BAB XI TRAFIK UNTUK KOM BERGERAK SELULER

dokumen-dokumen yang mirip
BAB II CODE DIVISION MULTIPLE ACCESS (CDMA) CDMA merupakan singkatan dari Code Division Multiple Access yaitu teknik

TTG3B3 - Sistem Komunikasi 2 Multiple Access

[Rekayasa Trafik] [Pertemuan 9] Overview [Little s Law Birth and Death Process Poisson Model Erlang-B Model]

BAB II LANDASAN TEORI

MULTIPLEXING. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung

UNJUK KERJA NOISE RISE BASED CALL ADMISSION CONTROL (NB-CAC) PADA SISTEM WCDMA. Devi Oktaviana

BAB III Perencanaan Jaringan VSAT Pada Bank Mandiri dengan CDMA

REKAYASA TRAFIK BIRTH & DEATH PROCESS, SISTEM RUGI.

UNJUK KERJA NOISE RISE BASED CALL ADMISSION CONTROL (NB CAC)

Cell boundaries (seven cell repeating pattern)

REKAYASA TRAFIK ARRIVAL PROCESS.

Objective PT3163-HANDOUT-SISK OMBER

TEKNIK PERANCANGAN JARINGAN AKSES SELULER

Powered By TeUinSuska2009.Wordpress.com. Upload By - Vj Afive -

I. Pembahasan. reuse. Inti dari konsep selular adalah konsep frekuensi reuse.

BAB II DASAR TEORI. menjadi pilihan adalah teknologi GSM (Global System for Mobile

Multiple Akses : FDMA, TDMA

Code Division multiple Access (CDMA)

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 3 REBALANCING GPRS TIME SLOT (GTS) TRAFFIC DATA GSM 900 MHZ

Dalam perkembangan teknologi telekomunikasi telepon selular terutama yang berkaitan dengan generasi ke-tiga (3G), CDMA menjadi teknologi pilihan masa

BAB II ARSITEKTUR SISTEM CDMA. depan. Code Division Multiple Access (CDMA) merupakan salah satu teknik

BAB III PERANCANGAN SFN

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

RUMUS RUGI ERLANG ATAU RUMUS ERLANG B ATAU RUMUS GRADE OF SERVICE

BAB II ADAPTIVE MULTI-RATE (AMR)

KUALITAS LAYANAN DATA PADA JARINGAN CDMA x EVOLUTION-DATA ONLY (EVDO)

Apa perbedaan antara teknik multiplex dan teknik multiple access??

Analisis Aspek-Aspek Perencanaan BTS pada Sistem Telekomunikasi Selular Berbasis CDMA

ANALISIS PENGARUH KONTROL DAYA TERHADAP KAPASITAS SISTEM CDMA X

BAB II LANDASAN TEORI

BAB 2 LANDASAN TEORI

BAB II CODE DIVISION MULTIPLE ACCESS. Konsep selular mulai muncul di akhir tahun 1940-an yang digagas oleh

Kata kunci : Spread spectrum, MIMO, kode penebar. vii

PENGANTAR SISTEM KOMUNIKASI SELULER

BAB IV ANALISA DATA DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang

Teknik Transmisi Seluler (DTG3G3)

Teknik Transmisi Seluler (DTG3G3)

Multiple Access. Downlink. Handoff. Uplink. Mobile Station Distributed transceivers Cells Different Frequencies or Codes

BAB 3 PEMBAHASAN. Tabel 3.1 Data Jumlah dan Rata-Rata Waktu Pelayanan Pasien (menit) Waktu Pengamatan

SISTEM KOMUNIKASI CDMA Rr. Rizka Kartika Dewanti, TE Tito Maulana, TE Ashif Aminulloh, TE Jurusan Teknik Elektro FT UGM, Yogyakarta

DASAR TEKNIK TELEKOMUNIKASI

HAND OUT EK. 354 REKAYASA TRAFIK

Perhitungan Kapasitas Kanal Pada Sistem CDMA. Arif Hidayat ST

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

KONSEP DASAR SELULER. (DTG3G3) PRODI D3 TT Yuyun Siti Rohmah,ST.,MT

BAB III METODE PENELITIAN. Pada bab 3 ini akan dibahas mengenai metode penelitian yang dilakukan pada BTS-

Lisa Adriana Siregar Dosen Tetap Program Studi Teknik Elektro Sekolah Tinggi Teknik Harapan

BAB II. Landasan Teori

OPTIMASI REVENUE DAN PERFORMANSI JARINGAN SELULER MENGGUNAKAN ALGORITHMA CALL ADMISSION CONTROL DAN DYNAMIC PRICING

BAB II JARINGAN GSM. telekomunikasi selular untuk seluruh Eropa oleh ETSI (European

BAB II JARINGAN LONG TERM EVOLUTION (LTE)

BAB I PENDAHULUAN. 1.1 Latar Belakang. Bab II Landasan teori

UNJUK KERJA LOAD BASED CALL ADMISSION CONTROL (LB-CAC) PADA SISTEM MULTI-TRAFIK WCDMA. Aries Tri Prawijaya Putra

BAB 2 LANDASAN TEORI

Simulasi MIMO-OFDM Pada Sistem Wireless LAN. Warta Qudri /

Analisis Sistem Antrian Pada Pelayanan Poli Kandungan Dan Ibu Hamil Di Rumah Sakit X Surabaya

BAB II LANDASAN TEORI

PEMODELAN MATEMATIKA UNTUK TRAFIK. Oleh : Mike Yuliana PENS

DASAR TEKNIK TELEKOMUNIKASI

PENS. Konsep dan Teori Trafik. Prima Kristalina. Politeknik Elektronika Negeri Surabaya (PENS) Lab. Komunikasi Digital E107 (2016)

Cellular Interference and Celular Planning S1 TEKNIK TELEKOMUNIKASI SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM PURWOKERTO 2016

BAB II SISTEM TELEKOMUNIKASI SELULAR UTRA-TDD

BAB I PENDAHULUAN Latar Belakang Masalah

RANCANGAN PERATURAN MENTERI KOMUNIKASI DAN INFORMATIKA REPUBLIK INDONESIA NOMOR TAHUN 2012 TENTANG

BAB I PENDAHULUAN 1.1 Latar Belakang

Universitas Kristen Maranatha

BAB I PENDAHULUAN. teknologi 3G yang menawarkan kecepatan data lebih cepat dibanding GSM.

BAB 1 KONSEP DASAR TRAFIK

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

Kuliah 5 Pemrosesan Sinyal Untuk Komunikasi Digital

Teknik Multiple Akses FDMA, TDMA, CDMA

BAB II TEORI DASAR. dimana : λ = jumlah panggilan yang datang (panggilan/jam) t h = waktu pendudukan rata-rata (jam/panggilan)

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG

I. PENDAHULUAN. kebutuhan informasi suara, data (multimedia), dan video. Pada layanan

BAB I PENDAHULUAN. meningkat ke layanan Fourth Generation dengan teknologi Long Term Evolution

BAB III PERANCANGAN MODEL KANAL DAN SIMULASI POWER CONTROL DENGAN MENGGUNAKAN DIVERSITAS ANTENA

REKAYASA TRAFIK. DERAJAT PELAYANAN (Lanjutan)

REKAYASA TRAFIK KONSEP REKAYASA TRAFIK TELEKOMUNIKASI (2)

BAB II LANDASAN TEORI

ANALISIS PENGARUH HALF RATE DAN FULL RATE TERHADAP TRAFFIC CHANNEL DAN SPEECH QUALITY INDICATOR PADA JARINGAN GSM PT.

Analisis Performansi Teknologi Radio Trunking Digital Studi Kasus PT Pelindo II Tanjung Priok Jakarta Utara

MULTIPLEXING DE MULTIPLEXING

BAB 2 SISTEM KOMUNIKASI VSAT

BAB III ANALISIS DAN PERANCANGAN. Tahap analisis adalah tahap awal sebelum melakukan perancangan

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

SISTEM SELULAR. Pertemuan XIV

Aplikasi Multiplexer -8-

PERENCANAAN ANALISIS UNJUK KERJA WIDEBAND CODE DIVISION MULTIPLE ACCESS (WCDMA)PADA KANAL MULTIPATH FADING

Secara umum, pengertian trafik adalah perpindahan suatu benda dari suatu tempat ke tempat lain.

BAB I PENDAHULUAN. handoff pada jaringan 3G (third generation), para pengguna sudah dapat merasakan

BAB IV HASIL DAN ANALISIS

BAB I PENDAHULUAN. Sistem radio digital (Digital Audio Broadcasting, DAB, sekarang ini lazim

Frequency Division Multiplexing

ANALISA IMPLEMENTASI GREEN COMMUNICATIONS PADA JARINGAN LTE UNTUK MENINGKATKAN EFISIENSI ENERGI JARINGAN

Antrian adalah garis tunggu dan pelanggan (satuan) yang

Transkripsi:

108 BB XI TRFIK UNTUK KOM BERGERK SELULER 11.1 Pendahuluan Rekayasa trafik digunakan dalam jaringan telekomunikasi untuk menentukan jumlah pelanggan dengan grade of service yang diinginkan. Pada system jaringan seluler, rekayasa trafik meliputi : 1. mengubah data demografi ke trafik 2. mapping sebuah grid hexagonal dalam sebuah area 3. menentukan jumlah kanal per sel 4. estimasi jumlah sel Gambar 11.1 : satu kanal untuk satu pelanggan 1 kanal untuk 1 pelanggan. System ini mempunyai garansi 100% system availability tetapi tidak efektif dalam hal biaya. Gambar 11.2 : satu kanal untuk banyak pelanggan 1 kanal untuk banyak pelanggan. System ini menimbulkan blocking, menurunkan tingkat pelayanan ke pelanggan. Maka tujuan rekayasa trafik adalah membuat good compromise antara kedua parameter tersebut.

109 11.2 Jaringan Telepon Mobile Seluler Suatu wilayah jaringan mobil seluler terbagi dalam wilayah-wilayah sel panggilan. Satu kanal frekuensi dalam satu wilayah sel panggilan hanya dapat melayani satu panggilan. Kanal frekuensi yang sama dapat dipakai dalam wilayah sel panggilan lainnya. Bila diameter wilayah sel panggilan kecil (< 20 km, kemungkinan pelanggan telepon mobil berpindah dari wilayah sel yang satu ke lainnya cukup besar. Ini berarti pelanggan telepon mobil tersebut dilayani oleh lebih dari satu wilayah sel panggilan. Peralihan pelayanan terhadap pelanggan telepon mobil dari satu wilayah sel (kanal frekuensi ke wilayah sel (kanal frekuensi lainnya disebut : HNDOFF RBS MSC RBS Gambar 11.3: Dalam jaringan seluler, blocking terjadi ketika sebuah base station tidak mempunyai kanal yang bebas untuk dialokasi ke mobile user. Terdapat dua macam blocking dalam system ini : blocking untuk panggilan baru dan blocking dari user yang bergerak ke sel yang lain (handoff blocking.

110 11.3 Model Transaksi Model dari system traksaksi, dapat dijelaskan dengan algoritma berikut Gambar 11.4: proses transaksi 11.4 Skema Handoff 11.4.1 Handoff tanpa prioritas sumsi : Jumlah kanal di suatu wilayah sel tertentu : N Tidak ada kanal reservasi untuk handoff Satu panggilan memerlukan satu kanal.

111 Dalam jam sibuk : Rate datangnya panggilan (random handoff : γ, panggilan baru dibangkitkan secara independent. Sesuai dengan preses poisson. Rate datangnya panggilan (random yang lain : λ Rate pelayanan untuk semua macam panggilan (distribusi waktu pelayanan : exponensial negative :µ Topologi satu dimensi Trafik homogen diagram transisi kondisi 0 1 2 N-r-1 N-r N-r+1 N µ 2µ 3µ (Ν ρ 1µ (Ν rµ (Ν r+1µ (Νµ Gambar 11.5 : diagram transisi kondisi Persamaan kesetimbangan P(k µ(k+1 P(k+1 k0,1,2..n dimana : λ γ λ + γ laju kedatangan panggilan baru laju kedatangan panggilan handoff untuk k0 Untuk k1 Untuk k2 P(0 µ P(1 P (1 /µp(0 dimana /µ 0 P(1 0 P(0 P(1 2µ P(2 P(2 /2µP(1 P(2 /2 P(1 P(2 /2! P(0 P(2 µ P(3 P(3 /µp(2

112 P(3 / 3 P(2 P(3 3 / 3! P(0 Sehingga didapatkan harga probabilitas pada saat k kanal sel diduduki adalah : P(k k P (0 Dimana o + Ho Probabilitas blocking untuk paangillan baru (lainnya B 0 Probabilitas blocking untuk panggilan handoff B H0 (disebut juga probabilitas droping B N BHO P( N ( 0 [11.1] N! 0 P 11.4.2 Handoff dengan prioritas sumsi : Jumlah kanal di suatu wilayah sel tertentu : N Jumlah kanal reservasi untuk panggilan handoff : r Jadi jumlah kanal untuk semua macam panggilan (termasuk panggilan Hand off : N- r Satu panggilan memerlukan satu kanal. Dalam jam sibuk : Rate datangnya panggilan (random handoff : γ, panggilan baru dibangkitkan secara independent. Sesuai dengan preses poisson. Rate datangnya panggilan (random yang lain : λ Rate pelayanan untuk semua macam panggilan (distribusi waktu pelayanan : exponensial negative :µ Topologi satu dimensi Trafik homogen Diagram Transisi Kondisi γ γ 0 1 2 N-r-1 N-r N-r+1 N µ 2µ 3µ (Ν ρ 1µ (Ν rµ (Ν r+1µ (Νµ Gambar 11.6 : Diagram transisi kondisi

113 Persamaan Kesetimbangan : P(k µ(k+1 P(k+1 k0,1,2..n-r γ P(k µ(k+1 P(k+1 k N-r+1,N-r+2,..N P(k µ (k+1 P(k+1 k0,1,2..n-1 untuk k0 Untuk k1 Untuk k2 P(0 µ P(1 P (1 /µp(0 dimana /µ 0 P(1 P(0 P(1 2µ P(2 P(2 /2µP(1 P(2 /2 P(1 P(2 /2! P(0 P(2 µ P(3 P(3 /µ P(2 P(3 / 3 P(2 P(3 3 / 3! P(0 untuk kn-r γp(n - r - 1 µ (N - r P(N - r P(N - r γ / µ (N - r P(N - r - 1 P ( N r ( N r ( N r P! ( 0 Sehingga didapatkan harga probabilitas pada saat n kanal sel diduduki adalah : P(k k P (0 γ P(k µ (k+1 P(k+1 k N-r+1, N-r+2.,N. Untuk kn r +1 γ P(N - r µ (N r +1 P(N r + 1 γ P(N - r + 1 P(N - r µ N r +1 (

114 ( N r HO P(N - r +1 ( N r + 1 ( N r P! ( 0 Untuk kn r +2 γ P(N r +1 µ (N r +2 P(N r + 2 P(N - r + 2 µ γ ( N r + 2 P(N r +1 2 ( N r HO P(N - r +2 ( N r + 2 ( N r 2 ( N r P! ( 0 HO ( N r + Sehingga didapatkan harga probabilitas pada saat k server diduduki adalah : 2! P ( 0 P(k k HO ( N r ( N r P( 0 Maka pada system seluler didapatkan harga P(K : k Untuk 0 k N-r P(k P (0 k ( N r HO N r Untuk N-r k N P(k P Dari kondisi normal didapatkan harga p(0 ( ( 0 p ( 0 N r 1 k 0 k + 1 ( N r N k N r k H 0 ( N r Probabilitas blocking untuk panggilan handoff B HO r N r HO P( N P( 0 [11.2] N! Probabilitas bloking untuk semua macam panggilan lainnya N k ( N r N r Ho B0 P( 0 [11.3] k ( N r Dampak besaran r (jumlah kanal untuk proteksi kanal (HO a. Bila r 0 B 0 B Ho b. Bila r N B 0 1 B Ho E N ( HO

115 c. Bila 0 < r < N B Ho < B 0 Dimana E N ( HO merupakan rumus rugi erlang ( Erlang B 11.5 Multiple ccess dan kapasitas kanal 11.5.1 FDM Dalam FDM individual kanal digunakan untuk individual user. Masing-masing user dialokasikan sebuah kanal atau band frekuensi khusus selama periode panggilan, tidak ada user lain yang dapat menggunakan frekuensi yang sama. Kanal FDM hanya membawa satu sirkit voice pada satu waktu. Bandwidht kanal FDM relative sempit (sekitar 30 khz. Karena itu FDM digunakan untuk komunikasi narrowband. Kanal yang dapat disuport dalam system FDM adalah : N B 2Bguard t [11.4] B c dimana : B t alokasi spectrum total Bguard guard band yang dialokasikan pada ujung alokasi spectrum Bc BW kanal 11.5.2 TDM TDM membagi spectrum radio ke dalam time slot dan masing-masing slot hanya mengijinkan satu user yang transmit atau receive Jumlah kanal dalam system TDM adalah : m( Btot 2 Bguard N [11.5] Bc dimana: m jumlah maksimum yang dapat didukung oleh masing-masing kanal. 11.5.3 CDM dalam system CDM, user menggunakan frek carier yang sama dan transmit secara simultan (TDD atau FDD. Masing-masing user mempunyai pseudorandom codeword yang orthogonal dengan seluruh codeword yang lain. Kapasitas CDM adalah sebagai berikut : 1. single sel 2. multi sel Pada system CDM satu sel user terdistribusi secara uniform dalam sel tersebut dengan BS berada di tengahnya. Untuk N menyatakan jumlah user, maka pada demodulator BS akan menerima dan memproses sinyal gabungan yang terdiri dari sinyal yang dikehendaki S dan siyal penginterferensi sebanyak (N-1 yang sebesar S

116 juga dengan asumsi power control sempurna. Jadi signal to noise (interferensi rasio untuk suatu user dapat ditulis : S 1 SNR [11.6] ( N 1 S ( N 1 Dalam perencanaan system CDM parameter cukup penting untuk diperhatikan adalah perbandingan antara energi bit dengan daya noise interferensi (Eb/No yang didapat dengan membagi daya sinyal dengan laju bit informasi R, membagi daya noise dengan lebar pita keseluruhan W dan dapat ditulis : S / R W / R Eb / No [11.7] ( N 1 S / W ( N 1 dimana rasio W/R adalah processing gain yang telah dijelaaskan sebelumnya. Dalam pembahasan ini tidak dibahas secara mendalam teknik modulasi dan performasnsinya. kan tetapi diasumsikan bahwa suatu nilai Eb/No akan menjamin level performasnsi dari bit error yang dibutuhkan untuk transmisi suara dimana kualitas suara yang baik bisa diperoleh dengan BER 10-3. Persamaan [11.7] belum memperhitungkan background noise η, seperti thermal noise yang terdapat dalam spread bandwidth W. bila noise tersebut ditambahkan maka persamaan [11.7] di atas dapat ditulis menjadi : E b / N o W / R [11.8] ( N 1 +η / S Dengan demikian kapasitas user N dari system CDM dalam suatu sel dapat ditulis sebagai berikut : W / R η N 1 + [11.9] E b / N o S untuk system dengan jumlah kanal yang besar maka noise akan didominasi oleh interferensi daya yang dihasilkan oleh user lain, sehingga background noise dapat diabaikan (η/s<<(n-1. Peningkatan Kapasitas Sistem CDM Kapasitas sistem CDM ini masih dapat ditingkatkan dengan menggunakan beberapa teknik, yang merupakan keunggulan dari system CDM yang pada intinya mengurangi interferensi dari user lain.

117 1. Pengaruh Sektorisasi Interferensi dari user lain dapat dikurangi bila suatu sel dilakukan sektorisasi dengan menggunakan antenna directional pada base station, baik untuk arah kirim dan arah terima. Bila sel dibagi menjadi 3 sektor dengan menggunakan 3 antena, masingmasing akan memiliki beamwidth efektif 120 o, interferensi yang diterima dari setiap antenna menjadi 1/3 bila disbanding dengan interferensi yang diterima oleh antenna omni directional. Hal ini akan mengakibatkan jumlah user pada satu sel (persamaan 2.8 menjadi 3 kali. ngka ini disebut gain sektorisasi λ. Dalam kenyataan sektorisasi tidak sempurna dimana terjadi overlap beam antenna sehingga gain ssektorisasi λ. Mempunyai nilai 2,5 untuk 3 sektor dan 5 untuk 6 sektor. 2. Pengaruh ktivitas Suara Dalam system CDM, dengan menggunakan vocoder digital aktivitas suara ketika percakapan sedang berlangsung dapat dimonitor. Output dari vocoder ini mempunyai rate yang variable disesuaikan dengan pola bicara user. System CDM dengan standar IS 95 rate set I menggunakan 4 variabel rate masing-masing 9,6 Kbps, 4,8 Kbps, 2,4 Kbps dan 1,2 Kbps. Berdasarkan penelitian didapat bahwa user aktif berbicara selama 35%-40% dari waktu percakapan. Dengan diaplikasikan teknik ini maka factor intererensi pada persamaan [11.9] akan berkurang dari (N-1 menjadi (N- 1, sehingga rata-rata Eb/No dapat ditulis sebagai : E b / N o W / R [11.10] ( N 1 +η / S Dari persamaan [11.10] di atas maka nilai Eb/No bervariasi dan menjadi sebuah random variable tergantung dari jumlah user yang aktif dan ditentukan oleh variabel factor aktivitas suara pada suatu saat. Secara matematis dapat ditulis sebagai berikut : E b / N o N i 2 W / R x +η / S i [11.11] dimana x i random variable yang terdistribusi uniform yang mempunyai harga : 1, dengan probabilitas x i 0, dengan probabilitas1

118 11.6 Kesimpulan : Dalam system seluler terdapat masalah sebagai berikut : How many channels are needed? How many subscribers can the system handle? What is the grade of service? How many subscribers? How often do they make/receive calls? How long do the calls last? How many channels are available? What is the probability that there will be no channel when one is needed ( blocking? How many channels do I need to stay within a prescribed blocking probability? How many subscribers can I accommodate? 11.7 SOL-SOL : 1. Suatu system antrian dengan proses kedatangan poisson, waktu pelayanan eksponensial untuk tiap pelayan, disiplin antrian FIFO, ada 2 pelayan yang bekerja secara parallel dan tanpa batas atas untuk panjang antriannya. Hanya satu kanal (pelayan yangkerja sampai jumlah yang antri mencapai 5 dan pada saat ini kanal (pelayan yang kedua buka (kerja. Bila jumlah system turun menjadi 4, kanal kedua tutup lagi. Cari solusi keadaan setimbang! 2. Suatu system antrian mempunyai 1 pelayan dan 3 buffer. Laju kedatangan pelanggan sebesar λ 7µ dan laju berakhirnya pelayanan sebesar 3µ.. a. gambarkan model antriannya dan notasi kendall b. Hitung probabilitas suatu pelanggan dilayani c. Hitung probabilitas suatu pelanggan menunggu d. Hitung probabilitas suatu pelanggan ditolak e. Hitung rata-rata pelanggan dalam system f. Hitung rata-rata pelanggan dalam buffer g. Hitung waktu rata-rata pelanggan berada di dalam system h. Hitung waktu rata-rata pelanggan di dalam pelayanan

119 i. Hitung waktu rata-rata pelanggan di dalam antrian j. Bandingkan jika system di atas mempunyai 3 pelayan dengan masingmasing pelayan mempunyai kecepatan pelayanan sebesar µ 3. Suatu berkas saluran N8, berkas sempurna. Trafik yang ditawarkan ke berkas adalah 4,5 E. waktu pendudukan rata-rata 120 dt dan panggilan dilayani dengan urutan kedatangan (FIFO. Ditanyakan : a. probabilitas suatu panggilan akan menunggu b. waktu tunggu rata-rata dari panggilan yang dihitung terhadap semua panggilan c. waktu tunggu rata-rata dari panggilan yang dihitung hanya terhadap panggilan yang memang betul-betul menunggu. d. Jumlah pelanggan rata-rata dalam antrian e. Probabilitas suatu panggilan menunggu lebih lama dari 60 detik. 4. Suatu pusat penerima gangguan mempunyai spesifikasi sebagai-berikut : dilayani oleh 2 orang operator, jumlah saluran yang tersambung ke meja operator : 12 saluran, waktu kerja rata-rata operator untuk melayani gangguan 30 detik, pada jam sibuk rata-rata terdapat 120 laporan gangguan. Ditanyakan : a. gambar state transition diagram b. berapa harga P(n c. Berapa harga P(2 dan apa artinya d. Berapa harga P(12 dan apa artinya R N 5. Pada Rumus tunggu Erlang, buktikan bahwa : E2 ( N DN ( N + R 6. Suatu system pada jaringan seluler mempunyai 4 kanal frekuensi tiap selnya dan 1 kanal digunakan untuk kanal proteksi handover, Trafik untuk handover sebesar 1 E dan yang lainnya 4E. tentukan : a. probabilitas bloking panggilan handover b. probabilitas bloking untuk panggilan yang lain