PERANCANGAN DAN IMPLEMENTASI PERANGKAT LUNAK SISTEM PENCOCOKAN SIDIK JARI DENGAN ALGORITMA FILTERBANK GABOR. Aris Puji Widodo 1) dan Kusworo Adi 2)

dokumen-dokumen yang mirip
Pembentukan Vektor Ciri Dengan Menggunakan Metode Average Absolute Deviation (AAD)

Perancangan dan Realisasi Sistem Ekstraksi Ciri Sidik Jari Berbasis Algoritma Filterbank Gabor

Pengembangan Sistem Identifikasi Telapak Tangan dengan Menggunakan Metode Filter Bank Gabor

Adiguna¹, -². ¹Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom

ANALISA HASIL PERBANDINGAN IDENTIFIKASI CORE POINT PADA SIDIK JARI MENGGUNAKAN METODE DIRECTION OF CURVATURE DAN POINCARE INDEX

SEMINAR TUGAS AKHIR M. RIZKY FAUNDRA NRP DOSEN PEMBIMBING: Drs. Daryono Budi Utomo, M.Si

ENHANCEMENT CITRA SIDIK JARI KOTOR MENGGUNAKAN TEKNIK HYBRID MORPHOLOGY DAN GABOR FILTER

REALISASI PERANGKAT LUNAK UNTUK MEMVERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCALITY PRESERVING PROJECTION

REALISASI PERANGKAT LUNAK UNTUK IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCAL LINE BINARY PATTERN (LLPB)

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR CHAIN CODE ABSTRAK

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK

IDENTIFIKASI SIDIK JARI DENGAN MENGGUNAKAN STRUKTUR MINUTIA

BAB III PERANCANGAN SISTEM

Identifikasi Tanda Tangan Menggunakan Transformasi Gabor Wavelet dan Jarak Minskowski

IDENTIFIKASI INDIVIDU BERDASARKAN CITRA SILUET BERJALAN MENGGUNAKAN PENGUKURAN JARAK KONTUR TERHADAP CENTROID ABSTRAK

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

SISTEM IDENTIFIKASI BERDASARKAN POLA SIDIK JARI TANGAN MENGGUNAKAN MINUTIAE-BASED MATCHING

BAB 3 METODOLOGI. 3.1 Kerangka Pikir

IDENTIFIKASI SIDIK JARI MENGGUNAKAN TEKNIK PENCOCOKAN TEMPLATE TAPIS GABOR

Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC)

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN MODIFIED HAUSDORFF DISTANCE ABSTRAK

IDENTIFIKASI SESEORANG BERDASARKAN CITRA SILUET ORANG BERJALAN MENGGUNAKAN SUDUT SETENGAH KAKI

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR SCALE INVARIANT FEATURE TRANSFORM

IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH ABSTRAK

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FITUR LOCAL BINARY PATTERN ABSTRAK

VERIFIKASI PERSONAL BERDASARKAN CITRA TANGAN DENGAN METODE FILTER GABOR. Abstrak

REVIEW ALGORITMA PENGENALAN SIDIK JARI MENGGUNAKAN PENCOCOKAN CITRA BERBASIS FASA UNTUK SIDIK JARI KUALITAS RENDAH

IDENTIFIKASI IRIS MATA MENGGUNAKAN TAPIS GABOR WAVELET DAN JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION (LVQ)

DAFTAR ISI. ABSTRAK... i ABSTRACT... ii KATA PENGANTAR... iii DAFTAR ISI...v DAFTAR GAMBAR...viii DAFTAR TABEL...x

BAB I PENDAHULUAN. perumusan masalah, tujuan, pembatasan masalah, metodologi, dan sistematika

Tugas Teknik Penulisan Karya Ilmiah. M.FAIZ WAFI Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya

PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

BAB 4 HASIL DAN PEMBAHASAN

Teknik Ekstraksi Minutiae Untuk Sistem Verifikasi Keaslian Sidik Jari

Jurnal Pendidikan Fisika Indonesia 7 (2011) RANCANG BANGUN SISTEM PENGENALAN POLA SIDIK JARI MENGGUNAKAN METODE MINUTIAE

SISTEM PENGENALAN INDIVIDU MELALUI IDENTIFIKASI TELAPAK TANGAN DENGAN MENGGUNAKAN MATRIKS DISKRIMINATOR SEMINAR HASIL TUGAS AKHIR

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. bertujuan untuk mengenali identitas seseorang secara otomatis dengan menggunakan

BAB 3 METODOLOGI PENELITIAN

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform) Salahuddin 1), Tulus 2), dan Fahmi 3)

Implementasi dan Analisis Performansi Autentikasi Sistem Biometrik Sidik Jari

PENGENALAN WAJAH MENGGUNAKAN METODE INDEPENDENT COMPONENT ANALYSIS ABSTRAK

Implementasi Teori Graf Dalam Masalah Fingerprint Recognition (Pengenalan Sidik Jari)

YOGI WARDANA NRP

Pengukuran Blok Window Terbaik Berdasarkan MSE...

PENGGUNAAN METODE POINCARE INDEX DALAM PENDETEKSIAN LETAK COREPOINT PADA SIDIK JARI

Klasifikasi dan Peningkatan Kualitas Citra Sidik Jari Menggunakan FFT (Fast Fourier Transform)

IDENTIFIKASI WAJAH MANUSIA BERDASARKAN PERBANDINGAN PARAMETER TINGGI HIDUNG, LEBAR HIDUNG DAN JARAK MATA. Yusriani Laa Baan

Perbandingan Dua Citra Bibir Manusia Menggunakan Metode Pengukuran Lebar, Tebal dan Sudut Bibir ABSTRAK

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SARAF

I. PENDAHULUAN. istem biometrika merupakan teknologi pengenalan individu dengan menggunakan bagian tubuh atau

Pengenalan Citra Sidikjari Menggunakan Minutiae Dan Propagasi Balik

BAB I PENDAHULUAN Latar Belakang

IMPLEMENTASI DAN EVALUASI

BAB I PENDAHULUAN 1.1 Latar Belakang

KLASIFIKASI DAN PENINGKATAN KUALITAS CITRA SIDIK JARI MENGGUNAKAN FFT (FAST FOURIER TRANSFORM)

TUGAS AKHIR CI1599 METODE PENGENALAN SIDIK JARI PARSIAL DENGAN MENGGUNAKAN DELAUNAY TRIANGULATION DAN ALGORITMA GENETIKA

Muhammad Nasir. Jurusan Teknik Elektro Politeknik Negeri Lhokseumawe Jl. Banda Aceh Medan Km Lhokseumawe

BAB I PENDAHULUAN. a. Universal (universality), dimana karakteristik yang dipilih harus dimiliki oleh setiap orang.

IMPLEMENTASI PENGENALAN WAJAH MENGGUNAKAN ALGORITMA PRINCIPAL COMPONENT ANALYSIS(PCA) DAN IMPROVED BACKPROPAGATION

IMPLEMENTASI FUSI INFORMASI HIRARKIS PADA PENGENALAN CITRA WAJAH MULTI-SPECTRAL

PERANCANGAN OTENTIKASI SIDIK JARI PADA BIOMETRIC PAYMENT DESIGN OF AUTHENTICATION FINGERPRINT FOR BIOMETRIC PAYMENT ABSTRAK

KLASIFIKASI CITRA SIDIK JARI DENGAN METODE TEMPLTE MATCHING

ANALISA PROSES PEMADANAN PADA PEMINDAIAN SIDIK JARI DI STMIK JIBES

1. Pendahuluan. 1.1 Latar belakang

PENERAPAN METODE DETEKSI BULUMATA UNTUK PENINGKATAN AKURASI PENGENALAN PERSONAL BERBASIS CITRA IRIS

BAB 2 TINJAUAN PUSTAKA. Sistem biometrik merupakan teknologi pengenalan diri yang menggunakan

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN PERHITUNGAN JARAK ANTAR TITIK PADA TANDA TANGAN

ABSTRAK. Universitas Kristen Maranatha

BAB I PENDAHULUAN. macam aplikasi dalam kehidupan sehari-hari. Proses autentikasi itu sendiri adalah

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

Aplikasi Sistem Pengenalan Individu Berbasis Sidik Jari pada Pengembangan Portal Otomatis

Deteksi Citra Sidik Jari Terotasi Menggunakan Metode Phase-Only Correlation

BAB 4. Sistem Yang Diusulkan

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

IDENTIFIKASI WAJAH SESEORANG BERDASARKAN CITRA BIBIR MENGGUNAKAN METODE EIGEN FUZZY SET ABSTRAK

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap tahun 2005/2006

PENGEMBANGAN METODE SELEKSI TITIK MINUTIAE PADA SIDIK JARI DENGAN RADIUS KETETANGGAAN

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B

PERBANDINGAN TEKNIK SCALE INVARIANT FEATURE TRANSFORM (SIFT)

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN METODA PHASE ONLY CORRELATION ABSTRAK

DETEKSI KEMIRINGAN ALUR POLA SIDIK JARI DENGAN HAMMING NET SEBAGAI DASAR KLASIFIKASI

Muhammad Reza Rukmana 1 Fakultas Informatika Universitas Telkom, Jalan Telekomunikasi No 1, 40257, Bandung, Indonesia

Perbandingan Metode-Metode Pembangkitan Kunci Berdasarkan Fitur Biometrik

MATCHING SIDIK JARI MENGGUNAKAN TRANSFORMASI HOUGH

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN

EKSTRAKSI CIRI GEOMETRIS UNTUK APLIKASI IDENTIFIKASI WAJAH. Oleh: Kholistianingsih

KLASIFIKASI SIDIKJARI DENGAN PEMROSESAN AWAL TRANSFORMASI WAVELET Minarni *

Identifikasi Iris Mata Menggunakan Tapis Gabor Wavelet Dan Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ)

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

BAB I PENDAHULUAN. identitas individu baik secara fisiologis, sehingga dapat dijadikan alat atau

PENGENALAN CITRA TULISAN TANGAN DOKTER DENGAN MENGGUNAKAN SVM DAN FILTER GABOR

BAB I PENDAHULUAN. perkembangan zaman dan teknologi, teknik pengenalan individu secara

Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007

PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING)

Pencocokan Citra Sidik Jari Menggunakan Korelasi Silang Ternormalisasi

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT

SISTEM PENGENALAN WAJAH DENGAN METODE EIGENFACE DAN JARINGAN SYARAF TIRUAN (JST)

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

HALAMAN SAMPUL SKRIPSI PENGENALAN POLA TELAPAK TANGAN DENGAN MENGGUNAKAN ALGORITMA BACK PROPAGATION NEURAL NETWORK

Transkripsi:

PERANCANGAN DAN IMPLEMENTASI PERANGKAT LUNAK SISTEM PENCOCOKAN SIDIK JARI DENGAN ALGORITMA FILTERBANK GABOR Aris Puji Widodo 1) dan Kusworo Adi 2) 1) Jurusan Matematika FMIPA UNDIP 2) Jurusan Fisika FMIPA UNDIP Jl. Prof Soedarto, S.H, Semarang 50275 Abstract. From research result used filterbank gabor algorithms, can give 96 (24 x 4) featurres from 24 sector with 4 filter. Gabor filter use 23 x 23 with orientation change 0 0, 45 0, 90 0, dan 135 0. Each orientation angle change will be rotation gabor filter on to its. Make feature vector or FingerCode with Avarage Absolute Deviation (AAD) are average value from difference pixels number for each sector and centre value on sector. Error system on disjoint between FAR dan FRR with value 3,6% and threshold value 39. Then slope from GAR graphic value 40 0, this is proving that this system is running a good, cause slope recommendation value 45 0. Keywords: Filterbank Gabor, Orientation Angle, AAD, FAR, FRR, and GAR 1. PENDAHULUAN Biometrik merupakan pengembangan dari metode dasar identifikasi yang menggunakan karakteristik alami manusia sebagai basisnya. Biometrik mencakup karakteristik fisiologis dan karakteristik perilaku. Karakteristik fisiologis adalah ciri fisik yang relatif stabil seperti wajah, sidik jari, pembuluh darah pada tangan, iris, pola retina, dan spektrum suara. Karakteristik perilaku seperti tanda tangan, pola ucapan, dan ritme magnetik, selain memiliki basis fisiologis yang relatif stabil, tetapi juga dipengaruhi oleh kondisi psikologis yang mudah berubah [14]. Karakteristik fisiologis tersebut dapat dipakai sebagai indikator dalam identifikasi personal, selama ciri-ciri tersebut memenuhi persyaratan sebagai berikut. (i) karakteristik tersebut dimiliki oleh semua orang (universal). (ii) tidak ada dua orang atau lebih yang identik dalam karakteristik tersebut (unik). (iii)karakteristik tersebut tidak dapat berubah (permanen). (iv) karakteristik tersebut dapat diukur secara kuantitatif. Komponen pengambil keputusan (decision making) dari sistem pengenalan pola terdiri dari dua bagian besar yaitu, matching dan klasifikasi [10]. Desain dari sistem pengenalan pola terdiri dari beberapa bagian yang sangat penting yaitu, (i) koleksi data, (ii) ekstraksi ciri (feature extraction), (iii) spesifikasi dari algoritma klasifikasi, dan (iv) estimasi dari kesalahan klasifikasi [11]. Sistem pencocokan sidik jari yang banyak digunakan selama ini berbasiskan pada algoritma minusi (Minutiae Algorithm). Masih ditemukan permasalahan pada algoritma minusi terutama pada local ridge yang belum dapat dikarakterisasi secara lengkap. Kelemahan ini akan tampak pada proses pencocokan dua sidik jari yang mengandung perbedaan jumlah titik minusi yang tidak teregristrasi. Untuk itu diusulkan suatu algoritma berbasiskan tekstur yang akan mengatasi kelemahan pada algoritma minusi dengan mengekstraksi informasi lokal dan global pada sidik jari sebagai Finger Code. 2. METODE PENELITIAN Secara garis besar tahapan penelitian yang dilakukan adalah sebagai berikut. a. Studi pustaka tentang algoritma filterbank Gabor dan metode pencocokan dengan average absolute deviation (AAD). 243

Jurnal Matematika Vol. 9, No.3, Desember 2006:243-252 b. Perancangan adalah merupakan proses translasi spesifikasi perangkat lunak, penjabaran bagaimana perangkat lunak dapat berfungsi, penjabaran bagaimana spesifikasi perangkat lunak dapat diimplementasikan. c. Simulasi adalah mensimulasikan persamaan yang telah didapatkan, jika sudah sesuai maka langkah selanjutnya adalah pengujian perangkat lunak yang telah diimplementasikan ke dalam bahasa pemrograman. d. Tahap selanjutnya adalah analisis hasil pengujian. e. Tahap terakhir adalah pelaporan hasil penelitian. 3. HASIL DAN PEMBAHASAN 3.1. Data Citra Sumber data citra sidik jari terdiri dari dua, yaitu sebanyak 40 buah hasil pengambilan citra dengan menggunakan Fingerprint Scanner. Pada pengambilan citra dengan scanner, sidik jari yang diambil adalah ibu jari kanan, masing-masing orang melakukan scanner sebanyak tiga kali, yaitu dengan memberikan efek tekanan pada scanner. 3.2.Perangkat Lunak Simulasi Perangkat lunak pencocokan sidik jari diberikan pada Gambar 1 menunjukkan tampilan dari program simulasi sistem verifikasi sidik jari dan Gambar 2 adalah hasil ekstraksi ciri. 3.3. Tahapan Ekstraksi Ciri Pada pengujian ekstraksi ciri dilakukan per tahap mulai dari penentuan lokasi titik referensi, normalisasi, Region of Interest (ROI), pemfilteran dangan filterbank gabor, dan pembentukan vektor ciri atau FingerCode. Hasil dari proses ekstraksi ciri dilakukan melalui beberapa tahap sebagai berikut. PROJECT DOSEN MUDA TAHUN 2005 Gambar 1. Menu Utama Program Simulasi Sistem Verifikasi Sidik Jari Gambar 2. Program Demo dari Proses Ekstraksi Ciri 244

Aris Puji Widodo dan Kusworo Adi (Perancangan dan Implementasi Perangkat Lunak Sistem Pencocokan ) a. Menentukan titik referensi Pada prinsipnya penentuan titik referensi dilakukan untuk mencari lengkungan yang maksimal dari concave ridge dengan menentukan gradien kemiringannya dengan menggunakan filter sobel 5 x 5. Setelah gradien tersebut ditemukan, maka proses selanjutnya adalah smooting dengan menggunakan lowpass filter. Untuk menetukan nilai tengah dari piksel tersebut dilakukan pemfilteran dengan menggunakan mean filter 5 x 5, selanjutnya pikselpiksel tersebut dikonversikan ke dalam komponen intensitas. Pada langkah yang terakhir adalah menentukan nilai intensitas yang paling maksimum sebagai koordinat titik referensi A(i,j). b. Menentukan Region of Interest (ROI) Pada proses penentuan ROI adalah membagi daerah tersebut menjadi beberapa sektor. Pada penelitian ini dibagi menjadi 8 sektor (k=8), maka parameter yang ditentukan pada penelitian ini adalah diberikan pada Tabel 1. Tabel 1. Parameter Region of Interest (ROI) [10,18] Parameter Simbol Nilai Lebar tiap band b 20 piksel Jumlah band B 3 Jumlah sektor k 8 Sudut θ i 0 o, 45 o, 90 o, 135 o Jumlah blok S i i= 0..(Bxk-1) = 0..23 (24 blok) Jari-jari r 80 piksel Gambar 3. Region of Interest dari Proses Ekstraksi Ciri Seperti pada Gambar 3, maka akan didapatkan 24 blok, asumsi dari b=20 adalah bahwa citra dengan resolusi 500 dpi maka b dapat didekati dengan 20 piksel [13,15]. Sedangkan penentuan jumlah band didasarkan atas besarnya citra dalam hal ini besar citra yang digunakan adalah 224 x 288 piksel dengan resolusi 500 dpi. c. Normalisasi Citra Proses normalisasi dilakukan untuk menghilangkan efek dari sensor dengan menggunakan persamaan: M + Ni ( x, y) = M 0 2 V0 x( I( x, y) M i ) ) jika I( x, y) > M V 0 i, i 2 V0 x( I( x, y) M i ) ) V dimana M 0 dan V 0 adalah nilai tengah yang ditentukan dan nilai yang berubah. Hasil proses normalisasi dengan menggunakan persamaan di atas seperti pada Gambar 4. Gambar 4. Hasil Proses Citra yang Dinormalisasi d. Pemfilteran dengan filter bank gabor Pada proses pemfilteran dengan filterbank gabor, maka parameter-parameter pada penelitian ini seperti pada Tabel 2. Tabel 2. Parameter Filterbank Gabor [10, 18] Parameter Simbol Nilai Frekuensi filter f (1/K) 0.1 pix -1 Sudut orientasi θ i 0 o, 45 o, 90 o, 135 o Standar deviasi δ x dan δ y 4,0 Meshgrid x x (filter 23 x 23) -11 s.d 11 step 1 Meshgrid y y (filter 23 x 23) -11 s.d 11 step 1 245

Jurnal Matematika Vol. 9, No.3, Desember 2006:243-252 Frekuensi filter ditentukan sebesar 10 piksel dengan asumsi bahwa citra dengan resolusi 500 dpi akan didekati dengan 10 piksel. Pertimbangan dengan menggunakan filter gabor 23 x 23 adalah dengan mempertimbangkan jarak antar ridge dari citra sidik jari, pada penelitian ini jarak antar ridge pada citra 500 dpi dedekati dengan 10 piksel. Minimal ukuran filter gabor yang diperlukan adalah dua kali jarak antar ridge ditambah satu (2 x 10 +1 = 21), maka penggunaan ukuran filter gabor 23 x 23 sudah masuk dalam persyaratan tersebut. Hasil pemfilteran dengan sudut orientasi 0 o, 45 o, 90 o, 135 o, dapat dilihat pada Gambar 5 (a-d). Dari hasil ekstraksi ciri tersebut akan didapatkan sebanyak 96 (24 x 4) ciri dari 24 sektor untuk 4 buah filter. Adapun garfik tiga dimensi dari filter gabor 23 x23 dapat dilihat pada Gambar 6, grafik tersebut menggambarkan karakteristik dari filter gabor 23 x 23 dengan perubahan sudut orientasi 0 o, 45 o, 90 o, dan 135 o. Setiap perubahan sudut orientasi akan mengakibatkan filter gabor berputar sebesar sudut orientasi tersebut. (c). Sudut Orientasi 90 o (d). Sudut Orientasi 135 o Gambar 5. Hasil Proses Pemfilteran dengan Filter Gabor 23 x 23 (a). Filter Gabor 23 x 23, 0 o (a). Sudut Orientasi 0 o (b). Filter Gabor 23 x 23, 45 o (b). Sudut Orientasi 45 o Gambar 6. Filter Gabor 23 x 23, f = 0.1 pix 1, δ x = δ y = 4.0 246

Aris Puji Widodo dan Kusworo Adi (Perancangan dan Implementasi Perangkat Lunak Sistem Pencocokan ) (c). Filter Gabor 23 x 23, 90 o (b). Sudut Orientasi 45 o (c). Sudut Orientasi 90 o (d). Filter Gabor 23 x 23, 135 o e. Pembentukan vektor ciri Langkah terakhir pada proses ekstraksi ciri adalah pembentukan vektor ciri dengan menggunakan Average Absolute Deviation (AAD). Pada proses ini akan dilakukan pembentukan vektor ciri atau FingerCode yang merupakan nilai rata-rata dari jumlah selisih piksel setiap sektor dan nilai tengah pada sektor tersebut. Adapun contoh hasil pembentukan FingerCode dangan metode Average absolute deviation (AAD) dapat dilihat pada Gambar 7 dan Tabel 3 dan secara lengkap dapat dilihat pada lampiran. Jadi FingerCode ini dihasilkan pada tiap blok dari setiap orientasi pemfilteran. (a). Sudut Orientasi 0 o (d). Sudut Orientasi 135 o Gambar 7. Hasil Proses Pembentukan FingerCode Tabel 3. Contoh Hasil Pembentukan Vektor Ciri Sektor Sudut Orientasi 0 o 45 o 90 o 135 o 1 1.3537 1.5482 0.5082 2.1897 2 1.8814 3.5761 0.5685 2.2564 3 1.2688 3.7642 0.0190 1.7448 4 5.6771 11.2931 5.9805 54.7400 5 10.4494 36.2202 12.2818 9.4101 6 0.3767 4.3924 27.4188 1.3187 7 0.9049 3.6438 0.4774 2.2966 8 1.0620 3.0517 0.3967 2.4260 9 1.2220 0.1491 0.2156 0.3988 10 0.1084 2.2169 0.1420 0.3577 11 0.6689 1.1324 0.3211 0.7163 12 0.3498 1.2796 0.2734 0.7825 13 0.9650 0.3154 1.3495 0.0164 14 0.2231 1.2155 0.1123 0.6306 15 0.8036 0.4454 0.2346 0.4999 16 0.3861 1.8545 0.1226 0.5631 17 1.9031 0.5978 1.4742 0.8122 18 1.9456 1.4525 1.8979 1.2861 19 1.4660 0.4752 9.4766 1.1586 247

Jurnal Matematika Vol. 9, No.3, Desember 2006:243-252 Sektor Sudut Orientasi 0 o 45 o 90 o 135 o 20 0.5473 1.3954 1.7717 1.5147 21 1.0773 1.9742 0.5647 1.4208 22 0.6086 1.2787 0.6397 1.1734 23 1.8920 1.6223 1.6290 1.0150 24 9.6744 0.9147 1.5111 0.8927 3.4. Waktu Proses Tiap Tahapan Ekstraksi Ciri Waktu yang diperlukan pada tiap tahapan ekstraksi ciri sangat tergantung dari prosesor pengolah citra yang digunakan. Pada penelitian ini kami menggunakan tiga buah komputer sebagai pembanding. Adapun jenis komputer yang digunakan dalam penelitian ini adalah AMD Athlon Thunderbird 900 MHz MB, Intel PIII 800 MHz MB, dan Intel PIII 667 MHz MB. Waktu rata-rata yang diperlukan pada proses ekstraksi ciri tiap tahapnya dengan menggunakan tiga buah prosesor yang berbeda seperti pada Tabel.4. Pada referensi proses ekstraksi ciri algoritma minusi total waktu yang dibutuhkan dengan menggunakan CPU SPARC 20 Workstation adalah 5.35s [18]. Sehingga waktu yang diperlukan pada penelitian ini berkisar antara 3 6s. Tahapan yang paling banyak memerlukan waktu proses adalah pada tahap menentukan titik referensi dan filter gabor. Pada tahap mementukan lokasi titik referensi proses pemfilteran dengan filter sobel, lowpass filter, dan mean filter dengan ukuran filter 5x5 yang kesemuanya melakukan pemfilteran citra yang berukuran 224x288 piksel, waktu proses yang diperlukan pada tahap ini adalah sekitar 1 1,3s. Sedangkan pada filter Gabor waktu proses yang diperlukan sekitar 2 3s, hal ini dikarenakan pada proses pemfilteran dengan filter gabor 23x23 dengan perubahan sudut orientasi dari 0 o, 45 o, 90 o, dan 135 o akan memerlukan waktu proses yang cukup lama. Semakin besar ukuran filter gabor yang digunakan, maka akan semakin banyak waktu proses yang diperlukan. 3.4.1. Proses Pendaftaran Pada proses pendaftaran ada beberapa tahap yang dilakukan oleh sistem, yaitu, pemasukan ID sebagai indek file sidik jari dan ekstraksi ciri yang akan disimpan sebagai file template dalam ekstension DAT. Pada file tersebut akan menyimpan infermasi nama file sidik jari yang diekstrak (dalam bentuk BMP), dan vektor ciri sidik jari dengan perubahan sudut orientasi. Sedangkan waktu proses pendaftran dengan menggunakan Komputer AMD Athlon Thunderbird 900 MHz MHz, Intel PIII 800 MHz MHz, dan Intel PIII 667 MHz MHz memerlukan waktu proses antara 3 5s seperti terlihat pada Tabel 5. Waktu 3-5s banyak digunakan untuk proses ekstraksi ciri, sedangkan proses pendaftaran ke dalam database memerlukan waktu sekitar 0,09s sampai 0,11s. Tabel 4. Waktu Proses Ekstraksi Ciri Waktu Rata-rata (ms) Tahapan Intel PIII 667 Intel PIII 800 AMD Athlon TB 900 Inisialisasi 109 90 140 Menentukan Titik Referensi 1353 1143 1072 Menentukan ROI 22 16 20 Normalisasi 28 20 20 Pemfilteran dengan 4 orientasi 3895 2827 2434 Pembentukan FingerCode 259 192 190 Total Waktu 5706 4288 3876 248

Aris Puji Widodo dan Kusworo Adi (Perancangan dan Implementasi Perangkat Lunak Sistem Pencocokan ) Tabel 5. Waktu Proses Pendaftaran Waktu Rata-rata (ms) Tahapan Intel PIII 667 Intel PIII 800 AMD Athlon TB 900 Ekstraksi Ciri 5706 4288 3876 Pendaftaran 109 91 110 Total Waktu 5815 4379 3986 Tabel 6. Waktu Proses Verifikasi Waktu Rata-rata (ms) Tahapan Intel PIII 667 RAM 128 Intel PIII 800 AMD Athlon TB 900 Ekstraksi Ciri 5706 4288 3876 Pencocokan 96 87 80 Total Waktu 5802 4375 3956 Tabel 7. Nilai FAR, FRR, dan GAR Threshold FAR(%) FRR (%) GAR (%) 29 0.212 22.3792 77.62 30 0.1 19.32 80.68 31 0.09 16.5172 83.48 32 0.182 13.9708 86.03 33 0.376 11.6808 88.32 34 0.672 9.6472 90.35 35 1.07 7.87 92.13 36 1.57 6.3492 93.65 37 2.172 5.0848 94.92 38 2.876 4.0768 95.92 39 3.682 3.3252 96.67 40 4.59 2.83 97.17 3.4.2. Proses Verifikasi Pada penilitan ini kami menggunakan mode verifikasi untuk pengenalan sidik jari. Proses ini terdiri dari dua bagian penting, yaitu proses ekstraksi ciri sidik jari dan proses pencocokan. Sedangkan pada proses pencocokan akan dilakukan dengan menggunakan jarak Euclidian, yaitu dengan menentukan jarak terpendek dari dua ciri dengan memberikan skor antara 0-99. Dari hasil eksperimen dengan mengubah nilai threshold pencocokan, maka akan didapatkan False Aceptance Rate (FAR) dan False Reject Rate (FRR). Nilai FAR akan naik apabila threshold dinaikkan, sedangkan nilai FRR akan turun. Waktu proses yang diperlukan adalah sebesar 30s, waktu proses yang tinggi ini disebabkan oleh ekstraksi ciri yang banyak memakan waktu. Sedangkan untuk proses pencocokannya sendiri membutuhkan waktu sekitar 10s. Tabel 6 di bawah ini memperlihatkan waktu proses verifikasi yang terdiri dari ekstraksi ciri dan proses pencocokan. Hasil eksperimen dengan database sidik jari sebesar 40 buah, maka didapatkan nilai FAR, FRR, dan Geniunu Acepatace Rate (1-FRR) dengan perubahan threshold seperti pada Tabel 7, sedangkan data lengkap dari pencocokan sidik jari terdapat pada lampiran. Sedangkan untuk mendapatkan nilai Receiver Operating Characteristic (ROC) yang menggambarkan performansi dari sistem merupakan plot dari FAR sebagai sumbu x dan Geniunu Aceptance Rate (GAR) sebagai sumbu y, maka grafik tersebut dapat dilihat pada Gambar 9. Pada grafik tersebut menggambarkan bahwa se- 249

Jurnal Matematika Vol. 9, No.3, Desember 2006:243-252 makin besar nilai FAR, maka Geniunu yang diterima semakin besar, tetapi pada sistem ini pada FAR yang tinggi nilai GAR cenderung stabil. Sedangkan slope dari grafik tersebut sebesar 40 o, hal ini membuktikan bahwa sistem ini telah berjalan dengan baik, karena slope yang direkomendasikan sebesar 45 o [6]. FRR (%) GAR (%) 20 18 16 14 12 10 8 6 4 2 0 100 80 60 40 20 Grafik FAR dan FRR Vs Threshold 0 5 10 15 20 25 30 35 40 45 50 Threshold Gambar 8. Grafik Error Sistem 0 Error Sistem Grafik GAR Vs FAR 20 18 16 14 12 10 8 6 4 2 0 0 1 2 3 4 5 FAR (%) Gambar 9. Grafik ROC Dari Sistem Matching FAR (%) 4. PENUTUP 4.1. Kesimpulan Dari hasil penelitian menggunakan algoritma filterbank gabor, maka dapat disimpulkan: a. Filter Gabor yang digunakan adalah 23x23 dengan perubahan sudut orientasi 0 o, 45 o, 90 o, dan 135 o didapatkan sebanyak 96 (24x4) ciri dari 24 sektor untuk 4 buah filter. b. Perubahan sudut orientasi akan mengakibatkan filter Gabor berputar sebesar sudut orientasi tersebut. c. Pembentukan vektor ciri atau Finger- Code dangan metode Average absolute deviation (AAD) merupakan nilai ratarata dari jumlah selisih piksel setiap sektor dan nilai tengah pada sektor tersebut. d. Kesalahan sistem berada pada perpotongan antara FAR dan FRR sebesar 3,6% dengan threshold 39. e. Slope grafik GAR sebesar 40 o, hal ini membuktikan bahwa sistem ini telah berjalan dengan baik, karena slope yang direkomendasikan sebesar 45 o. 4.2. Saran Pengembangan Perangkat lunak berikutnya adalah meningkatkan kemampuan sistem menjadi sistem yang dapat dilakukan akses secara online. 5. UCAPAN TERIMA KASIH Peniliti mengucapkan terima kasih kepada Direktorat jendral pendidikan tinggi, Departemen pendidikan nasional yang telah membiayai terlaksananya penelitian dengan judul Perancangan dan Implementasi Perangkat Lunak Sistem Pencocokan Sidik Jari Dengan Algoritma Filterbank Gabor. 6. DAFTAR PUSTAKA [1]. Awcock, G.J and R Thomas (1996), Applied Image Processing, McGraw- Hill, New York. [2]. Benjamin Miller (1994), Vital Signs of Identity, Personal Identification News, IEEE Spectrum, 12(5). [3]. Boles, W., and B. Boashash (1998), A Human Identification Technique Using Images of The Iris and Wavelet Transform, IEEE Transactions On Signal Processing, 46(4). [4]. Bovik, A.C.,M. Clark, and Geiser, W.S. (1990), Multichannel Texture Analysis Using Localized Spatial Filters, IEEE Trans. Pattern Anal. and Machine Intellegent, 12(1). [5]. Daugman, J.G. (1993),High Confidence Recognition of Person by a Test of Statistical Independence, 250

Aris Puji Widodo dan Kusworo Adi (Perancangan dan Implementasi Perangkat Lunak Sistem Pencocokan ) IEEE Trans. Pattern Anal. and Machine Intellegent, 15(11). [6]. Daugman, J.G. (1985),Uncertainity Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-dimensional Visual Cortical Filter, J.Opt.Soc. Amer. A, 2. [7]. David A.C and Jernigan, M.E. (2000), Designing Gabor Filter for Optimal Texture Separability, Pattern Recognition, 33. [8]. Hong, L and A.K. Jain (1998), Integrating Faces and Fingerprints for Personal Identification, IEEE Trans. Pattern Anal. and Machine Intellegent, 20(12). [9]. Hong, L., Wan, Y, and Jain, A.K. (1998), Fingerprint Image Enhancement: Algorithm and Performance Evaluation, IEEE Trans. Pattern Anal. and Machine Intellegent, 20 (8). [10]. Jain, A., Prabhakar, S and Chen. S. (1999), Combining Multiple Matcher for a High Security Fingerprint Verification System, Proc. Pattern Recognition VI, Vlieland, The Netherland. [11]. Jain, A., Prabhakar, S. and Hong,L. (1999), A Multichannel Approach to Fingerprint Classification, IEEE Trans. Pattern Anal. and Machine Intellegent, 21(4). [12]. Jain, A.K, Hong, L.,Pankanti, S and Bolle, R. (1997), An Identity Authentication System Using Fingerprints, Proceedings of the IEEE, 85(9). [13]. Jain, A., Prabhakar, S., Hong, L., and Pankanti, S. (1997), Filterbankbased Fingerprint Matching, IEEE Trans on Image Processing, 9(5). [14]. James L.Wayman. (1998), A Generalized Biometric Identification System Model, IEEE, 35(2). [15]. Karu, K and A.K. Jain (1996), Fingerprint Classification, Pattern Recognition, 29(3). [16]. Nadler, M and Smith, E.P. (1992), Pattern Recognition Engineering, John Wiley and Sons, New York. [17]. Rao, A.R. and R.C. Jain (1992), Computerized Flow Field Analysis: Oriented Texture Field, IEEE Trans. Pattern Anal. and Machine Intellegent, 14(7). [18]. Ratha, N.K., Chen, S and A.K. Jain (1995), Adaptive Flow Orientation Based Texture Ectraction in Fingerprint Image, Proc. Pattern Recognition, February 12. [19]. Zoreda, J.L and J.M. Oton (1997), Smart Cards, Artech House, London. 251

Jurnal Matematika Vol. 9, No.3, Desember 2006:243-252 LAMPIRAN Tabel Hasil Eksperimen Proses Verifikasi Berdasarkan Perubahan Threshold Keterangan : 0 = Ditolak 1 = Diterima Sidik Jari Tresh 30 Tresh 35 Tresh 40 Tresh 45 FAR FRR FAR FRR FAR FRR FAR FRR 1 0 1 0 1 0 1 0 1 2 0 1 0 1 0 1 1 1 3 0 0 0 1 0 1 0 1 4 0 1 0 0 0 1 0 1 5 0 1 0 1 0 1 0 1 6 0 1 0 1 0 1 0 1 7 0 1 0 1 0 1 0 1 8 0 1 0 1 0 1 1 1 9 0 1 0 1 0 1 0 1 10 0 1 0 1 0 1 0 1 11 0 0 0 0 1 0 0 1 12 0 1 0 1 0 1 0 1 13 0 0 0 1 0 1 0 1 14 0 1 1 1 0 1 1 1 15 0 1 0 1 0 1 0 1 16 0 1 0 1 0 1 0 1 17 0 1 0 1 0 1 0 1 18 0 1 0 1 0 1 0 1 19 0 1 0 0 0 1 0 1 20 0 0 0 1 1 1 1 1 21 0 1 0 1 0 1 0 1 22 0 1 0 1 0 1 0 1 23 0 1 0 1 0 1 0 1 24 0 0 0 0 0 1 0 1 25 0 1 0 1 0 1 1 1 26 0 0 0 1 0 1 0 1 27 0 1 0 1 0 1 0 1 28 0 1 0 1 0 1 0 1 29 0 1 0 1 0 1 0 1 30 0 1 0 1 0 1 0 1 31 0 1 0 1 0 1 0 1 32 0 1 0 1 0 1 1 1 33 0 0 1 1 0 1 0 1 34 0 1 0 1 0 1 0 1 35 0 1 0 1 0 1 0 1 36 0 1 0 1 0 1 0 1 37 0 1 0 1 1 1 0 1 38 0 0 0 0 0 1 0 1 39 0 1 0 1 0 1 0 1 40 0 1 0 1 0 1 1 1 Total 0 8 2 5 3 1 7 0 252