1.3 Silinder Kerja Ganda Konstruksi..

Penggunaan sistem Pneumatik antara lain sebagai berikut :

SISTEM PENGENDALI DAN PENGONTROL PNEUMATIK UNTUK MESIN PENGAMPLAS KAYU OTOMATIS

4.4 Elektro Pneumatik

Lembar Latihan. Lembar Jawaban.

Pneumatik Bab B4 1. Bab 4 Katup katup

B. PERBANDINGAN TIAP MEDIA KERJA A. MENGENAL MACAM MEDIA KERJA

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

RANGKAIAN DASAR PNEUMATIK

BAB II TINJAUAN PUSTAKA

PRAKTIKUM DAC HIDROLIK

BAB III CARA KERJA MESIN PERAKIT RADIATOR

MEMBUAT TUJUAN PEMBELAJARAN KHUSUS DAN ALAT EVALUASI PEMBELAJARAN JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN

PENERAPAN KONSEP FLUIDA PADA MESIN PERKAKAS

RANCANG BANGUN SIMULASI SISTEM PNEUMATIK UNTUK PEMINDAH BARANG

Proses Kerja Hidrolik Pada Mast Toyota Forklift Series 8

BAB V KESIMPULAN DAN SARAN

BAB II TINJAUAN PUSTAKA

Menguak Prinsip Kerja Dongkrak Hidrolik

UNJUK KERJA MOBIL MSG 01 DENGAN SISTEM TENAGA UDARA

MODIFIKASI MESIN PRESS SOL SEPATU. Rahmat Hadi Sukarno ( ) Ir. Hari Subiyanto, MSc. DENGAN SISTEM PNEUMATIK

BAB II TINJAUAN LITERATUR

PERENCANAAN DAN SIMULASI SISTEM PNEUMATIK PADA MESIN PRES BRIKET BLOTHONG BERBANTUAN PERANGKAT LUNAK

Gambar 2.32 Full pneumatik element

Sistem Hidrolik. Trainer Agri Group Tier-2

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

Mekatronika Modul 11 Pneumatik (1)

SIFAT, KEUNTUNGAN, DAN KERUGIAN UDARA BERTEKANAN

SISTEM KERJA HIDROLIK PADA EXCAVATOR TIPE KOMATSU PC DI PT. UNITED TRACTORS TBK.

ANALISIS KERJA MOBIL TENAGA UDARA MSG 01 DENGAN SISTEM DUA TABUNG

PENGERTIAN DAN PERBEDAAN SISTEM HIDROLIK DAN PNEUMATIK

BAB II LANDASAN TEORI

Hidrolik & Pneumatik

Bab 3 Katup Kontrol Arah

PENGERTIAN HIDROLIKA

Diajukan Guna Melengkapi Sebagian Syarat Dalam Mencapai Gelar Setara Sarjana Muda Universitas Gunadarma Depok 2014

RANCANG BANGUN SISTEM PNEUMATIK PADA MESIN PEMROSES BUAH KELAPA TERPADU

BAB II TINJAUAN PUSTAKA

Abstrak. TUJUAN PENELITIAN Tujuan penelitian adalah untuk mengetahui pengaruh keausan ring piston terhadap kinerja mesin diesel

BAB II LANDASAN TEORI

BAB IV PERHITUNGAN SISTEM HIDRAULIK

BAB II LANDASAN TEORI

a. Pressure Control Valve (Katup Pengontrol Tekanan) b. Directional Control Valve (Katup Control Arah) c. Flow control valve (katup pengontrol aliran)

KUMPULAN SOAL PNEUMATIC By Industrial Electronic Dept. Of SMKN 1 Batam

AKTUATOR AKTUATOR 02/10/2016. Rian Rahmanda Putra Fakultas Ilmu Komputer Universitas Indo Global Mandiri

BAB II DASAR TEORI. kata lain kompresor adalah penghasil udara mampat. Karena proses. dengan tekanan udara lingkungan. Dalam keseharian, kita sering

RANCANG BANGUN MESIN PEMOTONG SINGKONG DENGAN SISTEM PNEUMATIK

ANALISA ALAT PNEUMATIK MESIN PEMOTONG SPON / GASKET DENGAN TEKANAN 60 PSI

BAB III ANALISA DAN PERHITUNGAN

LAPORAN PRAKTIKUM HIDROLIK KONTROL RANGKAIAN PENGGERAK AKTUATOR MOTOR AKSI GANDA

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

BAB II DASAR TEORI. kompresi udara. Udara yang dikompresi sering disebut udara tekan atau udara

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

MINIATUR LENGAN WHEEL LOADER

TUGAS AKHIR SISTEM PNEUMATIK PADA MODEL PALANG PINTU OTOMATIS KERETA API SATU PERLINTASAN

BAB II TEORI. 2.1 Pengertian Sistem Pengaturan

PERANCANGAN SIMULASI SISTEM PERGERAKAN DENGAN PENGONTROLAN PNEUMATIK UNTUK MESIN PENGAMPLAS KAYU OTOMATIS. Al Antoni Akhmad ST, MT

BAB IV PENGUJIAN DAN ANALISA

OPTIMISASI ENERGI LISTRIK PADA RANGKAIAN DUA AKTUATOR HIDROLIK MENGGUNAKAN VARIASI KATUP PEMBATAS TEKANAN DI HYDRAULIC TRAINING UNIT

BAB II LANDASAN TEORI

PERENCANAAN SIDE BUMPER ADAPTIF PADA TRUK MITSUBISHI COLT DIESEL 100 PS (4 RODA)

LAPORAN TUGAS AKHIR. Disusun Oleh : Nama : Hakim Abdau NIM : Pembimbing : Nur Indah. S. ST, MT.

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

ANALISA SISTEM PNEUMATIK ALAT PEMOTONG SERAT ALAM

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. yang bertekanan lebih rendah dari tekanan atmosfir. Dalam hal ini disebut pompa

II. TINJAUAN PUSTAKA

PENGEMBANGAN SISTEM PNEUMATIC DALAM BIDANG ROBOTIC DALAM KAITANNYA DENGAN OTOMATISASI PROSES INDUSTRI

ANALISA DAN PERHITUNGAN PNEUMATIK SISTEM PADA PENGGUNAAN MINIATUR FURNITURE MULTIFUNGSI Martino 1)

POMPA TORAK. Oleh : Sidiq Adhi Darmawan. 1. Positif Displacement Pump ( Pompa Perpindahan Positif ) Gambar 1. Pompa Torak ( Reciprocating Pump )

BAB I PENDAHULUAN.

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari

PERENCANAAN INSTALASI KONTROL PNEUMATIK MENGGUNAKAN METODE CASCADE PADA ALAT PELUMATAN TANAH LIAT SEBAGAI BAHAN DASAR BATU BATA MERAH.

Oleh : Endiarto Satriyo Laksono Maryanto Sasmito

DESAIN MESIN PRESS PENUTUP BOTOL OTOMATIS MENGGUNAKAN INVENTOR 2015

BAB II TINJAUAN PUSTAKA

INSTRUMENT EVALUASI. MATA KULIAH : PNEUMATIK & HIDROLIK KODE / SKS : MSN 326 / 2 SKS SEMESTER : GENAP (IV) DOSEN/ASISTEN : PURNAWAN,S.Pd.

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya.

RANCANG BANGUN PROTOTIPE MESIN CETAK INJEKSI DENGAN MENGGUNAKAN ELEKTRO-PNEUMATIK

LAPORAN TUGAS AKHIR ANALISA DAN PERHITUNGAN SISTEM PNEUMATIK PADA PENGGUNAAN MINIATUR FURNITURE MULTIFUNGSI

BAB II LANDASAN TEORI

Mesin Kompresi Udara Untuk Aplikasi Alat Transportasi Ramah Lingkungan Bebas Polusi

MAKALAH JENIS-JENIS AKTUATOR ELEKTRONIK, PNEUMATIK DAN HIDROLIK. Disusun sebagai tugas mata kuliah Mekatronika dan Robotika.

PERENCANAAN POWER PACK MESIN PRESS HIDROLIK

PENGARUH PENGGUNAAN RESIRKULATOR GAS BUANG PADA KNALPOT STANDAR, TERHADAP PERFORMA MESIN SEPEDA MOTOR YAMAHA MIO J

Pertemuan-1: Pengenalan Dasar Sistem Kontrol

RANCANG BANGUN INSTALASI SISTEM PNEUMATIK PADA BENGKEL SEPEDA MOTOR KAPASITAS 5 PIT

KEGIATAN BELAJAR 1 PENGENALAN SISTEM HIDROLIK

Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid

LEMBAR KERJA PESERTA DIDIK ( LKPD )

Transkripsi:

nalisa Sistem Pneumatik NLIS SISTEM PNEUMTIK UNTUK PENGGERK LT PNEN KELP SWIT ( TEMBILNG DN SBIT ) Legisnal Hakim BSTRCT Pneumatic is a fluid power system, that the energy source from the air pressure in compressor machine, where the air store in the tank.the air pressure to activate the pneumatic system is about 1 10 bar. Generally the pressure to made power is about 6 8 bar, and to make bigger power about 8 10 bar. The force in pneumatic system is determine in this machin. It is depent on wide of actuator linear. Wider the actuator it is bigger energy produced and have a better work will bw done. Force that produced by actuator fold with the piston step and devide by the time it is the power that need to harvest the palm. To make this machine work it is need control valve, it valve to control direction, the flow control valve and pressure control valve Key Word : Pneumatik PENDHULUN Perubahan dalam teknik memanen kelapa sawit dari system manual dengan system pneumatik perlu sekali diterapkan, dengan menggunakan sumber energi yang murah, mudah didapat dan disimpan. Saat ini masih banyak yang belum memahami sistem pneumatik sebagai sumber tenaga yang dapat dikembangkan dan diterapkan ditengah masyarakat, sistem pneumatik ini adalah salah satu bentuk unit penggerak menggunakan udara kempa. Pada umumnya petani sawit memanen kelapa sawit dengan menggunakan tembilang dan sabit (a spade & reaping hook), alat ini disambung dengan tangkai pemegang yang terbuat dari pipa atau kayu, dimana panjang tangkai tersebut selalu berubah sesuai dengan tinggi batang sawit tersebut, alat ini digerakkan dengan tenaga manusia, pada saat pohon sawit masih setinggi 1m, 2m, 3m sampai 5m mungkin masih mampu untuk untuk mengangkat dan menggerakkannya, dan bagaimana bila sawit itu semakin tinggi sesuai umurnya, tentu butuh energi yang besar untuk memanen kelapa sawit dari mengangkat sehingga menggerakkannya agar kelapa sawit dapat dipetik. Sistim penggunaan tenaga yang menggerakan alat panen dari tenaga manusia perlu dikurangi dengan menggunakan tenaga pneumatik, dari sistem pneumatik ini, gerakkan tembilang dan sabit dapat diatur gerakannya dari lambat atau cepat (spontan). Gerakan ini tergantung dari penggunaan actuator dan katup yang digunakan. Dari pengalihan sebahagian tenaga tersebut juga akan mengalami dampak terhadap kinerja petani kelapa sawit, dan perusahaan kelapa sawit yang memiliki kebun minimal 3000 Ha. Sistem pneumatik ini bekerja berdasarkan tekanan udara yang ditransferkan ke actuator dan keluarkan berupa gaya ( kekuatan ) untuk menggerakan alat panen dan juga dapat memotong tangkai pelepah dan tandan kelapa sawit. Berapa besar gaya yang dihasilkan tergantung pada besar tekanan, ukuran actuator dan pemilihan katup pengontrol. untuk itu perlu identifikasi berapa kekerasan tangkai pelepah dan tandan kelapa sawit, agar dapat dianalisa berapa besar gaya yang diperlukan untuk memotong tangkai dan tandan tersebut, dan gerakan mana yang akan diterapkan pada sistem pneumatik dari alat panen ( tembilang dan sabit ). da dua gerakan yang terjadi pada saat memanen yaitu gerakan menarik dan menghunjam serta diiringi dengan gerakan menukil, dari kedua gerakan ini mana yang lebih simple dan tidak membutuhkan kekuatan yang besar, maka perlu pemilihan untuk diterapkan pada gerakan actuator. Untuk itu perlu jenis actuator yang sesuaikan dengan Page 32 JURNL PTEK ol. 1 No. 1 Juli 2009

nalisa Sistem Pneumatik fungsi, beban dan tujuan penggunaan sistem pneumatik, ada beberapa jenis dari gerakannya antara lain : 1. Single cting Cylinder. 2. Double cting Cylinder. 3. Double cting Cylinder with Cushioning. Dari tiga jenis actuator ini bergerak maju dan mundur dan memiliki kelebihan masing masing. Untuk pengembangan sistem ini perlu didesain sirkuit pneumatik untuk menentukan pengaturan kecepatan gerak actuator. Pemotongan tandan dan tangkai pelepah sawit membutuhkan energi, kekuatan dan teknik dalam pemotongan. Untuk itu perlu diperhitungkan berapa besar kekuatan yang dibutuhkan untuk memotong dengan sistem pneumatik, jadi disini dibatasi masalah berapa kekuatan yang dibutuhkan aktuator, ukuran aktuator, dan bagaimana gerakkan pemotongan pada aktuator yang sesuai dengan alat panen. Penelitian ini bertujuan mengembangkan teknologi pneumatik yang mudah dipakai oleh masyarakat petani kelapa sawit khususnya dan masyarakat awam umumnya, dan juga untuk menjajaki sistem pneumatik dapat dijadikan model alat yang hemat energi dan waktu. Komponen sistem pneumatik dapat diuraikan dan di rangkai oleh petani dengan cepat, serta mudah untuk mobilisasi dan merawat peralatan pneumatik.. Dan juga membuktikan bahwa sistem pneumatik dapat diaplikasikan dengan mudah dan cepat. TINJUN PUSTK Sistem pneumatik sumber energinya adalah udara, dimana udara adalah campuran gas yang terdiri dari atas senyawa : 78% dari udara adalah nitrogen 21% adalah oksigen Sisanya adalah campuran karbondioksida, argon, hydrogen neon, helium, krypton, dan xenon. Sifat udara adalah kemampuan kemampatannya, bila dikompresi pada volume konstan dan tekanan konstan temperaturnya akan naik, dan juga udara dapat disimpan pada sebuah medium yang tertutup dengan tekanan tetap terjaga dan menjadi sumber energi yang tersimpan, saat tertentu bisa dimanfaatkan. Prinsip dari pneumatik ini juga berdasarkan pada hukum pascal tekanan yang dikerjakan pada fluida dalam bejana tertutup diteruskan tanpa berkurang kesemua bagian fluida dan dinding bejana itu. Penekan pneumatik adalah suatu alat untuk melipatkan gaya yang faktor perkaliannya sama dengan perbandingan antara luas kedua peston. F P f a P F F dan F x f a Karena segala sesuatu dibumi ini menerima tekanan yaitu tekanan absolut atmosfir (P at ), maka tekanan tidak dapat dirasakan. Pada umumnya tekanan atmosfir dianggap sebagai tekanan dasar, dan yang bervariasi (akibat penyimpangan nilai) adalah: Tekanan ukur = P g Tekanan vakum = P v Tekanan atmosfir tidak mempunyai nilai konstan, tergantung letak dan iklimnya. Tekanan dibawah 1 atm disebut vacum dan diatas 1 atm adalah daerah tekanan. Tekanan absolut terdiri atas tekanan atmosfir P at dan tekanan ukur P g. Udara mempunyai karakteristik sama dengan gas, udara juga tidak mempunyai bentuk yang khusus. Bentuknya mudah berubah karena tahanannya kecil. Udara akan berubah bentuk sesuai dengan tempatnya. Udara dapat dimampatkan dan selalu berusaha untuk mengembang. f a Legisnal Hakim, Staf Pengajar Program Studi Mesin dan Peralatan Pertanian - Politeknik Pasir Pengaraian Page 33

nalisa Sistem Pneumatik Hukum Boyle Mariote menjelaskan sifat : olume dari massa gas yang tertutup pada temperatur konstan adalah berbanding terbalik dengan tekanan absolut atau hasil kali dari volume dan tekanan absolut adalah konstan untuk massa gas tertentu. P 1 x 1 = P 2 x 2 = P 3 x 3 = konstan Umumnya elemen elemen pneumatic seperti silinder dan katup disiapkan untuk menerima tekanan kerja maksimal 8 10 Bar. Untuk pengoperasian yang ekonomis, tekanan tekanan 6 Bar sudah cukup.tetapi karena adanya tahanan arus pada masing masing komponen ( misalnya pencekik ) dan dalam pipa saluran, sambungan, panjang pipa, kebocoran, maka harus diperkirakan pula nilai susut tekanan antara 0,1 sampai 0,5. Oleh sebab itu, kompresor harus menyediakan tekanan 6,5 sampai 7 Bar supaya tekanan kerja sebesar 6 Bar tetap terjamin. Usaha yang dilakukan tekanan P yang bekerja pada permukaan sebuah bidang dengan luas ketika permukaan tersebut bergerak sejauh suatu jarak Δx adalah sama dengan tekanan dikalikan dengan volume langkah piston actuator (. Δx ). Menurut hukum Poiseuille aliran fluida melalui pipa berbentuk selinder sepanjang L dengan jari jari penampang r adalah : 4 r ( P1 P2 ) 8 L P 1 P 2 adalah beda tekanan antara kedua ujung pipa. Kapasitas aliran yang mengalir juga berpengaruh terhadap gerak actuator, yang mana kapasitas aliran udara yang mengalir didalam actuator tergantung pada kecepatan rata rata aliran udara ( v ) yang mengalir dan luas penampang ( ), yaitu =.v Supaya keandalan pengendalian pneumatik terjamin, harus disediakan udara yang kualitasnya memadai, seperti udara yang bersih, kering, dan tekanan yang tepat. Udara bertekanan diperoleh dari kompresor, kemudian dialirkan melalui beberapa elemen sampai mencapai pemakai. Tidak menggunakan persiapan udara yang berkualitas baik dan pemilihan komponen yang salah akan mengurangi kualitas. Elemen elemen berikut harus dipergunakan dalam penyiapan udara bertekanan : Kompresor udara Tangki udara Pengering udara Pengatur tekanan Pelumas Tempat pembuangan untuk kondensasi. Katup pengontrol arah adalah bagian yang mempengaruhi jalannya aliran udara. Secara kontruksinya katup ini dibagi 2 kategori yaitu katup duduk dan katup geser.dari kedua kategori katup dapat dibagi beberapa jenis sesuai dengan kontruksinya yaitu Katup duduk Katup dengan kedudukan bola Katup dengan kedudukan piringan Katup geser Katup geser memanjang Katup geser rata memanjang Katup geser dengan piringan Katup geser dari kontruksinya memiliki kode berupa angka yang memiliki pengertian dari fungsi, dan cara kerja katup itu sendiri, seperti katup 2/2 ( katup ini adalah katup yang memiliki dua lubang dan dua posisi). Jenis jenis katup geser yang memiliki kode tersebut antar lain : Katup 2/2 Katup 3/2 ( 3 lubang dan 2 posisi ) Katup 4/2 ( 4 lubang dan 2 posisi ) Katup 4/3 ( 4 lubang dan 3 posisi ) Katup 5/2 ( 5 lubang dan 2 posisi ) Katup katup ini juga sangat besar peranannya pada sistem pneumatik yang berfungsi sebagai pengatur aliran atau sebagai katup kontrol. Jenis jenis katup pendukung itu antara lain : Katup satu arah o Katup cek o Katup dua tekanan fungsi logika DN o Katup ganti : fungsi logika TU o Katup buang cepat Page 34 JURNL PTEK ol. 1 No. 1 Juli 2009

nalisa Sistem Pneumatik Katup kontrol aliran o Katup cekik dua arah o Katup kontrol aliran satu arah Katup tekanan o Katup pembatas tekanan o Katup sekuens ( sakelar tekanan ) o Katup kombinasi ktuator adalah bagian keluaran untuk mengubah energi fluida yang disuplai menjadi energi kerja yang dimanfaatkan. Sinyal keluaran dikontrol oleh sistem kontrol dan aktuator bertanggung jawab pada sinyal kontrol melalui elemen kontrol terakhir. Jenis lain dari bagian keluaran digunakan untuk mengindikasi status kontrol sistem atau aktuator ktuator pneumatik bisa diuraikan pada dua kelompok gerak lurus dan putar Gerakan lurus ( gerakan linier ) o Silinder kerja tunggal o Silinder kerja ganda Gerakan putar o Motor udara o ktuator yang berputar ( ayun ) Karakteristik penampilan selinder dapat ditentukan secara teori atau dengan data data dari pabriknya. Kedua metode ini dapat dilaksanakan, tetapi biasanya untuk pelaksanaan dan penggunaan tertentu, data data dari pabrik pembuat adalah lebih relevan. Gaya piston Gaya piston yang dihasilkan oleh silinder bergantung pada tekanan udara, diameter selinder, dan tahanan gesekan dari komponen perapat. Gaya piston secara teoritis dihitung menurut rumus berikut : F th = x P F th = Gaya Piston teoritis ( N ) = Luas piston yang dipakai ( m 2 ) P = Tekanan kerja ( P a ) Panjang langkah Langkah silinder pneumatic tidak boleh lebih dari 2 m, untuk selinder rodless jangan lebih dari 10 m. Dengan akibat langkah yang panjang, tekanan mekanik batang piston dan bantalan menjadi terlalu besar. Untuk menghindari bahaya tekanan diameter batang piston pada langkah yang panjang harus sedikit lebih besar. Kecepatan piston Kecepatan selinder pneumatik tergantung pada beban, tekanan udara yang ada, panjang saluran, penampang antara elemen kontrol terakhir dan elemen kerja, dan juga jumlah aliran udara yang melalui elemen kontrol terakhir. Kecepatan juga dipengaruhi peredam akhir langkah. Kecepatan piston rata-rata dari selinder standard berkisar antara 0,1 sampai 1,5 m/s. Selinder khusus dapat mencapai kecepatan sampai 10 m/s. Kecepatan piston dapat diatur dengan katup pengontrol aliran satu arah dan dapat ditingkatkan dengan katup pembuangan cepat Untuk penyiapan udara dan untuk mengetahui biaya pengadaan energi terlebih dahulu harus diketahui konsumsi udara pada sistem. Pada tekanan kerja, diameter piston, dan langkah tertentu, konsumsi udara dihitung : Konsumsi udara = Perbandingan kompresi x luas bidang piston x panjang langkah. Perbandingan kompresi = 1.031 + tekanan kerja ( bar ) 1.031. METODE PENELITIN. 1. Observasi praktis. Memahami gerakan tembilang dan sabit pada saat memanen kelapa sawit. 2. Formulasi matematik. - Memformulasikan secara matematis dasar dasar persamaan hukum Pascal - nalisis gaya, kerja,energi dam daya pada selinder pneumatik - nalisis torsi pada selinder pneumatik - nalisis tekanan udara yang dibutuhkan untuk selinder pneumatik dengan luas selinder yang berbeda. 3. Membuat tabel tingkat kekuatan selinder pneumatik sesuai dengan ukuran selinder pneumatik. Legisnal Hakim, Staf Pengajar Program Studi Mesin dan Peralatan Pertanian - Politeknik Pasir Pengaraian Page 35

nalisa Sistem Pneumatik HSIL DN PEMBHSN. Formulasi Matematis Dasar-dasar Persamaan Hukum Pascal 1. nalisis liran Fluida Udara yang masuk kedalam selinder dengan luas ( m 2 ), dengan kecepatan udara yang mengalir v ( m / s ), maka akan menghasilkan debit udara (m 3 /s ). Gambar analisis kecepatan torak maju mundur n Dimana : = kecepatan torak ( m/s ) = debit aliran fluida (udara) (m 3 /s) = luas penampang torak ( m 2 ) n = - k ( m 2 ) Debit aliran udara ( ) x v 3 m 2 m m s s Bila Fluida mengalir melalui saluran yang memiliki perbedaan luas penampang, maka debit fluida akan tetap, namun kecepatannya yang akan berubah, sebanding dengan perubahan luas penampangnya. 3. nalisis gaya torak 1 2, sehingga 1 2 1 2 2. nalisis Kecepatan Torak Pada selinder pneumatik memiliki torak dengan luas dan memiliki luas penampang batang torak, maka dengan perbedaan tersebut gerak maju lebih lambat dari pada gerak mundur torak. Gambar analisis gaya torak F maju = P e.. η...( N ) F mundur = P e.. η...( N ) Page 36 JURNL PTEK ol. 1 No. 1 Juli 2009

nalisa Sistem Pneumatik Dimana : F = gaya torak ( N ) P e = tekanan kerja/efektif ( N/m 2 ) = luas penampang (m 2 ) n = k (m 2 ) k = Luas penampang (m 2 ) 4. Udara yang diperlukan. 2 3 D. S. P 101,3 x10 12 3 0,7854 10 m / s 101,3...Majundar, 2001 Gambar analisis daya pompa 5. Perhitungan daya kompresor P. P 2 e. Pe P2 600 p2 P1 P 2 = Daya output pompa ( kw) P 1 = Daya motor ( kw) 6. Pengubah Tekanan Gambar analisis kebutuhan udara maju mundur. S. n. S. n Pe Patm... ltr P atm mnt Pe Patm... ltr P mnt atm Dimana : S = langkah torak ( m ) P e = tekanan kerja / efektif ( N/m 2 ) = luas penampang (m 2 ) n = k k = luas batang torak (m 2 ) n = banyaknya langkah (kali/menit) kebutuhan udara bertekanan yang diperlukankan () juga dapat dicari melalui rumus : Gambar analisis tekanan pada penampang berbeda 1 Pe 2 Pe 1.. 2 Dimana : P e1 = Tekanan awal ( N/m 2 ) P e2 = Tekanan khir ( N/m 2 ) 1 = Luas penampang 1 2 = Luas penampang 2 Legisnal Hakim, Staf Pengajar Program Studi Mesin dan Peralatan Pertanian - Politeknik Pasir Pengaraian Page 37

nalisa Sistem Pneumatik 7. nalisis tekanan udara dalam selinder yang berbeda luas penampangnya. P ( N/m² ) Bar D ( m ) ( m² ) F ( N ) v ( m/s ) L ( m ) ( m³ ) ( m³/s ) 1 x 10 5 1 0.006 2.8 x 10-5 2.8 0.02 0.001 2.8 x 10-8 5.6 x 10-7 2 x 10 5 2 0.007 3.8 x 10-5 7.7 0.06 0.002 7.7 x 10-8 2.3 x 10-6 3 x 10 5 3 0.008 5.0 x 10-5 15 0.09 0.004 2.0 x 10-7 4.5 x 10-6 4 x 10 5 4 0.009 6.4 x 10-5 25 0.12 0.006 3.8 x 10-7 7.6 x 10-6 5 x 10 5 5 0.01 7.8 x 10-5 39 0.15 0.008 6.3 x 10-7 1.2 x 10-5 6 x 10 5 6 0.02 3.1 x 10-4 188 0.18 0.009 2.8 x 10-6 5.6 x 10-5 6 x 10 5 6 0.04 1.3 x 10-3 753 0.21 0.01 1.3 x 10-5 2.6 x 10-4 6 x 10 5 6 0.06 2.8 x 10-3 1695 0.25 0.02 5.6 x10-5 7.1 x 10-4 6 x 10 5 6 0.08 5.0 x 10-3 3014 0.3 0.03 1.5 x 10-4 1.5 x 10-3 7 x 10 5 7 0.1 7.8 x 10-3 5495 0.33 0.04 3.1 x 10-4 2.6 x 10-3 7 x 10 5 7 0.12 1.1 x 10-2 7913 0.38 0.06 6.8 x 10-4 4.4 x 10-3 7 x 10 5 7 0.14 1.5 x 10-2 10770 0.41 0.08 1.2 x 10-3 6.3 x 10-3 7 x 10 5 7 0.16 2.0 x 10-2 14067 0.44 0.1 2.0 x 10-3 8.8 x 10-3 7 x 10 5 7 0.18 2.5 x 10-2 17804 0.48 0.2 5.1 x 10-3 0.012 8 x 10 5 8 0.2 3.1 x 10-2 25120 0.51 0.3 9.4 x 10 3 0.016 8 x 10 5 8 0.21 3.5 x 10-2 27695 0.55 0.4 1.4 x 10 2 0.019 8 x 10 5 8 0.22 3.8 x 10-2 30395 0.61 0.5 2.0 x 10-2 0.023 8 x 10 5 8 0.23 4.2 x 10-2 33221 0.66 0.6 2.5 x 10-2 0.027 8 x 10 5 8 0.24 4.5 x 10-2 36173 0.71 0.7 3.3 x 10-2 0.032 9 x 10 5 9 0.25 5.0 x 10-2 44156 0.75 0.8 4.0 x 10-2 0.037 9 x 10 5 9 0.26 5.1 x 10-2 47759 0.8 0.9 4.8 x 10-2 0.042 9 x 10 5 9 0.27 5.7 x 10-2 51504 0.85 1 5.7 x 10-2 0.049 9 x 10 5 9 0.28 6.2 x 10-2 55389 0.9 1.2 7.4 x 10-2 0.055 9 x 10 5 9 0.29 6.6 x 10-2 59417 0.95 1.4 9.2 x 10-2 0.063 10 x 10 5 10 0.3 7.1 x 10-2 70650 1 1.6 0.113 0.071 10 x 10 5 10 0.31 7.5 x 10-2 75438 1 1.8 0.136 0.075 10 x 10 5 10 0.32 8.0 x 10-2 80384 1 2 0.161 0.080 KESIMPULN Dari hasil dan pembahasan dapat disimpulkan sebagai berikut : 1. Besar aliran udara didalam selinder dipengaruhi oleh luas penampang dan kecepatan aliran dan juga dapat menentukan daya yang dibutuhkan pada sistem untuk menggerakkan aktuator bila besaran aliran dikalikan dengan tekanan yang disuplai ke aktuator. 2. Gaya yang ditimbulkan pada aktuator dihasilkan dari besarnya tekanan udara yang disuplai dan luas penampang yang menerima energi udara untuk menggerakan aktuator. 3. Tekenan udara, luas penampang aktuator dan panjang langkah piston merupakan indikator dalam pengaplikasian sistem pneumatik untuk menghasilkan gaya yang besar untuk menghasilkan energi atau kerja. DFTR PUSTK ndrew Parr, (2007), Hidrolika dan Pneumatika Pedoman untuk Teknisi dan Instruktur Edisi kedua Erlangga Page 38 JURNL PTEK ol. 1 No. 1 Juli 2009

nalisa Sistem Pneumatik Wirawan, Drs, MT, dan Pramono, Drs., (2009), bahan ajar PTM 305 Hidrolik dan Pneumatik pdf Riccy Kurniawan., ( 2008 ), Rekayasa rancang bangun sistem pemindahan material otomatis dengan sistem elektro-pneumatic, jurnal ilmiah teknik mesin CKRM ol.2 No. 1, Juni 2008 (42 47 ) S.R. Majumdar, ( 2001 ), Pneumatic System : Principles and maintenance Tata McGraw-Hill Harry L. Stewart, ( ), Hydraulic and Pneumatic Power for Production, R. Keith Mobley, ( ), Fluida Power Dynamic P. Croser, F. Ebel, (2003 ), Pneumatik, Festo didactic. Legisnal Hakim, Staf Pengajar Program Studi Mesin dan Peralatan Pertanian - Politeknik Pasir Pengaraian Page 39